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We investigate theoretically the tunneling of a dilute Bose-Einstein condensate through a potential barrier.
This scenario is closely related to recent experimental studies of condensates trapped in one-dimensional
optical lattices. We derive analytical results for the tunneling rate of the condensate with emphasis on the
effects of atom-atom interactions. Furthermore, we consider the effect of fluctuating barrier height to the
tunneling rate. We have computed the tunneling rate as a function of the characteristic frequency of the noise.
The result is seen to be closely related to the excitation spectrum of the condensate. These observations should
be experimentally verifiable.
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I. INTRODUCTION

Tunneling of particles through nanoscale classically for-
bidden regions is a curious quantum effect which has been
under keen study from the early days of modern physics. Not
only the tunneling of individual particles, but also tunneling
of coherent macroscopic matter waves has drawn wide inter-
est especially since the discovery of the Josephson effect in
superconductivity. The experimental realization of Bose-
Einstein condensation in dilute atomic gases provides a
unique possibility to study the tunneling of coherent matter
waves on a macroscopic scale, for example through the bar-
riers of a periodic optical lattice. The tunneling of Bose-
Einstein condensates �BECs� through a tilted periodic poten-
tial is particularly interesting since it is closely related to the
physics of Josephson junctions described effectively by a
phase particle moving in a tilted washboard potential.

The behavior of matter waves in periodic potentials has
been studied extensively especially in solid-state physics.
The atom-atom interactions in gaseous Bose-Einstein con-
densates give rise to nonlinear effects which make systems
consisting of a BEC in an optical lattice quite exceptional
�1�: Macroscopic quantum interference effects have been ob-
served in tunneling of a Bose-Einstein condensate through a
tilted optical lattice �2�. In addition, tunneling of ultracold
atoms through an accelerated optical lattice has been ob-
served �3,4�, Josephson junctions and arrays of them have
been realized using Bose-Einstein condensates �2,5–7�, and
superfluidity of condensates has been studied in moving op-
tical lattices �8,9�. The quantized energy levels in the wells
of a tilted optical potential have been shown to play a promi-
nent role in the tunneling, giving rise to tunneling resonances
�10–13�. The frequencies of collective modes, which affect
the tunneling rate, have been studied both theoretically �14�
and experimentally �15,16� for magnetically trapped BECs in
optical lattices. The coherent flow of a BEC through a double
potential barrier has been studied theoretically, and transport
resonances have been found �17�. Also, motion of BECs
through disordered regions has been investigated �18,19�.

In this work, we study the dynamics of a single-
component dilute atomic Bose-Einstein condensate in a tilted

optical lattice in the zero temperature limit. In practice, the
origin of the tilt in the potential can be due to an external
magnetic field, gravity, or acceleration of the optical lattice.
We derive an analytic expression for the tunneling rate
through a potential barrier using a semiclassical approxima-
tion. The result for the tunneling rate shows explicitly the
dependence on the chemical potential of the condensate, the
effective atom-atom interaction strength, and the form of the
external potential in the tunneling region. Furthermore, we
study the effect of noise on the interwell tunneling rate
through a tilted sinusoidal potential. Finally, we investigate
the effect of a harmonic drive on the tunneling rate and
verify that the resulting resonances originate from the exci-
tation of the lowest-lying eigenmodes of the system.

II. MEAN-FIELD THEORY

In the zero temperature limit, the time evolution of the
condensate order parameter is determined by the Gross-
Pitaevskii �GP� equation

H�r���r,t� = i�
�

�t
��r,t� , �1�

where H�r�=− �2

2m�2+Vext�r�+g ���r , t��2, m is the particle
mass, Vext�r� is the external potential, and g=4��2as /m the
atom-atom interaction coupling constant given in terms of
the s-wave scattering length as. Stationary states of the sys-
tem are solutions of the form ��r , t�=��r�e−i�t/�, where the
value of the chemical potential � is fixed by the normaliza-
tion condition ����r��2dr=N, where N is the number of par-
ticles in the condensate. With large enough particle numbers
or interaction strengths such that the kinetic energy term may
be neglected in the GP equation, the ground state of the
system is approximately of the Thomas-Fermi form

�TF�r� =�� − Vext�r�
g

. �2�

This approximation is typically accurate in the interior of the
condensate, but fails close to the surface of the cloud.
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Small-amplitude oscillations of the system can be studied
by linearizing the GP equation for a given stationary state.
This leads to the Bogoliubov eigenvalue equation

� L�r� M�r�

− M*�r� − L�r� 	�uq�r�
vq�r�

	 = ��q�uq�r�
vq�r�

	 �3�

characterizing the eigenfrequencies �q and quasiparticle
wave functions uq�r� and vq�r� of the eigenmode q. Above
L�r�=H�r�−�+2g ���r��2 and M�r�=g�2�r�.

We assume a cylindrical trap geometry and a tight har-
monic confinement in the radial direction such that the radial
harmonic oscillator length is much smaller than the charac-
teristic length scale of density variations in the axial direc-
tion. Hence the radial density profile of low energy states is
well approximated by a Gaussian. In this limit the GP equa-
tion simplifies to the one-dimensional form


−
�2

2m

�2

�x2 + Vext�x� + g̃���x��2���x� = i�
�

�t
��x� , �4�

where g̃ is an effective interaction strength and the one-
dimensional wave function is normalized to unity:
����x��2dx=1. In fact, the forthcoming analysis is essentially
independent of the exact radial profile of the condensate, as
long as the radial confinement is tight enough. A different
radial distribution results merely in a different relation be-
tween the coupling constants g̃ and g, and hence the qualita-
tive features of the results hold even if the condition of har-
monic radial confinement is not satisfied.

III. SEMICLASSICAL APPROXIMATION TO TUNNELING
RATES

In this section, we derive an analytic expression for the
tunneling rate through a potential barrier. We assume that the
stationary tunneling state ��x� is approximately of the
Thomas-Fermi form in region I, see Fig. 1. The left- and
right-hand classical turning points, denoted by a and b, re-

spectively, in the region of the barrier are solutions to the
equation V�x�=�. If the barrier is strong enough, the nonlin-
ear term in the GP equation can be neglected to a fair ap-
proximation in region II and beyond. We linearize the poten-
tial in the vicinity of the left-hand turning point a, which
amounts to approximating the order parameter ��x� by an
Airy function in region II. Furthermore, the order parameter
��x� is approximately given by the semiclassical form in the
tunneling region, labeled as III. Finally, the tunneling rate is
determined by the amplitude of the order parameter ��x� at
the right-hand turning point b.

For sufficiently large values of the interaction strength g̃,
the order parameter of the ground state of the system is well
approximated by the Thomas-Fermi profile in the interior of
the condensate. This approximation fails near the surface of
the cloud where the kinetic energy term in the Gross-
Pitaevskii equation is comparable to the interaction term. We
denote the point at which these two terms are equal for
�TF�x� by a−�, see Fig. 2. By linearizing the potential
around a such that V�x�−��F�x−a�, where F is a constant,
it follows that �= 1

2
�3 �2 / �mF�. When the nonlinear term is

neglected, the stationary GP equation reads


−
�2

2m

�2

�x2 + F�x − a����x� = 0, a − � � x � a + � .

�5�

The solution is given by the Airy function ��x�
=C1Ai��2mF /�2�1/3�x−a��, where the second linearly inde-
pendent solution is discarded due to its divergence for large
values of the argument. This form yields a fair approxima-
tion to the actual wave function in the interval �a−� ,a+��,
and it is fitted to the Thomas-Fermi form at x=a−�, yielding
C1��F�

g̃ /Ai�−2−2/3�.
For high barriers the nonlinear term of the GP equation

can be neglected to a good approximation in the region of the

FIG. 1. A schematic diagram of the tunneling problem. The
external potential Vext�x� is represented by the solid curve, and the
square of the wave function ���x��2 by the dashed curve. The chemi-
cal potential � is denoted by the horizontal dotted line and the
corresponding classical turning points a and b by the vertical
dashed lines. The region II in the vicinity of the left-hand classical
turning point where the order parameter is approximately of the
Airy form is bounded by the vertical solid lines. The size of this
region has been exaggerated for clarity.

FIG. 2. Approximations used in the derivation of the analytic
expression for the decay rate 	. The Thomas-Fermi �TF� form for
the ground state is given by the dotted line, the Airy function is
given by the dashed line, and the actual stationary tunneling state
wave function is given by the solid line. The points a−� and a+�
are denoted by the solid vertical lines, and the left-hand classical
turning point a is denoted by the vertical dashed line. The TF ap-
proximation is used in region I, x�a−�, the Airy solution in region
II, a−��x�a+�, and the semiclassical approximation in region
III, a+��x�b.
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barrier and hence the GP equation reduces there to the ordi-
nary Schrödinger equation. An approximate semiclassical so-
lution in the region of the barrier is thus given by

��x� =
C2

�
�x�
e−�a

x
�y�dy, a + � � x � b , �6�

where 
�x�=�2m�V�x�−�� /�2. By fitting this form to the
Airy function at a+�, we obtain

C2 �� F

2g̃
e1/3 Ai�2−2/3�

Ai�− 2−2/3�
. �7�

To the right of the right-hand classical turning point the
semiclassical solution is of the form

��x� =
C3

�k�x�
ei�b

xk�y�dy, x � b , �8�

where k�x�=�2m��−V�x�� /�2. The particle current corre-
sponding to this solution at the right-hand turning point is
given by 	 limx→bj�x�= �

m �C3�2. By applying the connec-
tion formulas given, e.g., in Ref. �20�, we obtain �C3 �
= �C2e−W����, where

W��� = �
a

b


�y�dy �9�

measures the strength of the barrier at the chemical potential
�. Hence the tunneling rate through the barrier takes the
form �21�

	 =
�

m

F

g̃

e2/3

2
� Ai�2−2/3�

Ai�− 2−2/3�	
2

e−2W��� �10�

�0.161
�

m

F

g̃
e−2W���. �11�

The rate thus carries an exponential identical to that of the
standard WKB result with the energy eigenvalue of the
Schrödinger equation replaced by the chemical potential �.
The prefactor, usually called the attempt frequency, explicitly
includes the coupling constant g̃.

To demonstrate the validity of the approximations em-
ployed above, we have calculated the tunneling rate 	 also
numerically by integrating the time-dependent Gross-
Pitaevskii equation. The instantaneous decay rate 	�t� can be
deduced from the fraction of particles left in the condensate
N�t+dt� /N�t�=e−	�t�dt after a time step dt. Hence by normal-
izing the wave function ��x� after each time step, the decay
rate for a constant interaction strength g̃ is given by

	 = − � ln�N�t + dt�/N�t��
dt

�
t
, �12�

where �·�t denotes the time average. The potential employed
was a single barrier of a tilted optical lattice

Vext�x� = �Er�s cos2�qx� − cx� , 0 � x � xm

const, x  xm,
�13�

where q is the wave number, Er=�2q2 /2m is the recoil en-
ergy, and xm=�3�+arcsin� c

sq
�� /2q is the location of the first

minimum of the potential to the right of the barrier. The
Dirichlet boundary conditions were applied at x=0 and x
=3� /q. In order to absorb the tunneled particles, we used an
additional imaginary potential c1 tanh�c2�x−c3�� in the re-
gion to the right of the barrier, where the constants c1 and c2
were chosen such that the absorption is sufficiently fast and
no backward reflection of tunneled particles occurs �24�. Fig-
ure 3 shows comparison of the decay rates 	 obtained from
the computation and by using the analytic expression, Eq.
�10�. The rates are shown as functions of the effective inter-
action strength g̃ for two values of the barrier height param-
eter, s=50 �a� and s=100 �b�. The agreement is good for a
wide range of decay rates, but the derived formula fails as
the chemical potential approaches the barrier height. This is
due to failure of the WKB approximation in the tunneling
region and the linearized potential approximation close to the
top of the barrier. The analytic expression fails to produce
the correct decay rate also for small values of g̃ due to failure
of the Thomas-Fermi approximation in region I. We have
tested the validity of Eq. �10� also for the cubic potential
with very similar results as above.

FIG. 3. Comparison of decay rates 	 obtained from simulation
�solid line� and by using the analytic expression of Eq. �10� �dashed
line� for two values of the barrier height parameter, s=50 �a� and
s=100 �b�. The expression fails to produce the correct decay rate
for small values of g̃ and for values of the chemical potential close
to the barrier height.
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IV. TUNNELING UNDER A FLUCTUATING BARRIER

We have also investigated the effect of fluctuations in the
amplitude of the optical potential to the tunneling rate 	
through a single barrier of the washboard potential, Eq. �13�,
by integrating the time dependent GP equation. The random
telegraph noise �RTN� is used to model thermal fluctuations
in the amplitude of the optical potential. In this model the
strength parameter s is assigned a value s0+� or s0−�. The
jumping time � between these values is chosen from the
distribution 1

�c
e−�/�c, where the correlation time �c gives the

expectation value for the jump to occur. The distribution of
the number of jumps occurring in a given time interval
�t− t�� is Poissonian, yielding ���t���t���=�2e−2�t−t��/�c for the
correlation function of the RTN signal. A similar model for
the standard Schrödinger dynamics has been discussed in
detail by one of the authors �27�.

Figure 4 shows the decay rate 	 as a function of the
correlation time �c for four values of the effective interaction
g̃. The parameters in the simulation were chosen as s0=20,
c=2q, and �=0.5. The effective interaction strengths were
set to the values g̃ / �Er /q�=0, 6.91, 8.98, and 10.4. Clearly,
the decay rate increases rapidly as the effective interaction
strength g̃ grows due to increase in the chemical potential
and the consequent reduction of the opacity of the barrier.
For small values of the correlation time the effect of the
noise is averaged out, and the decay rate approaches the
value obtained without the noise. The decay becomes faster
as the correlation time increases, reaching its maximum
around �c�0.20 � /Er, and starts to decrease gradually for
larger correlation times. Qualitatively, this feature has also
been observed in Ref. �27�, but here the nonmonotonic be-
havior can be understood on the grounds of the noise signal
exciting the collective eigenmodes of the system, as seen in
the next section. However, RTN does not produce sharp reso-
nance peaks because of its wide frequency spectrum.

V. TUNNELING UNDER A HARMONIC DRIVE

In order to investigate the effect of the eigenmode excita-
tions to the tunneling rate 	 under external perturbations, we

have calculated the decay rate as a function of the frequency
of a harmonic drive, for which the perturbing potential is of
the form Vpert�t�=� sin��t�. Here �=� /�c is the frequency
of the drive chosen such that on the average a RTN signal
corresponding to �c jumps twice in one cycle.

Figure 5 shows the tunneling rate 	 as a function of the
inverse driving frequency of the harmonic perturbation for
four interaction strengths. The parameters were chosen as in
Fig. 4. Two resonance peaks are clearly visible �28�. Accord-
ing to simulations, the amplitude of the harmonic perturba-
tion affects only the magnitude, but not the location of the
resonance peaks. The right-hand side peak turns out to be
due to the excitation of the dipole mode of the condensate:
For each interaction strength, the location of the maximum
of this peak corresponds accurately to the eigenfrequency of
the dipole mode. The left-hand side peak is located close to
the frequency of the quadru- and octupole modes.

In order to further investigate the origin of the resonance
peaks shown in Fig. 4, we have measured the quasiparticle
populations in the lowest-lying Bogoliubov eigenmodes dur-
ing the time evolution. We define the population amplitude
of the qth mode as

pq�t� =� �uq
*�x� − vq�x�����x,t� − c�gs�x��dx , �14�

where c=��gs�x�*��x , t�dx, and �gs is the ground state of the
system without the perturbation. The population of the qth
mode is then given by ��pq�t��2�t, where �·�t denotes the time
average. Figures 6 and 7 show the quasiparticle populations
of the lowest-lying modes in the RTN and harmonic pertur-
bation schemes, respectively. In the RTN scheme, the dipole
mode is most strongly excited except in the high frequency
limit �c→0. The nonmonotonic dependence of the dipole
mode population on the correlation time explains the similar
behavior in the decay rate 	 in Fig. 4. Under harmonic per-
turbation the dipole mode is strongly excited around �c

FIG. 4. Decay rate 	 as a function of the RTN correlation time
�c for four values of the effective interaction strength g̃ / �Er /q�=0,
6.91, 8.98, and 10.4.

FIG. 5. Decay rate 	 as a function of � /�, where � is the
frequency of the harmonic drive, for four values of the effective
interaction strength g̃ / �Er /q�=0, 6.91, 8.98, and 10.4. The crosses
denote the frequency of the dipole mode for each interaction
strength.
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�0.40 � /Er, and both the quadru- and octupole modes
around �c�0.20� /Er, which give rise to the resonance peaks
in the decay rate 	 shown in Fig. 5. The tiny humps in the
population of the quadru-, octu-, and hexadecapole modes
around�c�0.40� /Er are probably due to the strongly excited
dipole mode at this frequency and the nonlinearity of the
system.

VI. CONCLUSIONS

In this work we have derived an analytic expression for
the tunneling rate of a Bose-Einstein condensate through a
potential barrier. The result depends only on the particle
mass, chemical potential of the system and the external po-
tential. In deriving the expression it was assumed that the
potential barrier and the effective atom-atom interactions are
sufficiently strong, and that the potential is approximately
linear in the vicinity of the left-hand classical turning point.
We also studied the effect of fluctuations in the height of a

potential barrier to the tunneling rate through it using the
random telegraph noise. The tunneling rate was computed as
a function of the characteristic frequency of the noise for
several values of the effective interaction strength. In order
to interpret the results, we calculated the tunneling rate also
in the presence of harmonic perturbation in the height of the
barrier. We observed tunneling resonances at frequencies
close to the Bogoliubov eigenfrequencies of the condensate,
and concluded that the resonances are due to excitation of
the eigenmodes of the system.
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