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Quantum versus classical statistical dynamics of an ultracold Bose gas

Jiirgen Berges™
Institut fiir Kernphysik, Technische Universitit Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt, Germany
Thomas Gasenzer'
Institut fiir Theoretische Physik, Universitit Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
(Received 7 March 2007; published 11 September 2007)

We investigate the conditions under which quantum fluctuations are relevant for the quantitative interpreta-
tion of experiments with ultracold Bose gases. This requires to go beyond the description in terms of the
Gross-Pitaevskii and Hartree-Fock-Bogoliubov mean-field theories, which can be obtained as classical (statis-
tical) field-theory approximations of the quantum many-body problem. We employ functional-integral tech-
niques based on the two-particle irreducible (2PI) effective action. The role of quantum fluctuations is studied
within the nonperturbative 2PI 1/A expansion to next-to-leading order. At this accuracy level memory inte-
grals enter the dynamic equations, which differ for quantum and classical statistical descriptions. This can be
used to obtain a classicality condition for the many-body dynamics. We exemplify this condition by studying
the nonequilibrium evolution of a one-dimensional Bose gas of sodium atoms, and discuss some distinctive

properties of quantum versus classical statistical dynamics.
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I. INTRODUCTION

The preparation of ultracold atomic Bose and Fermi gases
in various trapping environments allows to study in a precise
way important aspects of quantum many-body dynamics
[1-9]. For this reason the field has attracted in recent years
researchers from a variety of physical disciplines, ranging
from condensed-matter to high-energy particle physics and
even cosmology. In past experiments with Bose-Einstein
condensates of dilute gases it has been found that these are,
in many cases, approximately described by a complex scalar
field which solves the Gross-Pitaevskii equation (GPE)
[10,11]. Despite the fact that the first-order coherence re-
flected by this equation has its origin in the quantum nature
of the Bose condensation phenomenon, the GPE arises as the
classical field-theory approximation of the underlying quan-
tum many-body problem. It thus neglects all quantum statis-
tical fluctuations contributing to the dynamics of the scalar
field. However, it is the role of these quantum statistical fluc-
tuations which is of central importance for our quantitative
understanding of a wealth of phenomena described by quan-
tum many-body dynamics. Accordingly, experiments which
are sensitive to fluctuations are crucial to test our theoretical
understanding of complex many-body problems.

If fluctuations are relevant then the quantitative interpre-
tation of the data typically requires nonperturbative theoret-
ical descriptions, which often must take into account non-
equilibrium dynamics to match realistic experimental
situations. Two cases should be distinguished in this context:
If the real-time dynamics of a Bose gas is dominated by
classical statistical fluctuations then it can be well approxi-
mated by a large number of numerical integrations of the
classical field equation (GPE) and Monte Carlo sampling
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techniques [12-14]. This takes into account nonperturbative
dynamics, however, neglects all quantum corrections. A cor-
responding classical statistical description does not exist for
fermions. The other case concerns dynamics where quantum
fluctuations are relevant. It is an important challenge to
quantitatively determine the role of quantum fluctuations,
thus predicting signatures for the detection of genuine quan-
tum effects in an experiment. Here, we address this question
for a Bose gas.

In fact, many experiments concerning ultracold Bose
gases fall short of being sensitive to quantum statistical fluc-
tuations, and can be accurately described by the GPE. The
importance of classical statistical fluctuations can rise if the
gas is sufficiently dense. A combination of low densities and
strong self-interaction can lead to enhanced quantum fluctua-
tions as compared to classical statistical fluctuations. Zero-
energy scattering resonances, particularly the so-called mag-
netic Feshbach resonances [15-19] so far have played a
leading role in the creation of strong interactions in degen-
erate atomic quantum gases. Near a Feshbach resonance, the
scattering of, e.g., a pair of Bose-condensed atoms, whose
relative energy is very close to zero, can be described by a
strongly enhanced s-wave scattering length a. Present-day
experimental techniques allow for resonance-enhanced scat-
tering lengths larger than the mean interatomic distance
(N/V)~'3 in the gas. As a consequence, the diluteness param-
eter a’N/V is larger than 1. The Bose-Einstein condensate is
no longer in the collisionless regime, it represents a strongly
interacting system. Feshbach resonances have gained a
strong practical importance for fermionic gases, where losses
are suppressed in the unitary limit [20] and where they allow
to study the transition from a phase of Bose-condensed mol-
ecules to a BCS-type superfluid [5,21-23].

One- and two-dimensional traps [24,25] as well as optical
lattices [26,27] allow to realize strongly correlated many-
body states of atoms. In an optical lattice, strong effective
interactions can be induced by suppressing the hopping be-

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.76.033604

JURGEN BERGES AND THOMAS GASENZER

tween adjacent lattice sites and thus increasing the weight of
the interaction relative to the kinetic energy [26,28]. This
leads, in the limit of near-zero hopping or strong interactions,
to a Mott-insulating state [29]. In a one-dimensional trap, the
gas enters the so-called Tonks-Girardeau regime, if the di-
mensionless interaction parameter y=g,pmV/(#>N) is much
larger than 1 [30-32]. Here, g;p is the coupling parameter of
the one-dimensional gas, e.g., g;p=2%%a/(ml;) for a cylin-
drical trap with transverse harmonic oscillator length /,. In
the Tonks-Girardeau limit y— oo the atoms can no longer
pass each other and behave in many respects like a one-
dimensional ideal Fermi gas [25].

The theory of the full nonperturbative real-time quantum
dynamics is in general a demanding problem. Already the
description of weakly correlated many-body dynamics suf-
fers from the problem that it requires summations of infinite
series of perturbative processes. These summations can be
efficiently taken into account using functional-integral tech-
niques for the quantum field theory, which are based on the
two-particle irreducible (2PI) effective action [33-35]. Much
progress has recently been achieved using nonperturbative
expansions of the 2PI effective action to next-to-leading or-
der in the number of field components [36,37]. This has been
employed in the context of ultracold quantum gases in Refs.
[38—40]. It has previously been successfully used to study
far-from-equilibrium dynamics and thermalization in relativ-
istic bosonic [36,41-43] and fermionic [44,45] theories. For
an introductory review see Ref. [46]. In Ref. [47] the ap-
proach has been used to compare quantum and classical sta-
tistical nonequilibrium dynamics for a relativistic scalar field
theory in the absence of a field expectation value. Since the
dynamic equations for the quantum and classical correlation
functions differ only by few characteristic terms, this can be
used to derive a classicality condition for many-body dynam-
ics [47,48].

Here we extend the analytic discussion including a non-
zero macroscopic field and apply it to a nonrelativistic theory
for an ultracold gas with, in the quantum case, bosonic sta-
tistics. For our comparison of quantum and classical dynam-
ics we employ the functional-integral approach of the 2PI
effective action. We recall that the difference between the
quantum and classical statistical theory can be expressed in
terms of interaction vertex terms for the quantum theory
which are absent in the classical statistical theory. As a con-
sequence, the classical generating functional is characterized
by an important reparametrization property, which allows
one to scale out the dependence of the dynamics on the scat-
tering length a. As a consequence, for the classical dynamics
the effects of a larger self-interaction can always be compen-
sated by a smaller density. It is shown that quantum correc-
tions violate this invariance property. They become of in-
creasing importance with growing scattering length or
reduced density. This is used to derive a condition which
may be used for experimenters to find signatures of quantum
fluctuations when preparing and probing the dynamics of
ultracold gases. This condition is not based on thermal equi-
librium assumptions and holds also for far-from-equilibrium
dynamics. As an application, we study the thermalization of
a homogeneous one-dimensional ultracold Bose gas starting
from a far-from-equilibrium initial state following Ref. [38].
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We compare quantum and classical evolution and demon-
strate the validity of our criterion for the nonequilibrium
quantum field theory to be well approximated by its classical
counterpart. To round off the analysis we discuss some dis-
tinctive properties of quantum versus classical statistical dy-
namics. For instance, the decay of correlations with the ini-
tial state happens faster in the classical statistical theory for
the one-dimensional Bose gas. Including quantum correc-
tions the system remembers longer the details about the ini-
tial conditions.

The use of functional methods to describe the dynamics
of classical correlations dates back to the work of Hopf in the
context of statistical hydrodynamics [49]. A field theory for
the description of classical fluctuations in terms of noncom-
mutative classical fields was first suggested by Martin, Sig-
gia, and Rose (MSR) [50] and has been extensively used in
critical dynamics near equilibrium [51]. This theory has been
reformulated later in terms of Lagrangian field theory em-
ploying functional methods [52-57]. In these field theoretical
approaches to classical statistics, a doubling of the degrees of
freedom occurs. For example, in the generating functional
for Green’s functions, besides each field appearing in the
fundamental Lagrangian, a second response field is inte-
grated over. The functional integral approach to quantum
field dynamics developed by Schwinger and Keldysh em-
ploys a closed time path (CTP) contour [58,59] in the time-
ordered exponential integral. The doubling of fields in the
MSR and Lagrangian approaches to classical dynamics cor-
responds to the fields evaluated separately on the two
branches of the Schwinger-Keldysh CTP [60-62]. Implica-
tions of the differences between the classical and quantum
vertices, similar to the case considered in this paper, have
been discussed, for other theories, e.g., in Refs. [62-68].

Our paper is organized as follows: In Sec. II we recall the
functional description of quantum as well as classical statis-
tical nonequilibrium dynamics and use this to construct the
respective 2PI effective actions. We then derive the time evo-
lution equations and compare the nonperturbative expansion
in the numbers of field components to next-to-leading order
for the nonrelativistic quantum and classical statistical
theory. In Sec. III we present numerical results for the quan-
tum and classical evolutions of an ultracold one-dimensional
Bose gas. Our conclusions are drawn in Sec. IV. In an ap-
pendix we provide some details of employed initial-state
density matrices.

II. CLASSICAL VERSUS QUANTUM DYNAMICS OF AN
INTERACTING GAS

We consider an ultracold gas of atoms with bosonic sta-
tistics. At sufficiently large phase-space densities the system
can undergo a phase transition and form a Bose-Einstein
condensate, given that dimensionality and trapping geometry
fulfill the necessary conditions. For a dilute gas, i.e., if the
atomic distance is much smaller than the characteristic
length scale of the interactions, typically the s-wave scatter-
ing length a, the system may be described by a complex
scalar field theory.
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We consider such a nonrelativistic quantum field theory
for a complex-valued field ¢(x). This fluctuating field is
characterized by the Lagrangian density

£09 = 56 (010,600 ~ 6213, 6 ()]~ 5 06 (We()
— Ve (W) - §[<P*(JC)<P(X)]2 (1)

in the defining functional integral for correlation functions as
described below. We use units where i=1. The space-time
variable is x=(xy=1,x). It is summed over double indices i
=1,...,d for d spatial dimensions and d;=d/dx;. Here V
denotes an external potential, and g a real-valued coupling
constant. The Euler-Lagrange equation of motion derived
from (1) reads

7
id, e(x) = (— ; +V(x) + glqo(x)lz) e(x). )

In the context of the physics of quantum gases of indistin-
guishable bosons, Eq. (2) is the well known Gross-Pitaevskii
equation if the fluctuating field ¢(x) is identified with its
quantum statistical average {¢(x)) [10,11]. This equation ap-
proximately describes the time evolution of an inherently
quantum system, a Bose-Einstein condensed ultracold gas,
neglecting all quantum statistical fluctuations contributing to
the dynamics of the scalar field. As such, the Gross-
Pitaevskii equation is a classical field equation and the inclu-
sion of quantum and statistical fluctuations beyond the clas-
sical field approximation is described in the following.

For this we recall in this section the field theoretical for-
mulation of the many-body quantum and classical statistical
time evolution. This gives that the dynamic equations for
correlation functions differ only by certain terms in the quan-
tum equations which are absent in the classical ones. As a
side result, one recovers that the dynamics in the Hartree-
Fock-Bogoliubov (HFB) [69-71] approximation is the same
for quantum and classical statistical descriptions for same
initial conditions. Moreover, the differences between the
quantum and classical dynamical equations are identified in
the nonperturbative 2PI 1/ approximation which goes far
beyond HFB.

While the field in Eq. (1) is assumed to be complex val-
ued, we will, in the following, switch to a representation of
the field in terms of its real and imaginary part, ¢=(¢,
+ip,)/ V2, where the classical action reads [38]

slel=> f Pa(0)iGy up(x:3) @1()
xy

-5 f €ux) @) ey(x) (). )

with [, = [dx,[d%. The free classical inverse propagator is
given by
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iGyp(x,y) = Sx = Y- iogydy — Hip(X) o), (4)

where H lB(x)z—&f/ 2m+V(x) denotes the single-particle
Hamiltonian with interaction potential V(x) and

0 —-i

= (i 0 > )
the Pauli matrix in field-index space. Summation over double
indices a,b,c,...=1,2 is implied. Many of the following
formal derivations are independent of the detailed form (4)
of Gal and, in particular, equally valid for relativistic field
theories. Note however that as G, in Eq. (4) contains only a
first-order time derivative, the canonically conjugate field, in
the nonrelativistic theory, is

L[ x] i

2
o, gu) ~ 270 ©

(%) =

in contrast to the relativistic case where the canonical mo-
mentum equals the time derivative of the field.

A. Quantum statistical dynamics
1. Generating functional

For a given initial-state density matrix pp(#,), which may
characterize a system also far from equilibrium, all informa-
tion about the quantum field theory is contained in the gen-
erating functional for correlation functions,

Z1J.K:pp] =Try pplto)Tc eXP[l’( f clﬁ(x)fba(X)

1

+ EJ CIDa(x)Kib(x,Y)q)b(Y)” . ()
xy,C

with Heisenberg field operators ®,(x) which obey for the
nonrelativistic theory the commutation relations

[q)a(t9x)9q)b(t9y)] == O-Zb(s(x - Y) . (8)

In Eq. (7), 7; denotes time-ordering along the closed time
path C leading from the initial time 7, along the real time axis
to some arbitrary time ¢ and back to f#,, with [ .
= [dxy[d%:. Contour time ordering along this path corre-
sponds to the usual time ordering along the forward piece C*
and antitemporal ordering on the backward piece C~. Note
that any time on C~ is considered later than any time on C*.
The source terms in Eq. (7) allow to generate correlation
functions by functional differentiation such as

8'7[J.K;pp)

<Tc(b(x1) oo <1)(xn)> = m ],KEO’

)

where the field indices have been suppressed and we have
used that for the closed time path Z=1 in the absence of
sources. We have introduced, in Eq. (9), two contour source
terms, JC and K¢, which we use below to go over by Leg-
endre transformation to the corresponding 2PI effective
action.
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2. Functional integral

For a theory with action (3) the generating functional
Z[J,K;pp] can be expressed in terms of a functional integral
using standard techniques (see, e.g., Refs. [46,61] and refer-
ences therein),

Z[J.K;ppl= f [deglldeglppl ey o]
Jw'(xo,w:@o(x)

X
¢ (tpX)=gF(x)

NEN
X exp i[S[cp*,(p_]+f (SDZ,%)(_f)

+1J <¢+¢->( K —@;)(@)]
20 TNk Ky I\ey )|

(10)

D/(P+D!(P—

where ppl g, ¢5]1=(¢*|pp(to)|¢™) and the matrix elements
are taken with respect to eigenstates of the Heisenberg field
operators at initial time, ®,(19.x)|¢*)=¢,(X)|¢*). In the
Appendix, we provide an explicit expression for the initial-
state density matrix ppl¢f, @] used later in our numerical
calculations. The integral measures are given as [dej]
=l xde¢; (%) and D' ¢*=11,, -, d@;(xo,x), with the prime
indicating that the integration over the fields at initial time #,
is excluded. The superscript + (—) indicates that the sources
are taken to be different on the forward (C*) and backward
(C7) branch of the closed time path. Because of the different
sources, the corresponding fields on the different branches
are labelled accordingly. The minus sign in front of the “—”
terms accounts for the reversed time integration. Using this
notation the action functional reads

1 iGoay O @b
S[¢+,¢‘]=—f (¢2,<p;)< ’ o i
2 xy 0 _lGO,lah @
g + 4+ + - - - -
—gf (O PaPL Py = CuPaPLPr) (11)

which corresponds to the defining action (3) if the time inte-
gration is replaced by an integration along the closed time
contour C.

In order to simplify the comparison with the classical sta-
tistical field theory below, a standard linear transformation R
of the fields is introduced as

(‘f“)ER(“?), (12)
& ¢
1 -1/ 1 -4

such that ¢,=(¢}+¢,)/2 and §,=¢.—¢,, O, @:=¢,+&,/2
and ¢,=¢,—@,/2, respectively. To avoid a proliferation of
symbols we have used here ¢,, which agrees with the defin-

where
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ing field in (3) only for ¢ =¢_. Since this will be the case for
expectation values in the absence of sources, where physical
observables are obtained, and since there is no danger of
confusion in the following we keep this notation.
Correspondingly, we write for the source terms

(-
7)) "

Koy Ko\ _ (Kb K\,
X S =RCG R (15)
Kab Kab K—b K;b

a

Inserting these definitions into the functional integral (10)
and using that (14) and (15) can be equivalently written as

7 J
(F)menlZ) o
FoRA Kt -k
(KaRb Zb) = (R_l)T< ab+ (ib )R_l (17)
kY K%, ~Ku  Kap

one finds
Z[J,J,K" KR K* K", pp]

= J [deolld@olppleo + &0/2, o = §o/2]

g
©0-@0
1 _ K" K3\ (@
+5f (<Pa,soa)< o Fb)(~ ; (18)
Xy K Kab bp

ab

! !~ . ~ —~ ill
D'¢D’ ¢ exp t[S[¢,sD]+J (%%)(J )

a

where S[ @, @]=So[ ¢, @]+ S ¢, @] consists of the action for
the free field theory

0 i) (o

19
iGyt, 0 ~> (19)

1
SO[(P’ @] = Ef (QDa’ {D’a)( @
Xy b

and the interaction part

Sint[ b, @] == g f aa ()C) Pa ()C) Pp ()C) ‘Pb(x)

2

-5 f BN (20)

3. Connected one- and two-point functions

From the generating functional for connected correlation
functions

W=-ilnZ (21)

we define the macroscopic field ¢,, and ¢, by
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oW
&5 (x)

= Pu(x), = Ba(). (22)

5J()

The connected statistical correlation function Fa,,(x y), the
retarded (advanced) propagators Gh(x,y) [G%(x,y)], and

F(x,y) are defined by

oW 1
5](;—() = 5[¢a(x) dp(y) + Fop(x,y)],
ab X,y

1 _
K ) NEAOTAOE iGR,(x, )],

SW 1 -
K () L)) - iGh(x,y)],
oW
W 2[fﬁa(x Bp(y) + Fop(x,3)]. (23)

For vanishing sources the field $=0 and the propagator
F=0 [61]. Moreover, the retarded and advanced correlators
GR(x,y) and G*(y,x) vanish for x,<y,. (See also the dis-
cussion in Sec. II B 3.) In the absence of sources, these two-
point functions are related then through the transformation

(13),

Fa _ iGR ++ +—
( o ) = R( oo )RT, (24)
- lGah 0 ab Gah

to the time-ordered correlation functions written in the “*”
basis. The inverse of the two-point function matrix (24) reads

0 i(GA);;)
<i(GR);; X, /) 2
where
Xh(x,y) = f (Gt (%, 2)F oz, w) (GM) g (w,y)
=[(G®)" F-(GM(x,y). (26)

The last equation introduces a compact matrix notation that
will be employed below.
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x,a b g
Fub(xyy) - Hml= S o~ s
2 ()O s (/9
R x,a vb
Gab(xxy) = -0 (/D (p
N x,a v,b g \.
Gufwy) = "o

FIG. 1. (Color online) (a) Diagrammatic representation of the
correlators in the ¢-¢ basis. A full line indicates the 1 or ¢ compo-
nent, a broken line the 2 or @ component. F,;,(x,y) is the statistical
correlation function, GX,(x,y)=p,,(x,y)8(xg—=yo) and G4 (x,y)=
—pap(x,¥)0(yg—xp) the retarded and advanced Green’s functions,
respectively. Their representation in terms of the real-valued spec-
tral correlation function p,,(x,y) exposes the 6 functions which
imply the respective time ordering in x, yo. (b) Diagrammatic ex-
pansion of the quantum vertex term entering the action (3). The
classical action (53) is lacking the second contribution (red square).

4. 2PI effective action

The 2PI effective action is obtained as the Legendre trans-
form

r=w- f [¢a(x)~7a(x) + aa(x)Ja(x)]

3| 008,01+ Fate

+ K25 (0, 9)[ a(X) () — iGR,(x,7)]
KR (6, ) (%) 3 (y) = iGhy (x, )] + K% (x,y)
x[auu)ab(y)ﬁub(x,y)]}. (27)

This corresponds to the 2PI effective action originally dis-
cussed in Refs. [33-35], however, written in terms of the
rotated variables. From (27) one observes the equations of
motion for the fields

~ Ty (x) - f ( 5b(x,y)¢b(y)+%Kﬁb(x,y)@(y)

5%( )~
+ %%(y)l@‘;(y,x)) : (28)
or
=—J,(x) - f ( Ko, y)¢b(y)+ Ko () 5(y)
5h.(x) 2
+ 5¢b<y>1<;;(y,x)) : (29)
as well as for the two-point functions
_r L
Sy~ 2Rt G0
oor
l—éGEb(x,y) 2 Kj,(x.y), (31)
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oI’ 1
——————=— —KX (x,y), 32
o 2Rt 2
ol 1
PR r,y). (33)
5Fab(x7y)

The diagrammatic calculation of the 2PI effective action in-
volves all closed two-particle irreducible Feynman graphs
with lines associated to the full two-point correlators
[33-35]. This is illustrated in Fig. 1 for vanishing macro-
scopic field ¢ and in the absence of external sources.

In the presence of a nonvanishing field value, ¢+ 0, the
interaction vertices are obtained from (20) by shifting in
S, @] the field ¢ — p+ ¢, and collecting all cubic and quar-
tic terms in the fluctuating fields ¢ and @, i.e.,

Sint[QD’ 67 ¢] == gf aa(x) (Pa(x) (Pb(x) (Pb(x)

X

- %f B4(X) 4(2) B (x) g (x)

-8 J Ba(%) @ (%) @ (x) by (x)

-5 f 3.0 () @, (1) ()

—§ f G0N B).  (34)

The quadratic terms in the fluctuating fields are taken
into account in the classical inverse propagator (4) by the
replacement

Hyg6,, — <H1B + gd%(x) ¢c(x)) Oup + 8Da(X) ().

(35)

In the free part of the action (19), and in the dynamic equa-
tions derived below, this corresponds to a field dependent
iGy'(x,y; ), while the general form of the equations re-
mains unchanged [77]. We note that linear terms in the fluc-
tuating fields ensure cancellation of possible tadpole contri-
butions, which therefore do not need to be considered
explicitly.

5. Exact evolution equations

For vanishing sources, the exact inverse two-point func-
tion (25) can then be written as [33-35]

( 0 i(GA);;1> ( 0 Ga,lab> ( 0 _izﬁb)
iGN, X Gowp O -i%y, h )

(36)

where X! is defined in Eq. (26) and the retarded, advanced,
and statistical self-energies are related through the transfor-
mation (13),
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A ++ +-
( o f“”) = (R-‘>T( o )R-', (37)
_lzab Eab ~ “~ab Eub

to the self-energies written in the “*” basis. To the retarded
(advanced) self-energy 3R (2A) and the statistical self-
energy X7 contribute only graphs with propagator lines as-
sociated to GR, GA and F, which can be obtained from
closed two-particle irreducible graphs by opening one propa-
gator line [33-35].

To convert Eq. (36) for the inverse propagator into an
equation, which is more suitable for initial value problems,
we convolute with the propagator matrix (24) from the right
and with the classical propagator from the left. This yields
the Schwinger-Dyson equations for the retarded and ad-
vanced propagator in the absence of sources,

GR/A — GOR/A _ GOR/A . ER/A . GR/A (38)
and the statistical propagator,
F=Fy—Fy-3*-G*- Gy -[SR-F+3F.G*], (39)

where we have used the compact notation introduced in Eq.
(26). For the spectral function,

Pab(X,)’) = G,;Rb(x,)’) - G?b('x’y)’ (40)
the Schwinger-Dyson equation follows from Egs. (40) and
(38) as

p=po—Gy-SR.-GR+ Gy - 34 GA. (41)

Acting on Egs. (39) and (41) with G61 from the left brings
these equations in a form which is more suitable for initial-
value problems. For this we write

SR (6y:8) =39 0) 8 - y) + 0xg = y) 38 (x, v b),
(42)

where we introduce the spectral part of the self-energy

Py ) =3 (xy ) - 38,(x, v ). (43)

Using that F; and p satisfy the homogeneous field equations

| Gl aFratzn =0,
Z

J Gy aex:2)po.p(2.) =0, (44)

and taking into account all # functions one obtains the dy-
namic equations for the two-point correlation functions F
and p [38,47,72],

X

0
[io-icaxo + Mac(x)]Fcb(xny) =- f dZEZC(X,E(Z")Fcb(Z,y)

)

Yo
+f dz3h (6,230 pey(z.y),
i1

0
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[io,d, ot Mac()]pep(x,y) = f dz28 (x,2; ) pep(2.y),

Yo

(45)

where we employ the notation

X0 X0
f dz = f dz, f d'z. (46)
) I

Here

ab(x) ab(HlB(x) + [¢c(x) d)c(x) + Fcc(x x)])
+ 8l ha(xX) y(x) + Fyp(x,x)] (47)

is the mean-field energy matrix which includes the field-
dependent terms of the classical inverse propagator iGa}ab(g{))
defined in Eqgs. (4) with (35), and the local part of the self-
energy,

S0 = S o) + gF i), @9)

as defined in Eq. (43). We note that the spectral function at
initial time is characterized by the commutator (8), with

pab(x’y)|x0=y0 =- la-?,ba(x - Y), (49)

for the nonrelativistic theory.

The dynamic equation for the mean field ¢,(x) is obtained
from Eq. (29) with ¢,(x)=0 in the absence of sources. It
reads [38,37]

[- “T —8F(x, x)]¢b(x) (HIB(X)+§[¢C()C)¢C(X)
+nﬂmﬂ@m=£zy (50)

where the functional derivative is taken for fixed two-point
functions and T', contains all closed 2PI graphs [33-35]. In
Sec. I C we will employ an expansion in the number of field
components to next-to-leading order to approximately de-
scribe the dynamics, for which one obtains the compact ex-
pression [37]

oa, X0 o
S, (x) ffo dy 25, (x,y; = 0)y(y). (51)

B. Classical statistical dynamics
1. Classical equation of motion

The classical field equation of motion can be derived from
the defining action (3). In the basis (12) the same equation of
motion for the field ¢,(x) is obtained from the action with
(19) and (20) by
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X
X0

55 ¢, 8]

=0, (52
5% (52)

e=¢°.3=0 e=¢!

as a consequence of setting =0. For the first identity in (52)
we have defined S[¢,&]=S,[¢,5]+S2[¢,3] as that part
of S[¢, @] which is linear in @. As a consequence, the non-
interacting part Sy ¢, @] agrees with the respective expres-
sion appearing for the quantum theory (19). The interaction
part of S[ ¢, ], however, differs from (20) in that it contains
fewer vertices,

s e.5)=-2 f Ba(%) 0, (x) 0y (x) @y (x) . (53)

2 X

This is illustrated in Fig. 1(b). The absence of vertices be-
yond those which are linear in @ turns out to be the crucial
difference between a classical and a quantum statistical field
theory as is discussed in the following.

2. Classical statistical generating functional

We will construct the generating functional for the classi-
cal statistical field theory, Z°[J,K; W] for given probability
functional W for the fields at initial time, similar to the ex-
pression (18) for the quantum theory. For this, we rewrite the
equation of motion (52) as a & constraint in a functional
integral using the Fourier transform representation

S”[tp,cpl) _ ( ST, 3] _ )
5< op ID pJ:r&QDa() o)

= f Do eXP(l'SCl[QD,@]H f Wo,a(X)%,a(X))-

(54)

For the last equality, the second term in the exponent sub-
tracts the boundary term at the initial time #;, which follows
from partial integration. We emphasize that we must take
into account this boundary term since 7, will be taken to be
finite for the nonequilibrium initial-value problems consid-
ered. my ,(x)=m,(xg=1(,X) is the initial canonical momen-
tum, with 7,(x)=io.,@,(x)/2 for the nonrelativistic theory.
We note that Eq. (54) remains valid also for a relativistic
theory, where  ,(x) denotes the time derivative of the field
at time £.

It should be stressed that the Fourier transform expression
(54) could not be achieved with S[ ¢, &] replaced by S[¢, @]
since the latter is not linear in @. For the noninteracting
theory, however, S(c)l[<p,¢]:S0[cp,¢] holds, and we will re-
cover the fact that the free classical and quantum theories are
governed by the same dynamics for same initial conditions.
The same fact holds true for all Gaussian (leading-order
large-A\ or Hartree-type) approximations. Therefore, it is cru-
cial for a quantum classical comparison that we go beyond
and consider the next-to-leading order corrections as we do
in Sec. II A 4 below.

Any functional f[¢“] of the classical field ¢!, being a
solution of the classical equation of motion (52), can be writ-
ten as
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A= f D'oflelde - ¢]
eo=¢;
, 55 p,3]
= f D @f[cp]5<—~ Jel
eo=¢; 69

=f D'eDefle]

Po=%0
X CXp(l.SCl[(p, ()‘B] + lJ WO,a@O,a)j[go]a (55)
where the Jacobian reads

Jel= (56)

52Sc1 , ~
Spop

Here the Jacobian plays the role of an irrelevant normaliza-
tion constant, which has been discussed in detail in Ref. [68]
and references therein.

Classical correlation functions are obtained as phase-
space averages over trajectories given by solutions of the
classical field equation (52). Such averages, for an arbitrary
functional of the field, are defined as

Mead)a= f [degldmy] Wleg, m51 /¢ (57)

Here W[‘Po ,7701] denotes the normalized phase-space prob-
ability functional at initial time [and is not to be confused
with the generating functional (21)]. In the Appendix we
provide an explicit expression for W[(p 770] a functional of
four fields which is symmetric under the exchange of ’7T0a
and m‘zbcpo »/2 for a=1,2, since the canonical momentum
(6) is proportlonal to the field itself. The measure indicates
integration over the classical phase space. The theory may be
defined on a spatial lattice to regulate the Rayleigh-Jeans
divergence of classical statistical field theory.

Using Egs. (55) and (57), we can now write down a gen-
erating functional for classical correlation functions in the
form

Z900,7, KF KR K™ KT W]

f [degTldm] W[%ﬂrol]f

@0= (po )= '”'0

. _ _ NV
Xexp 1[5°1[¢,¢]+f 7TO,a(P0,u+J (qow%)(J )

a

l KFh KaAb)((pb):|
- »Ya a —_ 1) 58
+ 2L(¢a @ )(KR & )\a, Jel (58)

ab

D'eDé

where S, &]=S,[¢, B]+S2 [¢, 3] as defined in Egs. (19)
and (53), and where the relation (6) between the field and the
canonical momentum is implied.

Comparing with the quantum generating functional in Eq.
(18), and using that the Jacobian J[¢] plays the role of an
irrelevant normalization constant, we find that the classical
functional (58) takes the same Lagrangian form, with initial
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conditions given by a density matrix pp which is character-
ized by the Fourier transform of the phase-space probability
distribution W[ ¢, 7],

pol@o + @o/2, 00— By/2] = f [d 7o Wl ¢o, 7]

XGXp(lf 770,060@) . (59)
X

In summary, the generating functionals for correlation
functions are very similar in the quantum and the classical
statistical theory. The crucial difference is that the quantum
theory is characterized by more vertices. As a consequence,
we can follow the very same steps as in Sec. II A to construct
the classical statistical 2PI effective action and to derive the
time evolution equations from it.

Similar to the discussion for the quantum theory above,
for ¢p# 0 the interaction vertices for the classical statistical
theory are obtained by shifting in S[¢, @] the field ¢— ¢
+ ¢, and collecting all cubic and quartic terms in the fluctu-
ating fields, i.e.,

Sole.@:dl=-72 f B4(%) @, (x) @y (x) @ (x)

X

-8 J B(x) @, (x) @ (x) by (x)

- gf @a(X)Qba(X)(P},(X)(P},(X). (60)

This can be compared to the respective expression for the
quantum theory, Eq. (34).

3. Correlation functions

Comparing quantum and classical statistical dynamics
amounts to comparing the time evolution of classical statis-
tical n-point functions with that of the respective quantum
ones. The classical functions are obtained as phase-space av-
erages (57) over trajectories given by solutions of the classi-
cal field equation (52). As an example, the macroscopic or
average classical field is given by

B () = (@, (x))a = f [defldm ] Wleh, 7] ¢f (x).
(61)

This is equivalent to the field average obtained from the
generating functional (58) by functional differentiation with
respect to J,(x). Similarly, also ¢'(x) can be obtained by
functional differentiation with respect to J,(x) in the same
way as described in Sec. II A 3 if the quantum generating
functional in Eq. (21) is replaced by its classical counterpart
defined in Eq. (58). Moreover, as for the quantum case,
&,(x) =0 for vanishing sources. This can be directly seen by
taking the functional derivative of Z' with respect to J,(x),
setting all sources to zero except J,(x), and performing all
steps backward in Egs. (58) and (55). This is possible as the
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remaining source term is linear in ¢. Using the same reason-
ing one finds that also the two-point correlation function

fab(x,y), which is defined as in Eq. (23) as a functional
derivative of W*'=—i In Z¢! with respect to K*, vanishes iden-
tically in the absence of sources.

Similarly, defining the connected classical statistical
propagator F<,(x,y) according to Eq. (23) results in

Fo,(x,9) + 50 65 (3) = (@ () 00t
- | taginamvres =)

X @5 (x) @ (). (62)

The classical equivalent of the quantum spectral function
pS(x,y) is obtained as follows: Taking the functional deriva-
tives according to Eq. (23) leads, with Eq. (40), to

puploy) = f g dmS W, 1

Y

_cd ___ ¢
PO=P0TO=T()

D' oD [ ¢, (x)8p(y) = o(x) @p(y)]

X expli(501[¢’¢]+f WO,a@O,a>:|s7[QD]~ (63)

If x,<y, the expectation value of ¢,(x)@,(y) vanishes fol-

lowing the same reasoning as for the field g?)“l, in accordance
with the fact that this term corresponds to the retarded propa-
gator GR(x,y). Analogously, if x,>y,, the advanced propa-
gator, i.e., the average of @,(x)¢,(y), vanishes.

We consider the case that xy=t,. If yo>x,, one obtains
from Eq. (63) and the definition (6) of the canonical field
momentum,

1) -
j [de Mdm§ WL el 71— —— D' ¢D&ey(y)

cl
1 1
5770,4 (X) <p0:¢8 ,TT)= 71'8

Xexpli<S°1[¢,6]+f WO,a@O,a>i|j[¢]

1 005 ()

S (%)

5% (to,X) 5% ()
(z) 577 (z)

f[dcp Ldm WL e, o

f [degdmyIW e, o]J
(64)
Extending this procedure to #,=y,=<x, one recovers the well-

known fact that the classical spectral function is obtained by
replacing —i times the commutator with the Poisson bracket,

Pip(6) = = {ea(0), () }pm)et- (65)

The Poisson bracket with respect to the initial fields is
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S, (x) Spp(y)
5(100,0(Z) 5770,0(1)

8¢, (x) 5<pb(y))
o (2) 8¢ (2)
(66)

{(Pa(x)v‘Pb()’)}PB:f<

(summation over ¢). Note that, in order to arrive at Eq. (65),
we used that the Poisson brackets are invariant under the
classical time evolution of the fields and therefore valid for
any times xq, Y.

As a consequence, one finds the equal-time relations for
the classical spectral function: p(x, Wlxg=y,= —io2, (x~y).
Note that they are in complete correspondence with the re-
spective quantum relatlons in Eq. (49). Equivalently, the free
spectral function pg, ! ,(x,y) and statistical function F 0, ' L(0y)
are solutions of the homogeneous equations correspondlng to
Eq. (44), with initial conditions determined for p; ! by the
equal-time canonical relations, and for FCl by the initial prob-
ability functional W[ ¢, 7). Also for the classical statistical
theory Egs. (50) and (45) are the exact equations for the field
¢ and the correlation functions F and p, respectively. There
is a difference between the classical and quantum equations
of motion only in the self-energy contributions correspond-
ing to 3 and 3. This difference arises from the different
properties of the interaction part of the quantum and classical
actions (20) and (53), respectively. We discuss this difference
for the nonperturbative 2P 1/N expansion to next-to-
leading order in the following section.

Summarizing, one finds when comparing classical statis-
tical and quantum many-body dynamics that the generating
functionals for correlation functions are very similar in the
classical and the quantum theory. However, the quantum
theory is characterized by more vertices. As a consequence,
the same techniques can be used to derive time evolution
equations of classical correlation functions that are employed
in quantum field theory. Eventually, in the basis correspond-
ing to the fields ¢ and @, the classical dynamic equations
have the same form as their quantum analogues but are lack-
ing certain terms due to the reduced number of vertices.

C. Quantum versus classical statistical evolution

The classical statistical generating functional (58) exhibits
an important reparametrization property: If the fluctuating
fields are rescaled according to

(%) = @) = Vg (x),

~ ~ [\ ~
Ba(x) = §,(x) = (1/Vg) §4(x) (67)
then the coupling g drops out of S¢,3]=S\[¢,d]

+Si°lit[<p,¢5] defined in Egs. (19) and (53). The free part
Sol ¢, @] remains unchanged and the interaction part becomes

Sole' @' 1=-= f e e ()ex).  (68)

Moreover, the functional measure in Eq. (58) is invariant
under the rescaling (67), and the sources can be redefined
accordingly. Therefore, the classical statistical generating
functional becomes independent of g, except for the coupling
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dependence entering the probability distribution fixing the
initial conditions. Accordingly, the coupling does not enter
the classical dynamic equations for correlation functions. All
the g dependence enters the initial conditions which are re-
quired to solve the dynamic equations.

In contrast to the classical case, this reparametrization
property is absent for the quantum theory: After the rescaling
(67) one is left with S[¢’, &’ ] whose coupling dependence is
given by the interaction part

1
Sl @’ @' 1=~ Ef Bu(x) @ (x) @y (x) @y (x)

g2
-gf@m@m@m%m, (69)

according to Eq. (20). Comparing to (68) one observes that
the quantum vertex, which is absent in the classical statistical
theory, encodes all the g dependence of the dynamics.

The comparison of quantum versus classical dynamics be-
comes particularly transparent using the above rescaling. The
rescaled macroscopic field and statistical correlation function
are given by

bL(0) =\gh(x),  Fly(r,y) =gFu(xy),  (70)

while the spectral function p,,(x,y) remains unchanged ac-
cording to Egs. (23) and (40). Similarly, we define for the
statistical self-energy entering the dynamic equations (45),

) = g3, (x,y). (71)

1. Quantum versus classical statistical self-energy

To identify the precise difference between the quantum
and the classical time evolution, details about the self-
energies are required. In the following we will employ the
2PI 1/N expansion to next-to-leading order [36,37]. This is a
nonperturbative expansion in powers of the inverse number
of field components A/ which, in the context of a nonrelativ-
istic Bose gas, is /=2 as discussed in detail in Ref. [38]. We
quote the result for the self-energies for A'=2 [36,37], which
for the rescaled variables (70) and (71) read

Phxy) == (I}(x,y)qﬁ;(x) &p(y)
+[I:(x,y) + Pp(x,y)]F.,(x,y)

g2
- Z[Ip(x’y) + Pp(%)’)]Pab(x’)’)) 5

30, (x,y) == (1,(x,y) b (x) by (y)
+[1,(x,y) + Po(x,9) F(x,y)
+[130x,y) + P, y)lpap(x.).  (72)

The functions I, and I, satisfy
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Xiep X Xivr Xig2

Xy Y

FIG. 2. (Color online) Diagrammatic representation of the
bubble chains contributing to the functions I and I, at next-to-
leading order in the 2PI 1/A expansion. The meaning of lines and
vertices is explained in Fig. 1. The chains of type (Q1) and (Q2)
only appear for a quantum system. Type (C) is present both in
quantum and classical systems. These diagrams exhibit that in each
term contributing to the functions /. and I, there is at most one
loop involving two correlators F' or p. In the classical limit of
quantum theory, the loops involving two spectral functions p are
suppressed compared to those with two statistical functions F’.

7 7 A

R

X X

X0
Ip(x,y) == 5(x,y) + f dz 1,(x,2)I1(z,y)

T

Yo
— f dZ I[’:(-xsZ)Hp(Z’y) ’
I

0

L(x,y) ==11,(x,y) + J Odz L) (z,y),  (73)

Yo

with

’ 1 ' ’ g2
HF(x’y) == E(Fab(x’y)Fab(x9y) - Zpab(X,)’)Pab(xs)’)) s

Hp(x,)’) =- F;b(x,Y)Pab(x,}’)- (74)

The functions P,’v and P, which vanish if ¢=0, will be dis-
cussed below. Iterating the integral equation (73) implies that
the functions I; and I, can be represented as a series of
bubble chains, as shown in Fig. 2. A full line represents a
statistical correlator, while a retarded (advanced) propagator
line changes, from left to right, from full (broken) to broken
(full), see Fig. 1.

The quantum and classical vertices are depicted analo-
gously in Fig. 1(b). Connecting the correlators through the
respective vertices, one finds which types of bubble chains
appear. The classes of nonvanishing bubble chains shown in
Fig. 2 confirm the structure of the functions /.(x,y) and
I,(x,y) which are determined by the integral equation (73):
In each term contributing to the diagrammatic expansion of
these functions there is at most one loop containing two F’
or two p correlators, the latter resulting from either GR or
G*. In addition to this one finds that only the loop containing
two p correlators goes with the vertex which is present in
the quantum case only. Hence, considering the classical
dynamics, the ~g?p?> terms are absent together with the
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quantum vertex. For the same reasons, the contribution
~ (g2 DU, (x,y)+P,(x,y)]pas(x,y) to 3P (x,y) is absent for
the classical statistical theory.

We proceed by considering the functions Pj and P,,
which are relevant for the case of a nonvanishing ¢’. The
classes of bubble chains appearing in the self-energy for
¢’ # 0 are derived from those shown in Fig. 2, by replacing
at most one full F),(x,y) line by the product ¢, (x)¢;,(y) of
mean fields. This means, that the pair of correlators in one
loop are replaced by either of the combinations

Hp(x,y) == ¢ (X)F L, (x,y) ().,

Hy(x,y) = = ¢,(x)pap(x,) (). (75)

The functions P and P, entering the self-energies (72) then
read [37]

Pi(x,y)=- (H}(x,y)

- f i dz[H(x,2)I(z,) + I(x,2) HE(z,y)]

0

Yo
+ J dz[Hp(x,2)1,(z,y) + Ip(x,2)H (z,y)]

0

0 Yo

- f dz f dvl (x,2)H(z,0)1,(v,y)
o fo
X0 20

+f dzf dvl(x,2)H (z,0)I(v.y)
lo lo

Yo Yo
+ f de dvI}(x,Z)Hp(Z,U)Ip(U,)’)) ’
ty 20

Pp()@)’) == é’(Hp(xJ’)

_ J Y G H (5, e9) + 1.2 H 2.3)]

+f 0a’zf0a’vlp(x,z)Hp(z,v)I‘D(v,y)). (76)
Yo Yo

We observe that there are no differences in the functions P
and P, in the classical statistical limit except for a depen-
dence on modified I} and [, since the terms involving the
mean field ¢ correspond either to (F')* or to F'p loops.
This implies that the presence of a nonvanishing mean field
¢’ does not add characteristic quantum terms to the dynami-
cal equations of motion.

Moreover, the tadpole diagrams contain the classical ver-
tex and the F’ correlator only. This shows that the left-hand
sides of the quantum dynamic equations, Egs. (50) and (45),
do not contain any contribution proportional to the quantum
vertex marked with a (red) square in Fig. 1(b). As a result,
the dynamics in the Hartree-Fock-Bogoliubov [69-71] ap-
proximation is the same for the quantum and the classical
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statistical theory for the same initial conditions. Differences

arise, at most, in the self-energies >/ " and 3. We point out
that, neglecting the right-hand sides of Egs. (50) and (45),
these equations constitute a set of time-dependent HFB equa-
tions for the mean field and the two-point functions, cf., e.g.,
Refs. [38,39]. In this approximation, the dynamics of p de-
couples from that of ¢ and F. Neglecting also F, Eq. (50)
becomes the Gross-Pitaevskii equation. Quantum fluctua-
tions play no role in these approximations. For this reason,
HFB is commonly termed a mean-field theory [73].

Summarizing, one concludes that all equations (45), (50),
(47), and (72)—(76) remain the same in the classical statisti-
cal limit except for differing expressions for the statistical
components of the self-energy,

classical limit

mxy) ——— = {Ip(x,y) Lx) dh(y)
+[Ix(x,y) + Pp(x,y)] Fl,(x,9)},

classical limit

T (x,y) —— = 3F (6, 0)FL,(x,y), (77)

replacing the respective expression in Eqs. (72) and (74).
The classical statistical self-energies can be obtained from
the respective quantum ones by dropping two spectral
(p-type) components compared to two statistical (F-type)
functions. For vanishing macroscopic field ¢ where P ,=0
this corresponds to the result of Ref. [47]. Using the rescaled
variables (70) and (71) the quantum terms can be directly
identified since they are the only g-dependent terms, which
are absent in the classical statistical theory according to the
above discussion. As a consequence, for the classical dynam-
ics the effects of a larger coupling can always be compen-
sated by changing the initial conditions such that Fg, as well
as ¢g, remain constant. This cannot be achieved once quan-
tum corrections are taken into account, since they become of
increasing importance with growing coupling or reduced ini-
tial values for F and ¢.

2. Classicality condition

Equation (77) describes the differences between quantum
and classical statistical equations of motion. In turn one can
ask under which conditions these differences are negligible.
In that case the quantum dynamics can be well approximated
by classical statistical dynamics. To analyze this we itera-
tively expand Eq. (73) in terms of I}, and I, and compare
term by term the statistical components of the quantum self-
energies in Egs. (72) and (74) to the respective classical ones
according to (77). One finds that a sufficient condition for the
suppression of quantum fluctuations compared to classical
statistical fluctuations is given by

|FLy (6,0 FLy(zw) 2 387 pap(x.0)peazw)]. (78)

This condition is not based on thermal equilibrium assump-
tions and holds also for far-from-equilibrium dynamics. In
particular, it is independent of the value of the macroscopic
field ¢. Our results, therefore, agree with previous ¢=0 es-
timates in Refs. [46,47]. We also note that the condition (78)
is precisely the same as the one obtained from the 2PI loop
expansion [36,46].
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The condition (78) can be applied, of course, also in ther-
mal equilibrium, for which the statistical and spectral corre-
lation functions are no longer independent quantities. In ther-
mal equilibrium they are rather related to each other through
the fluctuation-dissipation relation, which, for a homoge-
neous system in energy-momentum space, reads

1
F(eq)’(w,p) =— ig(z +n(w, T))p(eq)(w,P), (79)

with the Bose-Einstein distribution function n(w,T)
= (el W7 _ 1)~ For large temperatures, kzT> w—u, one
has [F©9'(w,p)|/g>|p*Y(w,p)|, i.e., the classicality condi-
tion is fulfilled for all modes whose occupation number
~FD"(w,p)/g is much larger than O(1). The equivalent
statement can be directly derived from (78) also for nonequi-
librium evolutions whenever it is possible to define a suitable
occupation number from a space-time or energy-momentum
dependent proportionality between F and p. A nonequilib-
rium example will be discussed in Sec. III.

Away from equilibrium the situation is often considerably
more complicated. Strictly speaking the condition (78) must
be valid at all times and for all space points, or momenta in
Fourier space, for the classical and the quantum evolution to
agree. In practice, however, it needs only be fulfilled for time
and space averages. In Sec. III we will demonstrate how
quantum evolution can be approximated for not too late
times by classical statistical dynamics, if the correlation
functions satisfy (78) at initial time. In order to have quan-
tum fluctuations playing a significant role, also for dynami-
cally evolving gases, one either needs to increase the inter-
action strength g accordingly or change the phase-space
structure by changing the external trapping potential. For ex-
ample, in a one-dimensional trap, an effectively strong cou-
pling and strong quantum fluctuations can be induced by
reducing the line density of atoms while their interaction
strength is kept constant. Such a case will be considered in
Sec. III C.

III. FAR-FROM-EQUILIBRIUM TIME EVOLUTION
OF AN ULTRACOLD BOSE GAS

In this section we apply the theoretical methods summa-
rized above to describe the equilibration dynamics of a uni-
form ultracold gas of bosonic sodium atoms which are con-
fined such that they can move in one spatial dimension only.
With present-day experimental technology, such a situation
is achievable, e.g., using strong transversal confinement in an
optical lattice or in a microtrap on the surface of a chip.

We will compare the evolution involving only classical
statistical fluctuations with that which also takes into account
quantum corrections. Both, the classical and the quantum gas
are assumed to be initially characterized by the same initial
conditions far from thermal equilibrium. For the quantum
gas, the ensuing equilibration process is found to happen on
two different time scales. A fast dephasing period leads to a
quasistationary state which shows certain near-equilibrium
characteristics but is still far from being thermal. After this,
the system approaches, within an at least 10 times longer
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period, the actual equilibrium state. On the contrary, the clas-
sical gas does not show the dephasing when considering the
same initial mode occupation numbers as for the quantum
gas. We show that the dephasing in the short-time evolution
of the quantum gas can, to a certain extent, be simulated by
a classical gas if one chooses the same initial values for the
correlation functions. Our results show explicitly that quan-
tum fluctuations only play a role for modes whose occupa-
tion number is sufficiently small. Hence, the dynamics of the
weakly interacting one-dimensional gas is almost purely
classical. The long-time evolution is different in the classical
and quantum cases, since only the latter can reach a Bose-
Einstein distribution. We then study the example of a
strongly interacting one-dimensional gas. For such a gas we
find characteristic differences. For instance, for given identi-
cal initial values for the correlation functions, in the quantum
evolution the decay of correlations with the initial state takes
much longer as it would be expected from a calculation in
the classical approximation.

A. Initial conditions

The 2PI effective action approach is convenient for situ-
ations, where at time =0 one has a Gaussian state, i.e., a
state, for which all but the correlation functions of order 1
and 2 vanish [78]. In the following we will consider a one-
dimensional uniform system, for which the two-point func-
tions F;,(x,y) and p,,(x,y) are spatially translation invariant.
We will therefore work in momentum space, where the ki-
netic energy operator is diagonal. Moreover, we choose the
mean field ¢ to vanish initially. Then, for reasons of number
conservation, the equations of motion (50) and (45) will con-
serve ¢=0 for all times. We note that, since there is no
spontaneous symmetry breaking in one spatial dimension at
nonzero temperature, the field always approaches zero even-
tually, irrespective of its initial value.

Having prescribed initial values F,,(0,0;p), with
pa»(0,0;p) given by Eq. (49), the coupled system of integro-
differential equations (45) yields the time evolution of
the two-point functions, in particular, of the momentum
distribution,

n(t,p) = %[Fll(f,f;l’)"'Fzz(fJ;P)— al. (80)

For the quantum gas, one has a=1 from the Bose commuta-
tion relations, while, for a gas following classical statistical
evolution, a=0.

We choose, at =0, a Gaussian momentum distribution

n(0,p) = —2—e 7, (81)
\NTo

which constitutes a far-from-equilibrium state for the quan-
tum gas as well as for the classical gas if the interactions are
nonzero and the corresponding interaction energy is much
larger than the kinetic energy.

The initial pair correlation function vanishes,
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1
0= E[Fu(t,t;p) - Fy(t.t:p)] +iFp(t.t;p),  (82)

for =0, in accordance with total atom number conservation
at nonrelativistic energies [79]. Hence,

F11(0,0;p) = F(0,0;p) =n(0,p) + a/2, (83)

F15(0,0:p) = F5,(0,0:p) = 0. (84)

As far as the spectral functions are concerned, in the quan-
tum case, the Bose commutation relations, and, in the clas-
sical case, the Poisson brackets require, cf. Egs. (49) and
(65),

pui(t,t;p) = pyo(t,t;p) =0, (85)

(86)

We have investigated the dynamic evolution of a 1D Bose
gas of sodium atoms in a box of length L=N,a,, with peri-
odic boundary conditions. We choose the numerical grid
such that it corresponds to a lattice of N, points in coordinate
space with grid constant a,, and the momenta on the Fourier
transformed grid are p,=(2/a,)sin(nm/N;). The results pre-
sented in the following are obtained using N,=64 modes on
a spatial grid with grid constant a;=1.33 um. We first con-
sider a line density of the atoms in the box of n;
=107 atoms/m. In this case the atoms are weakly interacting
with each other, such that g,p=%%yn,/m, with the dimen-
sionless parameter y=1.5X1073. The width of the initial
momentum distribution is chosen to be 0=1.3X 10> m~!. In
order to explore a strongly interacting gas we then reduce the
total number of atoms by a factor of 100, increasing the
dimensionless interaction parameter y by 10*. Here it is im-
portant that we employ a nonperturbative approximation
which is not based on weak interactions.

- pp(t.t;p) = pyy(t,15p) = 1.

B. Equilibration of the quantum gas

To solve Egs. (45), with the self-energies given by Egs.
(72), for the initial conditions given in the preceding section,
we have implemented a parallelized Runge-Kutta solver and
used a cluster of 3 GHz dual processor PCs with up to one
node per momentum mode. The correlation functions
F,(t,t";p) and p,(t,t";p) were propagated, for fixed ¢,
along t, using a second-order Runge-Kutta algorithm. After
each Runge-Kutta step, the /5, integrals were updated ac-
cording to Egs. (73). The dynamic equations derived from
the 2PI effective action are, by construction, number and
energy conserving. While number conservation, by virtue of
the O(2) symmetry of each diagram, is given exactly, energy
conservation may be violated by the chosen discretization
along the time axis. Hence, in order to ensure optimal energy
conservation numerically, a fourth-order Runge-Kutta algo-
rithm was employed for the propagation of the correlation
functions along the diagonal r=¢'.

Figure 3 shows, as a (red) solid curve, the initial Gaussian
momentum distribution of the gas, on a logarithmic scale,
where it forms an inverted parabola. The filled circles indi-
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FIG. 3. (Color online) Momentum-mode distribution n(z;p) for
the initial state (red filled circles, interpolated by red solid line) and
six subsequent times ¢ until no change can be observed for ¢
>0.6 s. The interpolation of the final distribution is shown as a
black solid curve. Note the logarithmic scale. The occupation num-
ber is normalized by the total number of atoms in the box, n|L
=853. The gas is in a far-from-equilibrium state initially, character-
ized by a Gaussian distribution n(0;p), Eq. (81), with width o
=1.3%10° m~L. It is weakly interacting, y=1.5X1073. Since we
consider a homogeneous gas and a symmetric initial state, the oc-
cupation numbers are invariant under p — —p.

cate the numerically calculated modes p;. In the same figure,
the time evolution of the distribution is shown for different
times between 7r=0.1 ms and 0.6 s. For times greater than
about 0.15 s, there is only very little change observed. As a
function of time, the evolution of the single mode occupa-
tions is shown in Fig. 4. We observe that the system very
quickly, after about 5 us, evolves to a quasistationary state,
and that the subsequent drift to the equilibrium distribution
takes roughly 10 times longer. In passing we note that the
mean-field Hartree-Fock (HF) approximation, for which %
=3P=0 in Egs. (45), conserves exactly all mode occupations
and no equilibration is seen.

1%“““\ T T T ISR

n(t;pl.) /nIL

0001 0.
t[s]

~0.0001

FIG. 4. The normalized momentum-mode occupation numbers
n(t;p)/nL, corresponding to those shown in Fig. 3, as functions of
time. Shown are the populations of the modes with p=p;
=2N,/Lsin(im/Ny), i=0,1,...,N,/2, and one has n(t;—p)=n(z;p).
A fast short-time dephasing period is followed by a long quasista-
tionary drift to the final equilibrium distribution. Notice the double-
logarithmic scale.
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FIG. 5. Momentum and time-dependent temperature variable
O(t;p) obtained by fitting the distribution n(;p)=(exp{[w(p)
— )/ kp®(t;p)}—1)7! to the distribution obtained from the results
shown in Fig. 4, for different, equally spaced times between t=0
and t=0.6 s. One observes that, during the quasistationary period,
0.01 s<7r<<0.1 s, no temperature can be associated to the distribu-
tion. Only at very large times, ® becomes approximately p
independent.

In order to estimate to which extent the final distribution
approaches that of the actual equilibrium state of the gas, we
fitted the distribution to the Bose-Einstein-type form n(z;p)
=(exp{[w(p)— u]/kg®(t;p)}—1)"", with a p-dependent tem-
perature variable O(z;p). Here w(p) was derived from the
time derivatives of the statistical function F(z,t";p) at t=t'.
If a Bose-FEinstein distribution is approached the temperature
can be obtained from the slope of In(n~'+1) and the chemi-
cal potential u from its value at w=0. Figure 5 shows O(z;p)
for t=0-0.6 s. Obviously, during the quasistationary drift
period, no temperature can be attributed to n(¢;p), while, for
large ¢, ® becomes approximately p independent [80]. We
deduce an approximate final temperature from
(0.6 s;128/L)=T=0.35 nK with u=1.08 g,pn; for the
above given values of g;p and n;, which, hence, deviates
from the HFB result u=gpn; by 8% only.

We furthermore studied, in the spirit of Refs. [72,74],
the time dependence of the ratio of the envelopes of
the unequal-time correlation functions, specifically,
&t:p)={[F11(2,0:p)2+ F15(2,0:p)*1 / [p11(1,05p)*+pya(2,0;
p)21}2/n(t;p). Figure 6 shows &, for four different momen-
tum modes, as a function of time. Due to the normalization
with respect to n(t;p) all &(¢;p) are of the same order of
magnitude. However, they show a distinct time evolution
during the dephasing period, before they settle to a constant
value during the quasistationary drift. ¢ is a measure of the
interdependence of the statistical and spectral functions,
which, in thermal equilibrium, are connected through the
fluctuation-dissipation relation [72]. In the momentum-
frequency domain, this relation is given in Eq. (79). Hence,
the stationary ¢ indicates that F and p are linked to
each other long before the momentum distribution becomes
thermal.

A further signature is found when comparing the kinetic
and interaction contributions to the total energy as shown in
Fig. 7. During the quasistationary drift, these contributions
are constant and of the same order of magnitude, calling in
mind the virial theorem.
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FIG. 6. (Color online) Ratio of the envelopes of the
unequal-time  correlation  functions,  &(t;p)={[F,,(z,0;p)?
+F1o(t,05p)?/ [p11(£,0:p)*+p1a(2,0:p) 12/ n(z: p), for four dif-
ferent momentum modes, as a function of time. Due to the normal-
ization with respect to n(¢;p) all &i;p) are of the same order of
magnitude. £ is a measure of the interdependence of the statistical
and spectral functions, and its settling to a constant value during the
quasistationary drift period indicates that these functions become,
as in thermal equilibrium, connected through a fluctuation-
dissipation relation.

In summary, during the drift period, the system is not yet
in equilibrium as far as the momentum distribution and tem-
perature is concerned, but shows important characteristics of
a system close to equilibrium.

C. Evolution of the classical gas

In Sec. II we have discussed in detail the distinction be-
tween the quantum and classical statistical contributions to
the 2PI effective action and to the dynamic equations. In the
following we compare the predictions for the classical statis-
tical theory with those presented in the preceding section,
and pointing to the distinct differences.

We solved Egs. (45), with the self-energies now given by
Egs. (77), for the initial conditions given in Sec. III A, first

a0 T
N total energy
B \ -- Interaction energy
5 \ — kinetic energy
S \‘
:\2‘ \\‘;<;7777—7 777777777777
'4\
< 200+
=,
20
v
=
Y
ok Ll

Ll ol L
0.001 0.01 0.1
1 [s]

~0.0001

FIG. 7. (Color online) Evolution of the kinetic and interaction
contributions to the total energy of the gas. During the quasistation-
ary drift these contributions assume the same order of magnitude,
calling in mind the virial theorem.
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FIG. 8. (Color online) The normalized momentum-mode occu-
pation numbers n(z;p)/n,L for the classical gas (black solid lines)
compared to their quantum counterparts from Fig. 4 (red dashed
lines), as functions of time. Shown are the populations of the modes
with p=p;=2N,/L sin(iw/N,), i=0,1,...,N,/2, and one has n(t;
—p)=n(t;p). In contrast to the quantum statistical evolution there is
no quick dephasing in the classical case, such that the initially
empty modes become only subsequently filled, as is discussed in
the main text. At large times, the classical and quantum gases nec-
essarily evolve to different distributions.

with a=0. For comparison we also consider the case a=1
such that the classical and quantum initial correlation func-
tions F' and p are identical. In the classical case, the self-
energies as well as the equations (73) determining the cou-
pling functions Iy, are lacking certain terms compared to
their quantum counterparts, cf. Eq. (77).

The time evolution of the initially Gaussian far-from-
equilibrium momentum distribution of the classical gas is
shown in Fig. 8. The mode occupations are shown as (black)
solid lines, and for better comparison, we have quoted the
quantum evolution from Fig. 4 as (red) dashed curves. One
observes that the time evolution of the modes with occupa-
tion number n(t;p)>1, i.e., n(t;p)/n,L>1073, is, for most
of the time, identical to that obtained in the quantum case,
confirming condition (78). As expected, for the strongly
populated modes of a weakly interacting bosonic gas quan-
tum fluctuations do not play a significant role for not too
large times. Only when the evolution approaches the equilib-
rium state, the differences between quantum and classical
statistics are expected to lead to a Bose-Einstein and classical
distribution, respectively. We point out that, although we
have chosen, for our comparison, the same initial occupation
numbers in the two cases, the total energies are different
since the initial correlation functions differ according to Eq.
(83). Hence, also the final-state occupation numbers of the
low momentum modes can differ.

We finally point to the substantial differences in the short-
time evolution of the weakly populated modes. While, in the
quantum gas, the large-momentum mode populations are all
growing at the same rate, the modes of the classical gas
become populated much more gradually. The quantum-gas
modes are occupied by 0.01 and 1 particle per mode already
between 0.5 and 1 us, while the classical modes need up to
10 times longer. The distinct quantum behavior of the modes
can be understood as follows. At the energies present in such
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FIG. 9. (Color online) The normalized momentum-mode occu-
pation numbers n(z;p)/n,L for the classical gas (black solid lines)
compared to their quantum counterparts from Fig. 4 (red dotted
lines), as functions of time. All parameters are chosen as in Fig. 8,
except for 6=6.5X 10* m~!. The dashed (blue) lines show n(z,p)
—1/2, i.e., after subtracting the additional flat initial distribution
which simulates the quantum “zero point fluctuations.”

an ultracold gas, the atomic interactions are essentially point-
like, i.e., the range of the potential is not resolved and the
coupling function or scattering amplitude is constant over the
range of relevant momenta. Hence, in a single scattering
event, the distance of two atoms is localized to zero, such
that the relative momentum of the atoms is completely un-
known immediately after the collision. This means that the
transfer probability of the atoms is the same for any final
momentum mode, and this is observed as a quick, collective
population in the respective, so far essentially unoccupied
modes.

For comparison we repeated our calculations for a nonlo-
cal interaction potential. In the momentum domain, this cor-
responds to a coupling function which is cut off at large
momenta, and we chose the cutoff within the range of the
momenta shown explicitly in Fig. 8. In this case we find that
the quantum evolution is modified such that it becomes simi-
lar to that of the classical gas. In particular, all modes above
the cutoff populate gradually one after each other.

The differences between the quantum and classical evolu-
tions shown above depend, however, considerably on the
choice of initial conditions. To compare the characteristics of
the evolutions which are independent of the initial choice of
F, we have repeated the classical calculations for an initial
momentum distribution where, as compared to before, a con-
stant occupation number 1/2 has been added. Hence, we
chose a=1 in the initial values of F, Eq. (83), as in the
quantum case, such that F is identical for xo=yo=1, in the
classical and quantum cases. The results are shown in Fig. 9.
The (red) dotted lines show, again, the quantum evolution,
while the classical mode populations for the same initial con-
ditions for F and p are shown as solid (black) lines. Subtract-
ing 1/2 from each F,,(t,t;p) gives the dashed (blue) lines.
We find, that during the initial period the evolution of the
variation of the high-momentum modes with respect to their
initial occupation is identical to the quantum evolution of the
occupation numbers. At intermediate times, however, there
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FIG. 10. (Color online) Ratio of the envelopes of the

unequal-time  correlation  functions,  &(t;p)={[F,,(t,0:p)?
+F5(t,0:p)*1/[p11(£,0:p)*+p1a(2,0:p)* 1}/ n(t: p), for four dif-
ferent momentum modes, as a function of time. This figure is analo-
gous to Fig. 6, but shows the difference of the quantum (black lines)
and classical (blue lines) evolutions for a gas in the strongly corre-
lated regime y=15, for n;=10° m~!. The results show that in this
regime, where quantum and classical statistical evolution differ con-
siderably, the quantum evolution conserves information about the
initial conditions much longer, here roughly by an order of magni-
tude in time.

are deviations which lead to occupation numbers up to a
percent lower than 1/2. Although the chosen initial condi-
tions which, in the classical case correspond to a base occu-
pation of each mode with 1/2 atom, seem unphysical, our
results show that for the dilute, weakly interacting gas under
consideration, there are differences only in those modes
which, in the mean, are populated with less than one atom.
Quantum statistical fluctuations play a role only for these
modes.

The situation is very different for an ultracold gas in the
strongly interacting regime. We obtain this from the case
discussed so far by reducing the total number of atoms by a
factor of 100 and increasing the dimensionless interaction
parameter y by 10*. In this case the classicality condition
(78) is clearly violated and we expect strong corrections due
to quantum fluctuations. We emphasize that here our nonper-
turbative approximation is crucial in order to be able to con-
sider such strongly interacting systems. Note that the struc-
ture of the classical equations of motion, Egs. (45), with the
self-energies given by Egs. (77), is such that they are invari-
ant under a simultaneous rescaling of y and n; which leaves
yn% unchanged. The quantum equations will, however
change, with the specific quantum terms becoming more and
more important with growing 7y and reduced density n;. We
compare the evolution, again, for identical initial conditions
as in the case shown in Fig. 9. The deviations between quan-
tum and classical statistical evolution are now quantitatively
substantial. While many qualitative aspects are similar to
those discussed above, now all momentum modes show clear
deviations. As a characteristic example, we present, in Fig.
10, the ratio of the envelopes of the unequal-time correlation
functions, in analogy to Fig. 6, for the quantum and classical
evolution of the strongly interacting gas. One observes that
the unequal-time correlation function decays more rapidly in
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the classical statistical case. Our results illustrate that the
quantum system keeps much longer the information about
the initial conditions, here roughly by an order of magnitude
in evolution time. On the other hand, the example also shows
that the classical statistical system still behaves qualitatively
similar to the quantum gas, despite the low densities and
strong interactions. We would like to emphasize that clearly
distinguishing quantum and classical statistical fluctuations
will typically require high precision, both from the calcula-
tional as well as experimental point of view.

IV. CONCLUSIONS

In this paper we have studied the nonequilibrium dynam-
ics of an ultracold Bose gas and compared the theoretical
predictions from a full quantum approach with those where
only classical statistical fluctuations were taken into account.
On the basis of functional techniques in quantum field theory
we reviewed the difference in the generating functionals, the
2PI effective actions which determine the dynamic equa-
tions, between the quantum and the classical cases. The func-
tional descriptions for both cases show to be very similar. In
particular, the crucial difference is the absence, in the classi-
cal versus the quantum case, of certain coupling terms or
vertices in the action which defines the theory and which
enters the generating functional of correlation functions. As a
consequence, the classical generating functional is character-
ized by an important reparametrization property, such that
for the classical dynamics the effects of a larger self-
interaction can always be compensated by a smaller density.
Quantum corrections violate this invariance property. They
become of increasing importance with growing scattering
length or reduced density. We have used this to derive a
classicality condition, which is not based on thermal equilib-
rium assumptions and holds also for far-from-equilibrium
dynamics. In particular, it is independent of the value of the
macroscopic field ¢.

To illustrate the possibilities one has at hand, we studied
the equilibration dynamics of a homogeneous ultracold gas
of interacting sodium atoms in one spatial dimension. The
gas is assumed to be, initially, in a state far from thermal
equilibrium, characterized by a Gaussian momentum distri-
bution centered at zero momentum. Extending on earlier re-
sults [38] we find that the evolution takes place via two
distinct periods, with a fast initial dephasing followed by a
slow quasistationary drift to the final equilibrium distribu-
tion. While the gas, during the quasistationary drift, already
shows important characteristics of a near-equilibrium situa-
tion like a fluctuation-dissipation relation and constancy of
the total kinetic energy, no temperature can yet be associated
to the momentum distribution.

We compared this evolution to the evolution of a classical
gas with different initial conditions. If the initial mode occu-
pation numbers are chosen as in the quantum case, no short-
time dephasing period is found. The modes are rather popu-
lated subsequently, with the quasistationary drift setting in
gradually. The long-time approach to the final equilibrium
state expectedly shows a distinct behavior compared to the
quantum gas. We moreover showed that the dephasing in the
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short-time evolution of the quantum gas can be approxi-
mately simulated by a classical gas if one chooses appropri-
ate initial conditions. Our results demonstrate explicitly that
quantum fluctuations only play a role for modes whose oc-
cupation number is sufficiently small. We found that the dy-
namics of the weakly interacting one-dimensional gas is al-
most purely classical. In contrast, for a strongly interacting
one-dimensional gas we observed substantial quantitative de-
viations. There are distinctive properties of quantum versus
classical statistical dynamics, as, for example, that, given
identical initial values for the correlation functions, in the
quantum evolution, information about the initial conditions
is conserved much longer as it would be expected from a
calculation in classical approximation. Such differences may
be expected to be of interest in the context of strongly cor-
related ultracold atomic gases, e.g., in lower-dimensional
traps or near Feshbach scattering resonances. However, we
emphasize that high precision measurements together with
accurate calculations are typically required to be able to
clearly distinguish between effects of quantum and classical
statistical fluctuations. We think that the nonperturbative
methods presented here can be a very valuable tool to pre-
cisely identify the effect of quantum fluctuations on the time
evolution of ultracold quantum gases observed in present-
day and near-future experiments.

Note added in proof: Recently, the authors have become
aware of partially related work in Ref. [75].
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APPENDIX: INITIAL CONDITIONS

In this appendix we provide explicit expressions for a
general Gaussian initial-state density matrix  pp[ ¢,
+&0/2, 09— @y/2] and a Gaussian probability functional
W[y, ] entering the generating functionals (18) and (58),
respectively. These specify the initial conditions for the dy-
namic equations (45) and (50). We provide expressions for a
spatially homogeneous system, as considered in Sec. III.

The most general Gaussian initial density matrix takes, in
the representation (12) of the fields, the form

_ _ 1 _
pol o+ @o/2. 00— @o/2] = exp(— Bo.uTpBos
276

1 7, 0'2 )
2 Aa ~ a ~2

_ W= Do) Fi = Doa 5@
255(@0, 0,) ga(QDO, 0, )¢0, 865()00,

(A1)

where summation over a and b is implied in the exponent.
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Since pp involves a factor of the above form above for each
momentum mode, mode indices at the fields and parameters,
as well as summation over momenta in the exponent have
been neglected. In order to reflect the symmetry (6) between
the field and the canonical momentum, the six parameters &,,
1, and o, are reduced to three independent parameters
through the conditions

g =0,=0,
£ =1+ /A8,

i =— m&lE. (A2)

Using the definition of the initial statistical correlation func-
tions in terms of the initial density matrix,

1
F,,(0,0) = 5 Tr[ pp(to){P,(0),P,(0)}] - D0.ab0 >

(A3)

and inserting unit operators [[de]|@){¢| and/or [[dr]|m){]
one finds that the three free parameters are related to the
initial correlation functions as follows:

& =F1(to,10) = o1 0.1
&1my = Fialto.t0) = Po, 1902

7 + 0114E = Fyslte.te) = boadho . (A4)

Again, all mode labels have been suppressed. The initial
spectral functions p,,(0,0) do not enter the density matrix as
they are fixed, in the quantum and classical statistical cases,
by the commutation relations and the Poisson brackets, re-
spectively.

Note that the initial conditions chosen in Sec. III A for the
numerical evaluation of the dynamics of a one-dimensional
Bose gas, with F;(0,0)=F,,(0,0), F5(0,0)=0, and ¢,
=0 correspond to &=&=&=F,(0,0), 7,=0, 0=2&, such
that

_ _ 1 1, &,
poleo+ Bo/2, @0 — Eo/2] = ;52 exp(— 2_§z@o,a =5 %0a)
(AS)
We close this appendix by providing the expression for

the probability functional W[ ¢, 7] obtained through the in-
verse of the Fourier transform (59),

1 28 (7, S|
W[(PO’ 770] = ﬁ 6Xp|:— %(l%,u - 71-O,a) - 2_52()D%a:| .

(A6)

(Summation over a in the exponent.) It is straightforward to
show that the above expression is symmetric under exchange
of ¢y, and .
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