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Quantum and classical dynamics of a diatomic molecule in laser fields with frequency
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By solving nonperturbatively the equations of Schrodinger and of Hamilton, we have studied the time-
dependent multiphoton dissociation of a diatomic molecule induced by a moderate low-frequency laser field.
The photodissociation probabilities are calculated and analyzed as a function of the laser frequency, the
intensity, and the pulse shape. A well-established quantum and classical result is that for laser intensities of the
order of 10" W/cm? the dissociation probability presents a maximum at the frequency
~(0.80-0.90)w;, where wy; is the transition frequency from the ground to the first excited vibrational state
(redshift phenomenon). In this work, we go further and explore the quantum and classical effects of radiation
at the optimum frequency w,,,, on the overall vibrational excitation and dissociation dynamics. First, it is
shown that both quantum and classical results predict that w,,,, continues to be the optimum frequency for
photodissociation even at the order of 10 TW/cm?, i.e., low intensities. The quantum results show a multipeak
structure versus laser frequency, which is attributed to resonant multiphoton transitions, while the classical
results show a smooth curve with a broad maximum at w,,,, which is explained by phase space arguments.
Second, it is found that in both quantum and classical approaches w,,,, marks a transition in the effects of
turn-on time of the pulse shape on dissociation probability: for w < w,,,, the gradual turn-on of the field leads
to a noticeable reduction of the photodissociation probability, while for o> w,,,, this effect is of minor
importance. A classical interpretation of this finding is given, which is based on stickiness effects in phase
space. Finally, the crucial role of w,,,, is further demonstrated in the time dependence of bound-state occupa-
tion probabilities. The total survival probability decreases faster with time for w<w,,,, rather than for w
> w,,qr Further, for > w,,,, the bound-state occupation probabilities exhibit multiphoton Rabi-type oscilla-
tions where more than two vibrational states are involved. These phenomena are predicted by both quantum

and classical dynamics, although there are secondary differences which are revealed and discussed.
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I. INTRODUCTION

A well-known issue in physics is understanding theoreti-
cally and quantitatively the various aspects of the correspon-
dence between quantum and classical mechanics. The valid-
ity of this type of understanding is enhanced when real
physical systems rather than simple models—albeit math-
ematically convenient—are the object of investigation. For
example, one such system whose analysis has produced use-
ful and pioneering results in the area of chaotic dynamics is
the microwave ionization of highly excited hydrogen atoms
[1-6].

The present contribution is in this spirit, the purpose of
the investigation having been to treat the problem of laser-
induced time-dependent multiphoton dissociation of the di-
atomic Morse molecule by advanced methods and analysis
of both classical (CM) and quantum mechanics (QM). The
results and analysis that are reported here constitute a con-
tinuation of our earlier investigations on this subject, which
focused on aspects of classical nonlinear and chaotic dynam-
ics [7-9]. Now, in addition to further results and analysis
from CM, we have obtained additional quantitative informa-
tion by solving nonperturbatively the time-dependent
Schrédinger equation (TDSE) for the description of the pho-
todissociation of a Morse molecule, (with parameters for the
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HF molecule), in a low-frequency laser field. Given the two
sets of results, it is possible to have general pictures for
aspects of classical-quantum correspondence for the dynam-
ics of a physical system with a discrete and continuous spec-
trum.

Previous studies concerning the quantum dynamics of the
Morse diatomic molecule driven by laser pulse were based
on the numerical solution of the TDSE on a grid [10-14]. In
this method, the wave function is discretized in the position
space and its time evolution is calculated according to the
split-operator method [10]. In the present work, we imple-
mented the state-specific expansion approach (SSEA), a
wave-function-based method developed for atoms and small
molecules [15,16]. The basis of this approach relies on the
fundamental principle of quantum mechanics that the time-
dependent state of the atomic or molecular system is written
as a linear combination of the eigenstates of the discrete and
continuous unperturbed atomic or molecular spectrum with
time-dependent coefficients. This approach has the advan-
tage that at each time point the occupation probability of
each state is known directly. Furthermore, when the scatter-
ing states of the continuous spectrum are energy normalized,
the numerical and interpretative difficulties characterizing
methods where the whole system is enclosed in an artificial
box and the states are obtained by diagonalization of the
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Hamiltonian on a large basis set, are avoided. We note that
an expansion approach with explicit consideration of the
scattering wave function was recently also used by Lima and
Hornos [17] for the study of the multiphoton dissociation of
OH.

The application presented here involved the nonperturba-
tive computation from first principles of the time-dependent
photodissociation probability of the HF molecule, for the fre-
quency region where photodissociation is maximized, as a
function of field intensity and pulse shape. According to both
quantum and classical predictions, this region is about w,,,,
=0.86w; [7,8,12,13,16,18]. We show that the quantum pho-
todissociation probability as a function of laser frequency
exhibits a multipeak structure, especially at high intensities,
which is attributed to resonance transitions. The classical one
is found to be a smooth curve with a maximum located near
the maximum quantum peak, and it is explained by phase
space arguments (Sec. III A). We also address the role that
the pulse shape plays on the photodissociation probability.
Goggin and Milonni [19] found that both CM and QM pre-
dict a reduction of the excitation energy when a gradual
turn-on of the field is used, compared to that which is ob-
tained assuming an ac field. In this study, we show that in
both CM and QM the effect of the pulse shape on the pho-
todissociation probability depends on the laser frequency. In
particular, for w<w,,,, the use of a gradual turn-on of the
field reduces significantly the photodissociation probability,
while for w> w,,,, this effect is of minor importance (Sec.
III B). Finally, we examine the time dependence of the sur-
vival and the bound-state occupation probabilities as a func-
tion of laser frequency (Sec. III C). Again, in both CM and
QM the role of w,,,, is crucial: for w < w,,,, the total survival
probability decreases faster with time than for w> w,,,,-
Moreover, for w>w,,,, the bound-state occupation prob-
abilities exhibit multiphoton Rabi-type oscillations where
more than two vibrational states are involved.

II. DESCRIPTION OF THE SYSTEM
AND METHODOLOGY

We will study the multiphoton dissociation of a diatomic
molecule in one dimension, where only the vibrational mo-
tion is considered. This motion is described by the Morse
potential [20]

Viu(x) = D{1 = exp[- a(x = xo) 1} (1)

where D=0.2101 a.u. is the dissociation energy, a=1.22 is
the range of the molecular potential, and xy=1.75 is the equi-
librium distance. The values of these parameters are taken
from [13,21] and correspond to the ground electronic state of
the HF molecule. This system contains 22 bound vibrational
states. In other molecules for which multiphoton dissociation
was studied previously [11,16,22], the number of vibrational
states was six [11], eight [16], and 179 [22].

In the semiclassical approximation, the Hamiltonian of a
Morse molecule in the presence of a laser field in the electric
dipole length gauge has the form
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P
=5 + Vy(x) + g(x)F (1), (2
m

where m is the reduced mass, w is the laser frequency, g(x)
=e(x—xp) is the dipole moment, and F(¢) is the ac laser field,

F(t) = Fy sin(wt) (3)

with F, the field strength.

In this work, the dipole moment is considered in the linear
approximation in an effort to complement, for a wide fre-
quency region, the knowledge of the quantum-classical cor-
respondence of the photodissociation of a Morse molecule,
obtained from previous works [19,23]. This form allows the
use of analytical formulas for the matrix elements of the
bound-bound [23-27] and bound-continuum transitions
[23,26,27]. On the other hand, the calculation of continuum-
continuum matrix elements in the length form presents diffi-
culties due to singularities. In order to solve this problem we
developed a methodology that is based on a combination of
analytical and numerical methods.

In the next two sections we will describe the quantum and
classical formalisms that were employed for the quantitative
solution of the problem described by the Hamiltonian of Eq.

(2).

A. Quantum dynamics
1. Time evolution

Our aim is to solve the one-dimensional TDSE

iﬁ% = H() WV (x,1) (4)

where H(¢) is the Hamiltonian operator (2), and W(x,1) is the
wave function of the system. According to the SSEA [15],
the wave function is written as a superposition of bound
[V, (x)] and energy-normalized continuum eigenstates
[W(x)] of the molecule:

Vimax~ 1

Y, )= > a0V, (x)+ f b(E.)YL(x)dE.  (5)

=0

Here, v,,,,=22 corresponds to the number of vibrational
states of the HF molecule. Using Eq. (5) the TDSE is trans-
formed into a system of coupled integro-differential equa-
tions:

d
iﬁ%(t) = €,a,(1) + F(t) 2, B(v,w)a,(1)
+F() f b(E,)D(v,E)dE, ©6)
2D _ g+ S, DE.wa, ()
+F(1) J b(E',)C(E,E")dE', (7)
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where B(v,u), D(v,E), and C(E,E’) are the matrix elements
for the bound-bound, bound-continuum, and continuum-
continuum electric dipole transitions, respectively. The set of
equations (6) and (7) is written in a matrix form and is nu-
merically calculated by expanding both the time-dependent
coefficients and the laser field in Taylor series [15]. The in-
tegrals in energy are calculated using the standard technique
of the trapezoidal rule, in conjunction with very small energy
steps.

The photodissociation probability at a given time is de-
fined as

Vmax~ 1

Pin=1- 2 a0 (8)

=0
where the summation is performed only on the bound-state
coefficients.
2. Matrix elements

The dipole matrix elements for the bound-bound transi-
tions B(v,u)=(v|x—xo|u) are documented in the bibliogra-
phy [23-27]. The off-diagonal diagonal matrix elements are

1 (BVBM)1’2<M!F(23M+ et 1))1/2
B-B \ vT (2B, +v+1)

1
Bv.p)=—2(- ¥

)

where u>v. The diagonal matrix elements are given by
1
B(v,v)=—[In2B+2v+ 1)+ 2B+ v+1)
a

- 2B+ 1) - Y(2p)], (10)

where i is the derivative of the logarithm of the I" function
[28]. In the equations (9) and (10) the parameter is given by
B, =\2m(-E, )/ ah, where E, , is the energy of the vth
and uth bound states respectively.

The matrix elements between bound and continuum states
D(v,E)= <v|x—x¢|E> are also given by an analytical for-

mula [23,26,27],
1
T(— —d+ ie)
1 2

JaElde” (B> + €)
( 2Be sinh(2 7€)
vII'2B+v+1)

(_ 1)v+1

D(v,E) =

11
) T(B+ie+v+1)f

(11)

with e=\2mE/ a*h?.

The continuum-continuum matrix elements contain an on-
shell singularity of the form 1/(E—E’)?, when the two ener-
gies of the continuous spectrum, E and E’, become equal.
This singularity arises from the contribution at large intermo-
lecular distances, where the asymptotic form of the con-
tinuum wave functions of the free Morse molecule is that of
a plane wave [26]. As we are interested in the dissociation
process, these matrix elements play a crucial role in the cal-
culation of the physical quantities. Following the analysis of
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[15] for atomic potentials, in this work this singularity was
treated systematically, in a computation that is carried out
numerically (see the Appendix). We mention that, recently,
an analytical expression was derived by Lima and Hornos
[27], containing ;F, functions. The complexity of such ex-
pressions suggests that, for economical computation, the nu-
merical techniques that are used in the context of the SSEA
are preferable.

B. Classical dynamics

The classical dynamics of the system is obtained by nu-
merically integrating Hamilton’s equations of motion:

(12)

=
1l
3 e

p=2Daexp[— alx —xy)){1 —exp(— alx —xy))} + F(1).
(13)
For the generation of the initial position and momentum, we

first perform a canonical transformation to the action-angle
variables

2uD —
J=-+ B0 -\1-E), (14)
a
1-E 1
0=- sgn(p)arccos( = exp[— al(x —xq)] - _r) ,
VE VE
(15)

where E=Hy/D<1 is the dimensionless energy of the un-
perturbed molecule for the bound part, with Hy=p*/2m
+Vy(x), and sgn(p)=1 for p=0, sgn(p)=-1 for p<0.

The initial ensemble of the classical trajectories is chosen
according to the microcanonical distribution, where E is con-
stant and equal to the energy of the initial quantum vibra-
tional state and 6 is uniformly distributed in the domain
[—7, ] [8]. The stroboscopic plots of phase space in both
(x,p) and (E, 6) representations provide important informa-
tion about the time evolution of the classical initial state. In
the present work, they constitute the basic tools for the time-
dependent analysis of the classical dissociation process and
its dependence on laser parameters.

During the time evolution of the interaction, dissociation
occurs for those trajectories N, with compensated energy
[2,19]

E, = [p - (Fo/;z))COS(wt)]2

+ V() > 0. (16)

The classical photodissociation probability at time ¢ is equal
to

N, diss
9

Pp(n) = N
tot

(17)

where N, is the total number of trajectories.
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FIG. 1. Quantum (black line with full circles) and classical (gray
line with full circles) photodissociation probability of HF as a func-
tion of the scaled laser frequency (w/wy,;) for three different laser
intensities /=(a)10, (b) 20, and (c) 30 TW/cm?. The vertical lines
correspond to the scaled frequencies w/wy, with wg,=(E,—Ey)/v
and v=0,1,2,...,10 (see Fig. 3). The total time of interaction is
T,.=13140 a.u. and corresponds to 38 cycles for a laser frequency
equal to the resonance frequency of wy;.

III. RESULTS
A. Dependence on the laser intensity

We have calculated quantal and classical photodissocia-
tion probabilities as a function of the scaled laser frequency
Pp(w/ wy,;) for the HF molecule interacting with an ac laser
field [see Eq. (3)]. Results for laser intensities /=10, 20, and
30 TW/cm? are shown in Figs. 1(a)-1(c). Both quantal and
classical results show a maximum of the photodissociation
probability at laser frequencies that are redshifted with re-
spect to the wy; resonant frequency, having values in the
range (0.80-0.90) wy,. A similar finding has been reported in
[13], where a comparison of classical and quantal dissocia-
tion probabilities versus interaction time was also made. Fur-
ther, in [8] a classical interpretation was provided in phase
space terms. However, both studies were limited to strong
laser fields, where, anyway, the quantum-classical correspon-
dence is expected to manifest more distinctly [19]. Here, we
explore the quantal and classical Pp(w/w,;) for a range of
laser intensities considerably lower than those of [8,13]. For
the smallest intensity /=10 TW/cm?, the quantum distribu-
tion presents one main peak located at w/wy; =0.88 and sev-
eral side peaks of much lower magnitude, while the classical
distribution exhibits a weaker spike around w/wg; =0.86
[see Fig. 1(a)]. Thus, it seems that, despite the difference in
the relative heights of the peaks, the “redshift phenomenon”
is reliably predicted by classical dynamics even at very low
laser intensities. As the intensity increases, the quantum side
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FIG. 2. Stroboscopic plots for four different laser field param-
eters with fixed total interaction time ¢=13140 a.u.: (a) [
=10 TW/cm?, w/wy;=0.82, (b) I=10 TW/cm?, w/wy;=0.92, (c)
1=20 TW/cm?, w/wy;=0.82, and (d) I=20 TW/cm?, w/wy;=0.92.
The gray lines depict the classical initial state.

peaks become more enhanced, while the classical peak
broadens [Figs. 1(b) and 1(c)].

In what follows, we offer interpretations of the behavior
of the dissociation probability versus laser frequency, in the
context of both CM and QM.

A phase space analysis of the Pj,(w/wy;) curve for con-
stant field intensity was given in detail in [8]. It was attrib-
uted to a transition from trapping of initial-state trajectories
in Kolmogorov-Arnold-Moser (KAM) tori at low frequen-
cies to trapping inside the island of the main resonance be-
tween the field and the internal vibrational motion at high
frequencies. Between these limits, one can find intermediate
frequencies at which the KAM tori have shrunk and the reso-
nance island has not yet overlapped with the initial state. At
these frequencies, the photodissociation probability is maxi-
mized. Figure 2 shows the transition from KAM to reso-
nance trapping of the initial state (gray lines) as frequency
increases, for two different intensities (10 and 20 TW/cm?).
The increase of intensity, while keeping the frequency con-
stant, leads to shrinking of both KAM tori and resonance
regions in phase space. This has as a consequence the en-
largement of the region of intermediate frequencies with high
photodissociation probability, which leads to the broadening
of the Pj,(w/ wq;) curve with laser intensity, as seen in Fig. 1.
For high frequencies, an additional stabilization mechanism
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FIG. 3. Bound-state vibrational energies of the ground state of
the HF molecule and resonance multiphoton ladders.

is observed. As we can see in Fig. 2(b), at low intensities, a
part of the initial state, though embedded in a narrow chaotic
region, cannot dissociate since it is bounded in the phase
space by a remaining set of KAM tori at higher energies
immersed in complex structures of high-order resonance is-
lands. As the intensity increases, these tori start to break,
forming cantori which act as partial barriers of the transport
to higher energies and cause the sticking of trajectories
around the resonance islands [29,30]. At even higher laser
intensities [Fig. 2(d)], these barriers disappear and the cha-
otic trajectories diffuse freely at high energies and dissociate.
The asymmetry in the Pj(w/wy;) curves, i.e., the long tail at
high frequencies and intensities, has been associated with the
existence of these sticking phenomena [8], whose impact on
dissociation dynamics will be discussed in more detail in
Sec. III C.

Quantum-mechanically, resonant multiphoton absorption
leads to a considerable augmentation of the photodissocia-
tion probability at certain frequencies. Indeed, the maximum
which appears at o/ wy;=0.88 and which is very pronounced
at small intensities, as well as the side peaks, can be ex-
plained by this process, as shown in the schematic picture of
Fig. 3, which depicts the resonance multiphoton ladders.
This maximum corresponds to a six-photon absorption be-
tween the ground and the sixth vibrational state with fre-
quency woe=(E¢—Ey)/6=0.88w;. The system needs three
photons to reach the =10 state and then, with the absorption
of three more photons, it reaches the v=17 state by almost
resonantly stepping on the v=12, 14, and 17 states. Finally,
the absorption of one more photon leads to cleavage of the
molecular bond. For frequencies close to the resonant fre-
quency g, the low and intermediate bound states are
strongly populated, as we will see in the last section. The
photodissociation probability is therefore reduced, due to the
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FIG. 4. Quantal (a) and classical (b) photodissociation probabil-
ity for the HF molecule as a function of interaction time for three
different laser frequencies w/wy;=0.83 (light gray line), 0.88 (gray
line), and 0.918 (black line).

fact that the bound-state occupation probability remains
trapped in these states. In addition, the photon energy does
not match the energy difference of the high vibrational states,
leading to a weak population of these states. It should be
noted that direct transitions from the low bound states to the
continuum are much less probable than those coming from
higher bound states, according to their coupling matrix ele-
ments.

For frequencies lower than the wgyg frequency, the situa-
tion is different. As an example, we take the wgg frequency
for which eight photons are needed for the transition from
the »=0 to the »=8 state. This is a high-order multiphoton
process which becomes probable only at sufficiently high
intensities (about 30 TW/cm?). Once the eighth level is
reached, dissociation occurs by almost resonantly stepping
on the higher bound states. This process explains the increase
of the photodissociation probability around w=wpg (w/wy,
=(0.83) which appears at high intensities. In this limit
(30 TW/cm?), the form of the quantum Pp(w/w,) curve
becomes more complex, since the perturbation of the energy
levels is, apparently, considerable.

The results shown in Figs. 1(a)—1(c) correspond to a finite
interaction time equal to 13 140 a.u. In Figs. 4(a)-4(c) we
show as examples the photodissociation probability versus
time Pp(r) for laser frequencies w/wy;=0.83, 0.88, and
0.918, which correspond to frequencies close to peaks of the
P{, curve in Fig. 1(b). We observe that quantal and classical
Pp(t) increase with interaction time. For w/w; =0.83 the
rate of increase of Pp(f) decreases for long times, both
quantum-mechanically and classically. This is not the case
for frequencies w/wy;=0.88 and 0.918. In particular, for
w/ w;=0.83 and 0.88, the quantal and classical P () are in
good agreement, with the classical results being systemati-
cally lower than the quantal ones, while for w/wy;=0.918
the differences are larger. It should be noted that this under-
estimation is not a “universal” phenomenon. For example,
for w/wy;=0.93 the quantal results are systematically lower
than the classical ones (not shown).
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FIG. 5. Quantal (a) and classical (b) photodissociation probabil-
ity for the HF molecule as a function of the scaled laser frequency.
Symbols and laser intensity are the same as those used in Fig. 1(b).
Open circles denote the results using a trapezoidal pulse with
ramp-on time 7,,=4 X 27/ wy;=1570 a.u. equal to ramp off-time
Ty

In conclusion, we have seen that the quantum distribu-
tions exhibit a multipeak structure, caused by the multipho-
ton resonant transitions, while the classical ones show a
smooth curve due to the transition window between the
KAM tori and the resonant island region. However, the clas-
sical model is able to qualitatively predict the gross features
of the corresponding quantum distribution P}(w/wy), i.e.,
the photodissociation occurs predominantly in a domain of
laser frequencies smaller than the w; frequency. The classi-
cal results come closer to the quantum ones as the intensity
increases.

B. Dependence on the shape of the laser pulse

In the previous section the numerical investigations were
limited to the consideration of ac laser fields. However, this
consideration is inadequate for short laser pulses and the ef-
fects of ramp-on and -off times have to be taken into ac-
count. In the present section, we investigate the effect of the
temporal pulse shape on the photodissociation process. To
this purpose, we performed calculations using a trapezoidal
pulse with ramp-on and ramp-off time equal to 4 X 27/ wy;.
In Fig. 5, we compare the quantum [Fig. 5(a)] and classical
[Fig. 5(b)] results of the photodissociation probability as a
function of the scaled laser frequency w/wy; for the cases of
an ac and a trapezoidal pulse with intensity /=20 TW/cm?.
The effect of the pulse shape is apparent in both models. The
quantal and classical distributions show a similar behavior:

PHYSICAL REVIEW A 76, 033406 (2007)

(a) oloy, =0.787 n=1 1 (€) w/w, =0.905

ANANA AN

(b) /v, =0.787

] (d) ooy, =0.905

“A A //\ )
- frovnn AR

“““““““ t T
2000 4000 6000 8000 10000 12000 14000

Bound state occupation probability

time (a.u.) time (a.u.)

FIG. 6. Quantum bound-state occupation probabilities as a func-
tion of interaction time, for laser frequencies w/wg;=0.787 and
0.905. Dark gray line, v=1; gray line, v=2; and light gray line, v
=3 state. (a) and (c) correspond to an ac field and (b) and (d)
correspond to a trapezoidal pulse like the one used in Fig. 5. The
laser intensity is 7=20 TW/cm?.

at low frequencies the photodissociation probability is
strongly affected by the shape of the pulse, while at higher
frequencies the ramping plays a minor role.

This effect can be explained quantum-mechanically by
looking at the bound-state occupation probabilities as a func-
tion of time. Figure 6 shows the results for the vibrational
states v=1,2,3 as a function of time for laser frequencies
w/ 0y =0.787 and 0.905. For the smaller frequency [Figs.
6(a) and 6(b)], we observe that the excited bound states are
weakly populated during the interaction when a ramp-on is
applied (higher bound states are not included in the figure, as
they are too small to be distinguished). This is in agreement
with the results of Goggin and Milonni [19], who observed
that the use of the ramp-on reduces the excitation energy
compared to the case of a sudden turn-on. However, this is
not a general statement and the picture is different at high
frequencies, close to wy;. The gradual turn-on of the field has
a minor effect: In Figs. 6(c) and 6(d) the bound-state occu-
pation probabilities for a trapezoidal pulse follow the corre-
sponding ones for the ac field, delayed only by the ramp-on
time.

As stated above, the asymmetry in the ramp-on time ef-
fects on Pp(w/wp;) is not an exclusively quantum phenom-
enon, since classical dynamics also predicts it [Fig. 5(b)]. In
Fig. 7, the stroboscopic plots of the phase space for [/
=20 TW/cm? and three different scaled laser frequencies
0/ wy;=0.84,0.89,0.92 are included. Also, we have added
the straight line of the initial state (gray line) as well as its
snapshot at the end of the ramp-on time (light gray line) just
before the period of constant amplitude field starts. The over-
lap of the latter line with the stability regions (KAM or reso-
nant) gives the survival probability of the molecule after the
end of the laser pulse. At low frequencies (~0.84), we see in
Fig. 7(a) that, although a part of the gray line representing
the initial classical state overlaps the chaotic region and thus
can dissociate, the evolution of this line during ramp-on time
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1.0 T o/w,=0.84, (a)

Scaled energy (E/E )
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FIG. 7. Stroboscopic plots for three different ac laser field fre-
quencies o/ wg;(a)=0.84, (b) 0.89, and (c) 0.92, with laser intensity
I=20 TW/cm?. Gray lines and light gray lines depict the initial
classical state and the classical state at the end of the ramp-on time,
respectively (see text for details).

leads to a classical state (light gray line) totally trapped in-
side the KAM region, thereby reducing the photodissociation
probability to zero. As frequency increases, two effects occur
[see Fig. 7(b)]. The first is the shrinking of the KAM tori and
the second is the energy broadening of the classical state
after ramp-on time. The combination of these effects leads to
a partial overlap of the classical state (light gray line) with
the KAM stability region similar to that occurring when no
ramp-on time is considered (gray line). This explains the
minor effect of the shape of the laser pulse on Pj,(w/wy;) at
high frequencies. The sticking regions in phase space present
at higher frequencies [Fig. 7(c)], have even less influence on
the dissociation effects of ramp-on times.

C. Dependence of the photodissociation dynamics
on duration of interaction

1. Survival probability versus time

As it was pointed out by Constantoudis and Nicolaides
[8], classical phase space changes can strongly influence the
survival probability and also the photodissociation rate. As a
matter of fact, at high frequencies, the stickiness of chaotic
trajectories in the regions around the resonance islands was
found to be more important than that around the KAM tori.
One question that was addressed in [8] is whether there ex-
ists a quantum manifestation of the classical stickiness ef-
fects associated with the resonance islands. As these effects
are expected to be pronounced at high frequencies, we per-
formed quantal and classical calculations of the survival
probability as a function of interaction time for laser frequen-
cies near and far from the resonant w; frequency (Fig. 8).
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FIG. 8. Quantal (a) and classical (b) survival probabilities as a
function of interaction time. Quantal results correspond to laser
frequencies w/wq;=0.787 (gray line) and 0.923 (black line), while
classical results correspond to laser frequencies w/wg;=0.82 (gray
line) and 0.90 (black line). The laser intensity is /=30 TW/cm?.

The quantum survival probability [Fig. 8(a)] for the higher
frequency considered here, w/wy;=0.923, decreases slowly
than the one for the lower frequency w/wy;=0.787. We have
chosen these frequencies as they produce the same value of
photodissociation probability at the end of the pulse. Look-
ing at the classical results [Fig. 8(b)], the same behavior is
observed, and it is even more pronounced. The explanation is
based on the phase space topology: for the higher frequency,
chaotic trajectories that are stuck near the resonance island
and overlap with the classical initial state [see Fig. 2(d)], will
dissociate at later times, leading to a small dissociation rate.
On the other hand, for smaller frequencies, dissociation will
occur faster due to the lack of such trajectories near the
KAM tori [see Fig. 2(c)]. We therefore conclude that classi-
cal dynamics qualitatively predicts the basic features of the
quantum dynamics of multiphoton dissociation.

2. Bound-state occupation probabilities versus time

Apart from the stickiness effects, the classical resonance
region differs from KAM tori in the energy variation of tra-
jectories versus time, i.e. the energy of resonance tori varies
much more than the energy of KAM tori [Figs. 2(a)-2(d)]. In
this section we analyze the consequences of this difference
on the classical bound-state occupation probabilities versus
time for high and low frequencies, and we investigate their
possible connection with the quantum dynamics. Figure 9
shows the CM [Figs. 9(a) and 9(b)] and QM [Figs. 9(c) and
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FIG. 9. Classical and quantal bound-state occupation probabili-
ties for v=0 (black line), 1 (dark gray line), 2 (gray line), and 3
(light gray line) state, as a function of interaction time. The laser
field parameters are identical to those used in Fig. 8. (a) and (b)
show the classical and (c) and (d) the quantal results.

9(d)] results for the states v=0,1,2,3 for the same field
parameters used in Fig. 8. In order to study the excitation
probability in the classical method and to classify the trajec-
tories corresponding to a given quantum vibrational state, we
followed an approach which is well known in the area of
atomic collisions [31]: A trajectory with energy E. corre-
sponds to the vibrational level with energy E, when the ex-
pression 0.5(E,,+E,)=E.=0.5(E, +E,_,) is satisfied. This
classification holds reasonably well, especially for the low
vibrational states, since they deviate only slightly from those
of the harmonic oscillator. The classical explanation of the
oscillations shown in Fig. 9(a) is based again on the strobo-
scopic plot of Fig. 2(d): at high laser frequency, the part of
the initial state that will remain bound during the interaction
time is trapped inside the resonance islands, which are sub-
ject to large variations in energy. However, because of their
different rotating frequencies, these trajectories, will rapidly
fall out of resonance, and consequently the oscillations of the
classical bound-state population will be damped.

At high frequency [Fig. 9(c)], quantum-mechanically
there is a strong oscillation of the ground-state probability,
with an amplitude that reaches zero at certain times. At these
times, population transfer to higher states takes place (not
shown in the figure for v>3 for clarity reasons). Indeed, the
bound-state occupation probabilities of the higher states up
to »=10 also oscillate in time, showing a continuous popu-
lation exchange between these states. Therefore, the major
part of the quantum probability remains trapped between the
low and intermediate states and only a small portion escapes
to the continuum. This fact explains the small quantum dis-
sociation probability. The oscillations observed in Fig. 9(c)
are interpreted as the well-known Rabi oscillations in two-
state systems [32]. Here, the system is more complicated
because the laser frequency is slightly different from the w,;
frequency, it involves many states and also many photons,
and some portion of the probability will escape to the con-
tinuum. The rather amazing finding is that such oscillations

PHYSICAL REVIEW A 76, 033406 (2007)

also appear in the classical calculations, and it seems that
classical dynamics is able to follow the quantum evolution at
least for short times of interaction [Fig. 9(a)].

At small laser frequencies, the situation is different. As
shown in Fig. 9(d), the quantum-mechanical oscillations of
the bound-state occupation probabilities are less pronounced
and a big portion of the probability remains in the ground
state, due to the mismatch of the photon energy and the
energy difference between the ground and the first vibra-
tional states. Higher vibrational states »>3 (not shown) are
even less populated, and consequently the dissociation prob-
ability is small. Classical calculations reveal similar oscilla-
tions. Using as a guide the phase space of Fig. 2(c), we
observe that a part of the classical phase space is trapped
inside the KAM tori, which are subject to small variations in
energy, and thus result in relatively smaller variations of the
bound-state occupation probabilities [Fig. 9(b)], compared to
the high-frequency case [Fig. 9(a)].

IV. CONCLUSIONS

Following nonperturbative quantum and classical meth-
ods we obtained quantitative results for the multiphoton dis-
sociation of a Morse molecule induced by ac and pulsed
laser fields. Our work focused on the investigation of the
quantum-classical correspondence in the region of laser fre-
quencies (0.8-0.9)wy;, where dissociation is more efficient.
We calculated the photodissociation probability Pp(w/wy;)
as a function of the laser frequency. Quantal results show a
multipeak structure due to multiphoton resonance transitions,
while the classical results exhibit a smooth curve, with a
peak at the frequency w,,,/®y =0.86 that is close to the
quantum peak at wgs/ wg; =0.88, because of the smooth tran-
sition in the phase space topology as the laser frequency is
increased. Furthermore, we examined how the changes of the
pulse shape affect Pp(w/wy;). We found that the use of a
trapezoidal pulse (instead of an ac field) influences in a simi-
lar way the form of both quantum and classical distributions
Pp(w/ wy;), i.e., dissociation is suppressed at low frequencies
while no considerable changes were found for the higher
frequencies.

Finally, we investigated the survival and bound-state oc-
cupation probabilities as a function of interaction time for
laser frequencies near w,,,,.. Quantal and classical survival
probabilities show similar behavior: they decrease faster at
low (w<w,,,,) than at high (0> w,,,) frequencies. This
finding is more pronounced in the classical calculations and
the explanation is based on the slow escape of the chaotic
trajectories which are located close to the resonance island.
At high frequencies, we observed quantum-mechanical mul-
tiphoton Rabi oscillations where more than two levels are
involved. The classical dynamics seems to be able to repro-
duce such oscillations due to large energy variations in the
resonance island, at least for small times of interaction. At
low frequencies, the oscillations of the quantal bound-state
occupation probabilities are less pronounced. The classical
dynamics also catches these features, which are explained by
the small energy variations of the KAM tori.
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APPENDIX: MATRIX ELEMENTS FOR CONTINUUM-
CONTINUUM TRANSITIONS

We describe the calculation of the continuum-continuum
matrix elements

400
C(E,E'):f dx\If*E(x)(x—xo)‘PEr(x) (A1)
0
where
[ 1 dk'
P, — _ — A -1 _-z/2
£(x) e dE’| (e )| e
, 1
><{A(e’)z’E ]Fl<5—d+lf,,1+216/,z)
. 1
+A(e') 77 lFl(E—d—te’,l—Zte’,zﬂ
(A2)

is the free Morse molecule wave function of the continuum
state [33] with energy E’ and ‘I’Z(x) is the complex con-
jugate [z=2de~ 0, d=2uFE'/a, € =\2uE'la*h?, A(€')
=I"(-2:€')/T'(0.5-d—-1€"), I is the gamma function, and |F,
is the confluent hypergeometric function [28]]. According to
the procedure developed for atomic targets [15], we separate
the integral of Eq. (A1) into two parts: (a) the “inner part”
where we numerically calculate the wave function up to a
given interatomic distance X, above which the potential can
be ignored and (b) the “outer part” which we calculate ana-
lytically for distances larger than X.. The matrix element is
written as

C(E,E’) = Cin(EsE,) + Cout(E’E,)

XL‘
= f dx \I’Z(x)(x —x0) W (x)
0

+ f*‘” dx ‘I’Z(x)(x —xo)Vpe(x). (A3)

X,

c
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For distances larger than X, the wave function is expressed
as plane waves given by the expression

lim \I,E,(x) — IL ﬂ(et{e’[—a(x—x0)+ln(2d)]+6€/}
Yoo 27a NV dE’

+ e—t{e'[—a(x—x0)+ln(2d)]+56/}) (A4)

where 8. =tan"'{Im[A(€')]/Re[A(€')]} is the phase shift.
This allows the analytic calculation of the second term in
(A3).

The first term presents no difficulty, and so the wave func-
tions and the integral are calculated numerically. However,
the second term contains an on-shell singularity of the form
1/(E-E")?> when E=E’. In order to overcome this problem
we insert a regularization factor exp—(Ax) in the integrand
of the second term of (Al). The integral C,,(E,E’)
= ;fdr W (x) (x—xg)exp— (\x) Wy (x) is calculated analyti-
cally. The justification of the value of \ is given below. As
this singularity appears inside the integral of Eq. (7), one
must also think how to integrate in energy the on-shell ma-
trix elements. The first step is to write the integral on the
singularity E=E, as

Epi
[Sing = f b(E,’t)[Cin(EmE’) + Cout(EmE,)]dE, .
E

n—1

(AS)

The energy spacing was chosen small enough in order to take
into account correctly the behavior of the matrix elements
near the singularity, which is mathematically given by the
derivative of a & function. This behavior depends on the
value of N in the regularization factor inside the integrand of
Cou(E,,E"). After numerical trials the value of A=10"% was
found to be adequate. For smaller values, no considerable
differences were observed in I;,,. As b(E’ 1) is an unknown
parameter inside the integral, we approximate it by a para-
bolic function in energy, centered at the singular point E,,
b(E',t)=A(E'-E,)*+B(E'-E,)+D, with A, B, D coeffi-
cients that depend on the analytically known parameters
b(E,,t),b(E,,,,t),b(E,_;,t). Then we insert this function in
Eq. (A5) and calculate the three integrals. We note that the
above procedure was applied only for the on-shell matrix
elements. For E# E’, the integral in energy of Eq. (7) pre-
sents no difficulty, and so it was calculated using the stan-
dard trapezoidal rule.
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