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Dressed-state strong-field approximation for laser-induced molecular ionization
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In the customary formulation of the strong-field approximation (SFA) for laser-induced ionization, the initial
bound state is taken as field-free. In the formulation of a length-gauge SFA for ionization of a molecule
described by a two-center binding potential with sufficiently large internuclear separation, we argue that the
initial state has to be dressed in order to account for the different scalar potentials at the various centers. We

propose a “dressed-state” SFA to this end.
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I. INTRODUCTION

The strong-field approximation (SFA) is the workhorse of
laser-atom physics [1,2]. While the exact dynamics of a
bound electron in the presence of a laser field are extremely
complicated, the SFA yields simple expressions for the tran-
sition amplitudes of laser-induced processes. In particular, it
affords the amplitude for laser-induced ionization into a con-
tinuum state with asymptotic momentum p. It allows for
straightforward computation, especially in the tunneling
limit. It is three dimensional, and it can be applied for any
laser field and arbitrary polarization, including few-cycle
pulses [3]. In the tunneling limit, the amplitude can be evalu-
ated by the method of steepest descent. In this case, when it
makes sense to envisage the electron tunneling out at some
specific time, the SFA also yields a great deal of physical
insight into the tunneling process. While the tofal ionization
rate calculated by integrating over the spectrum is not always
reliable [4,5], the angle-resolved energy spectrum normally
is, except for very low energies [6]. In its standard forms, the
SFA accounts only for “direct electrons,” which after ioniza-
tion leave the ion without any recollision. The SFA can
readily be generalized to allow rescattering [7,8], and the
corresponding expressions work extremely well in compari-
son with an exact numerical solution of the time-dependent
Schrédinger equation [9].

The shortcomings of the SFA are well known. Most are
connected with the presence of the Coulomb potential. So
the SFA does not account for the effects of excited bound
states, nor does it contain the consequences of the final-state
interaction of the freed electron with its parent ion except, in
its generalized form, for one “hard” interaction upon a recol-
lision [7,8]. Obviously, the SFA is particularly well suited for
the description of laser detachment of an electron off a nega-
tive ion, owing to the lack of excited bound states and the
absence of the Coulomb interaction between the detached
electron and the neutral atom [10,11]. A notorious problem of
the SFA is its gauge dependence. This has received some
attention lately, and several recent papers have concluded
that the length gauge is better suited than the velocity gauge
for the atomic SFA [12-15].

Recently, interest has focused on laser ionization of mol-
ecules [16]. Ab initio numerical simulations are significantly
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more complicated than in the atomic case [17], and the need
to deal with the relative orientation of the molecule with
respect to the laser field generates additional complexity. In
this situation, a benchmark formula that admits quick com-
putation and provides physical insight is even more desirable
than for atomic ionization. A generalization of the atomic
SFA would serve this purpose well [18,19]. However, the
problem of which gauge to apply has so far not led to any
consensus [20-22]. This is compounded by the fact that the
predictions of the two gauges commonly used—the length
and velocity gauges—diverge much more than for the case
of atoms [23].

There is another limitation of the various forms of the
SFA, which is sometimes not realized but crucial for the case
of a molecule. Derivations of the SFA that start from the S
matrix in its time-reversed form invariably imply an initial
state that is unperturbed by the laser field; cf, e.g., Ref. [24].
While this form is exact, the approximations that are subse-
quently made prevent certain features of the full problem
from being represented in the SFA [25]. These are features
that are associated with the effect of the laser on the initial
state preceding ionization, such as the ac Stark shift or laser
depletion of the ground state. If one intends to include such
effects into the SFA amplitude, one has to derive a modified
SFA, or one may attempt to introduce them by hand into
the standard expression by using a laser-dressed ground
state [25].

The purpose of this paper is to propose a SFA for ioniza-
tion of a molecule with large internuclear separation. We will
do so simply by enforcing that ionization be translation in-
variant, that is, independent of the position of the atom. The
meaning of “large” will become clear from the derivation.
Essentially, it means that the separation should be at least
comparable with if not larger than the range of the atomic
orbitals. This is satisfied, for example, for the rare-gas mol-
ecules. While this falls short of a general formulation of a
molecular SFA, it still is an important special case, which has
received a good deal of attention lately [21]. It is conceivable
that the proposed SFA will work well for arbitrary internu-
clear separations, but we cannot prove this by simple consis-
tency checks.

In the second section, we study the translation invariance
of the length-gauge time-dependent Schrodinger equation for
a binding potential that is displaced from the origin. In the
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third section, we introduce a version of the SFA that obeys
translation invariance for an arbitrarily positioned binding
potential and let this guide us to the formulation of the
“dressed-state SFA” in length gauge for a diatomic molecule
with sufficiently large internuclear separation. We provide
additional support for this formulation by considering the
saddle-point evaluation of the ionization amplitude, which
yields unphysical results if the ground state is not dressed. In
Sec. IV, we support the dressed-state SFA with a more formal
derivation. We start from the fact that for large internuclear
distance the ground state is almost degenerate with the low-
est excited state, which has the opposite symmetry. The laser
field couples to this two-level system. If we modify the SFA
to allow for this coupling, we retrieve the dressed-state SFA.
Section V presents our conclusions.

I1. DISPLACED BINDING POTENTIAL
AND TWO-CENTER POTENTIAL

Let us start by considering a potential that is centered
about some point a away from the origin,

Va(r) = Vy(r —a), (1)

where Vy(r) is concentrated about the origin. Usually, we
have a=0. This is the situation that naturally arises in a neu-
tral atom where the vector r points from the ionic charge to
the atomic electron. There is nothing, however, that would
forbid considering a displaced potential with a# 0. In the
presence of a laser field and in the electric-field gauge, the
corresponding Schrodinger equation

~2
(iat Py ser- E(¢)> (6,0 =0 )
2m
is solved by

tha(r,1) = exp[— iea - A(1) [hy(r - a,1) 3)

provided #(r,7) solves the Schrodinger equation (2) with
a=0. Here, A(¢r) is any vector potential such that E(r)=
—dA(1)/dt.

Next, let us consider the Schrodinger equation

Y
DV, (r,1) = (io"t _P W,(r) +er - E(t))‘l’a(r,t) =0
2m

(4)
with the two-center potential
Wa(r) = Vo(r) + V_u(r) = Vo(r —a) + Vy(r+a).  (5)

This potential may describe a molecular ion such as H,", in
which case Vy(r) would be a Coulomb potential [26], but
also a neutral molecule or a negative molecular ion such as
H,™. In the latter cases, one might approximate V,(r) by a
zero-range potential [27]. We make the ansatz

W, (r,0) = N, [ (r,0) + ¢_,(r,0)] (6)

and normalize the orbitals to unity, [d°r (,lf:(l',t)(/fa(l‘,t)
=[dr ¢ (r,t)h,(r,t)=1, while their overlap is
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[d’r :,b*_a(r,t) ,(r,1)=S,. This determines the normalization
factor as

N, =V2(1 +ReS,). (7)
The ansatz (6) yields

DV, (r,0) == N;'[V_o(0)iy(1,0) + V(D) (r,0)]. (8)

If the two centers are sufficiently far apart, the right-hand
side is small, and the ansatz (6) solves the Schrodinger equa-
tion (4) reasonably well. Note that the right-hand side of Eq.
(8) may be small while the overlap S, is still significantly
different from zero. In view of the translation property (3),
our ansatz reads

W, (r.0) = N, [e A Oy(r — a,1) + ey (r +a,1)].
©)

Reasonable and manageable approximations to the bound-
state wave functions (3) and (9) are obtained if the wave
function ¢(r,7), which solves the Schrodinger equation in
the presence of the field, is replaced by wf)o)(r,t) in the ab-
sence of the field, while the field-dependent exponentials are

kept.

II1. DRESSED-STATE STRONG-FIELD APPROXIMATION
IN LENGTH GAUGE

A. Displaced one-center potential

The SFA matrix element for ionization of an electron
bound by the potential V(r) into a state with asymptotic mo-
mentum p can be written in one of the two equivalent forms
(see, e.g., Ref. [2])

My=—i f &rdr Ve, VO Y () (10a)

=i f dr dr g™ (x,0) Hy(e,0) gt (r.1), (10b)

where H,(r,t)=—er-E(z) represents the electron-field inter-
action operator in length gauge,

lp:)Vv)(r’t) =2 =372 exp{i[p — eA(r)] - r}

Xexp(—iJ dT[p—eA('r)]z) (11)

the Volkov wave function in length gauge, and g))(r,t) the
(field-free) atomic ground state. The superscript (0) refers to
the absence of the laser field, and the subscript O to the
ground state. For the displaced potential (1), the form (10a)
reads

Myp=—i f & dr V(1,0 V(O o(r,n).  (12)

By the usual framework of the SFA, the wave function
a0(r, 1) should have a superscript (0), to denote the field-
free ground state of the displaced binding potential in the
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absence of the field. This will be discussed below.

Clearly, the ionization probability must not depend on the
position of the atom, so the only possible dependence of M,
on a should be via a phase factor, which will cancel from the
probability. Upon the translation r—r+a, the matrix ele-
ment (12) reads

Myp=—i f P di g+ 2,0 Vo(r) Yaolr +a,1)

—_ ie—ip-af d3r dt eiea-A(t)

X (0,1) Vo) ol +,1) (13)

Since, by the principles of the SFA, the shifted ground-state
wave function i,o(r+a,r) is to be independent of the field, it
cannot cancel the phase expliea-A(r)] in the integrand.
Hence, translation invariance of the ionization probability
will be violated. However, if (and only if) we take

Yao(r,1) = exp[— ica - A(1)]y) (r — a,1) (14)
as suggested by Eq. (3), then indeed we have

M,y =exp(—ia - p)M,. (15)

The effect of the phase exp[—iea-A(z)] in Eq. (14) is to
cancel the opposite phase that results from the Volkov wave
function. The latter reflects the scalar potential ®,(¢)=
—ea-E(r) at the position of the atom, which leads to
[1dT ®,(7)=ea-A(z). If the initial state is not dressed accord-
ing to Eq. (14), the scalar potential is taken into account in
the final state but not in the initial state, which will cause
artifacts.

However, derivations of the SFA hold that the initial state
must be an eigenstate of the operator Hy=p*/(2m)+V(r).
This means that it must not be dressed explicitly by the ex-
ternal field [24]. (There is a recent derivation of a modified
SFA that does yield a dressed initial state [25].) Ts it legiti-
mate, then, to introduce it by hand as we did in Eq. (14)? The
answer is that the assumptions made in the above-mentioned
derivations of the SFA preclude any dressing of the initial
state, in the same way as they do not allow for the ac Stark
shift or depletion of the ground state. Dressing the ground
state by hand constitutes an ad hoc attempt to heal this short-
coming. Whether or not this is a good approximation can,
ultimately, only be decided by comparison with an exact so-
lution of the time-dependent Schrodinger equation (TDSE).
However, this statement holds for any approximation
method, including the usual SFA.

A different argument in support of the ansatz (14) can be
built on a saddle-point evaluation of the temporal integral in
Eq. (13). For a large displacement a, we must include expo-
nentials of the kind *iea-A(r) into the total phase of the
integrand when we determine the saddle points [21]. Without
the exponential in Eq. (14), the saddle-point condition that
renders the exponential of the integrand of Eq. (13) station-
ary is
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L[p—eA(z‘)]z—ea~E(z‘)+1p=0, (16)
2m

where 1,>0 is the ionization potential of the ground state.
Let us consider, for the moment, a monochromatic linearly
polarized field with the vector potential A(r)=¢€,A4, cos wt.
Without the term —ea-E(z), for given p the saddle-point
equation (16) has two solutions 7, ,(p) per cycle of the field
in the upper half complex ¢ plane. The imaginary parts
Im 1 ,(p) of these two solutions are equal, reflecting the fact
that the direction of the electric field at the time of ionization
has no effect on the ionization probability. Let us now keep
the term —ea-E(z) in Eq. (16). It has opposite signs at the
two times 7, and 1,: E(Re t;)=—E (Re t,). In consequence,
one of the two solutions now will be real—the one for which
—ea-E(r) <0—while the other one will exhibit a much in-
creased imaginary part. Ionization will be well over the bar-
rier for the first solution, while strongly inhibited for the
second. This makes no physical sense and is due to the fact
that we did not consider the scalar potential at the position of
the atom in a consistent fashion: it is taken into account by
the Volkov solution but not by the initial state. To include it
consistently, we have to dress the initial state by adopting the
wave function (14). This will cancel the term —ea-E(?) in the
saddle-point equation (16). In consequence, ionization will
be independent of the position of the atom, as it should be.

The preceding arguments should have made it clear that
we have to choose the ansatz (14) for the initial-state wave
function, so that the phase exp[iea-A(r)] in the matrix ele-
ment (13) is canceled. We shall refer to this procedure as the
“dressed-state SFA” (DSSFA) in length gauge. Of course, for
an atom located at the origin, it is identical with the usual
length gauge.

There is no problem with translation invariance in the
velocity gauge. The velocity-gauge Volkov wave function
differs from the length-gauge form (11) by the absence of the
exponential exp[—ieA(z)-r]. There is no need to dress the
initial state, because in the velocity gauge there is no scalar
potential. Equation (12) with ,,(r,t)= l,/l(()(z))(l‘,l) immediately
leads to an amplitude that satisfies Eq. (15). Both the length-
gauge DSSFA and the usual velocity-gauge SFA lead to the
form

Mgy =—ie”®? f dr dr iy (x,0) Vo(r) gy (1), (17)

with the Volkov function in the corresponding gauge.

It should be noted that, with the dressed initial-state wave
function (14), the two forms (10a) and (10b) are no longer
equivalent. The equivalence was a consequence of the initial
state | E)O)(t)) being an eigenstate of H,, which is not the case
for the state (14). At the same time, the nonequivalence of
Egs. (10a) and (10b) is also due to the lack of orthogonality
between the Volkov state and the bound state. If this were
enforced, the operator H(r,r) in Eq. (10b) could be aug-
mented by terms xea-E(7), which would restore the equiva-
lence of the two forms. We will return to this point at the end
of Sec. IV.
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B. Two-center potential

After these preparations, we calculate the SFA matrix el-
ement

My p=—i J &r dt P (0,0 Wy(£) W01 (18)

for ionization of an electron bound by the two-center poten-
tial (5). The ground state may be symmetric or antisymmet-
ric, and according to Egs. (9) and (14) we describe it by the
wave function

W0 (1) = N, [ A0yl (r — a,1) £ e A0yO)(x + a,1)]
(19)

in the length-gauge DSSFA, or by the same wave function
but without the exponentials in the usual length-gauge SFA.
Note that the two field-free wave functions (ﬂf)%)(ria,t) are
multiplied by different phases, which reflect the different
scalar potentials at r==*a. Let us neglect, for the time being,
the cross terms, which contain w(()(z))(ria,t)Vo(rI a). In
length-gauge DSSFA, we then obtain

Ma,—a,p = N;I (e—ip~a + eip~a)M0p > (20)

expressing the interference of electrons emitted by one or the
other center, which may be constructive or destructive ac-
cording to the symmetry of the ground-state wave function
(19). For an antisymmetric ground state, emission of low-
energy electrons along the nuclear symmetry axis is sup-
pressed, as is predicted by the usual velocity-gauge SFA
[18]. Averaging the square of the matrix element (20) over
all directions of a yields (note that the normalization factor
N, does not depend on the direction of a)

dQ sin(2pa)
2a 2 _ a2 1, Sttepa)
f o Mgl = N (11 2 M,

2

. (2D

provided the ground-state orbital 1//‘()%) is an s orbital. For
other orbitals, no simple factorization like Eq. (21) is pos-
sible. Hence, for low electron momenta and/or small internu-
clear separations, the symmetry of the ground-state wave
functions has a large effect on the orientation-averaged ion-
ization yield.

For the standard length gauge, the integrand of Eq. (18)
contains the time-dependent exponentials exp[+iea-A(r)],
which preclude the simple form (20). These exponentials
will again give rise to the unphysical saddle-point equation
(16).

The cross terms, which contain the terms
wf)(g(ria,t) Vo(r ¥ a), generally will decrease with increasing
|a], as the overlap between the potential Vy(r) and its shifted
ground-state wave function approaches zero. In length-gauge
DSSFA, now the cross terms give rise to the unphysical
saddle-point equation (16). For small |a|, the consequences
are hard to estimate, but for large |a, the cross terms will
tend to zero, and the emission of the two centers will be (up
to a small reduction due to the nonzero overlap S,) the co-
herent superposition of the emission of two atoms placed at a
distance 2a, as one would expect.
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Problems in diatomic molecules arising from the presence
or absence of terms like +ea-E(7) in the total phase have also
been investigated in Ref. [21] and led the authors to rule out
the standard length-gauge SFA for the case of high-order
harmonic generation, since it predicts the cutoffs in wrong
positions. Their case is more complicated than ours since it
involves rescattering.

IV. THE DRESSED INITIAL STATE RECONSIDERED

In the preceding section, we justified taking the dressed
initial state (19) in the molecular SFA matrix element (18) by
the need to maintain translation invariance for ionization of a
one-center binding potential. Here, we will present a differ-
ent argument that will lead again to the dressed-state wave
function (19). For simplicity, consider the case when the mo-
lecular orbitals have positive parity. For large internuclear
separation 2a, the energy separation AE between the field-
free molecular ground state

W0, (00) = Ny e Ly (r = a) + i+ a)] = ey (r)
(22)
and the field-free excited state
Wi () =N e DA — 2) - g (r + a)]
= ¢80y (r) (23)

becomes smaller and smaller until the two states are practi-
cally degenerate: AE— 0 for large |a|. These two states are
strongly coupled even by a weak external field. However, the
presence of the excited state (23) is not accounted for by the
SFA in its standard form with the field-free ground state. In
order to mend this deficiency, we proceed similarly to Ref.
[28].

The exact matrix element for ionization from the molecu-
lar ground state [0(¢')) at an early time ¢’ before the arrival of
the laser pulse to a continuum state |p(¢)) at some time ¢
when the pulse has passed is given by

My(1,1") = (p(1)|U(2,")[0(2')), (24)

where U(t,t') denotes the exact time-evolution operator of
the full Hamiltonian H=T+W,+H,(1)=H,+H,(1). We de-
compose the total state space into the space H, of the two
low-lying bound states (22) and (23) and the state H, of the
remaining states, which comprise the higher excited bound
states and the continuum; see Ref. [25] for a similar proce-
dure. We denote the corresponding projectors by P, and P,
=1-P,, respectively. For the matrix element (24) we need
the part P, U(t,t")P,=U,,(t,t") of the time-evolution opera-
tor, which leads from one of the bound states into the con-
tinuum.

In order to construct U, we start from the symbolic so-
lution for the exact time-evolution operator U(z,t'),

t

Ut = e‘””OTexp(— if dTIA{I(T))eiZ/HO (25)
t’

with
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H (1) = e™oH (£)e™™Ho (26)

and T the time-ordering operator. We note that the field-free
Hamiltonian H,, transforms states only within the spaces H,,
and .. With the notation PAP;=A;; (i,j=b,c) for any op-
erator A, we have

Hy=Hoee + Hopps  Hope =Hoe, =0. (27)

Transitions from H,, to H, or vice versa are accomplished by
the interaction operator

H(t) = Hppp(1) + Hyoo(t) + Hppo(2) + Hpep(2). (28)

Owing to the time-ordering prescription in Eq. (25), we can
freely commute operators, so that

t
U,(t,t) = e—irHO(;CT{ |:Texp<— ij dTI‘AI,CC(T)>]
t,

X lTeXP(— if, dT[]:Ich(T) + Hlbc-(T)])]

X [Texp(—if dTI:I,hb(T)>]}eit’Hohh, (29)

Next, we keep only terms such that the electron makes the
transition from the bound-state space H, to the continuum
space H,. at one particular time 7 which, intuitively, corre-
sponds to the instant of ionization. Formally, this comes

about by expanding the exponential exp{-if}d A H,.p ()
+H we(7)]} to first order. We neglect terms where the electron

temporarily returns to the bound-state space after this first
ionization. The result is

t t
Ugy(t,t') =~ ie""”Orcf dr{ Texp(— if dT’I:IIcc(T’)> }
t' T

X Hep(7) { T exp(— iJ dT"I:I]bb(T”)) } e Hovp
t,

(30)

or

t

Uu(t,t)=—i f d70(t, NP H(D)P,U,(7,1"), (31)
t!

where U,,(7,1') and U,.(t,1') are the exact time-evolution
operators restricted to the subspaces H;, and H,., respectively,
as written down explicitly in Eq. (30).

The initial ground state has the wave function (22). In the
limit where r— and t' — -, the lowest-order term (31)
yields

Mp =—i lim f dT(p(t)|ﬁcc(t» T)PCHI(T)Pb|O(T)>»

(32)

where |0(7))=lim,_,_,,U,,(7,#)|0(s")) is the state that has
developed out of the initial field-free ground state under the
action of Hj, but restricted to the subspace H,, that is to say,
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without “ionization.” This state has the wave function

Woo(r.0) =a, ()P0 (r,0) +a_ ()W) (r.),  (33)

a0+

which is determined by the solution of the time-dependent
Schrddinger equation restricted to the space of the two bound
states. Actually, this is the Jaynes-Cummings model, and its
general solution is well known; see, e.g., Ref. [29]. The am-
plitudes a,(r) and a_(r) obey the equations

ia,(1)=E(1)-d,_a_(1),

ia_(1)=E() - d_a,(r), (34)

with
d..=- f d’r (/fx(r)*er‘rlfi(r) (35)

and the wave functions (22) and (23). For parity eigenstates,
we have d,,=d__=0. Here, we will be satisfied with the
degenerate case, as discussed above. Then, in the limit of
large |a|, we have d =d’ +=—ea. The solution is

a,(t) ~ exp[—iea- A(r)] x expliea- A(r)]. (36)

For t— —o, when the field is absent, this leads to the ground
state (22). Hence, the solution satisfies the desired initial
condition. With the field on, it yields

q’ao(r»t) — eilptNa—l[e—iea»A(z)wg)%)(r _ a) + eiea-A(t) z,//gg))(r + a)]’
(37)

which agrees with the ansatz (19).
We now have

My=—itim [ ap(O1. AP H P Y(

(38)

The SFA neglects the binding potential after the electron has
been promoted into the continuum. This leads to the ampli-
tude

MP =" lf d7_<¢£)VV)(T)|PL'HI(T)|q,aO(T)> (39)

with the Volkov state (11). Owing to the presence of the
projectors, we may replace in the amplitude (39)

PH(7)|Wy0(7))
B PceilptN;]{e—ieaA(T)[_ e(r—a)-E(7)]
=)+ AL el ) - E()
X i) (r +a)}. 0

Shifting the origins of the spatial integrations leads to

My==i J dryy" ()| PH () oINS (€% + ).

(41)

Here, we may again replace H,(7) by V,(r). Hence, this re-
sult agrees with Eq. (20) if we now drop the projector P..
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We should add a word of caution. In the derivation above,
we have several times exploited the orthogonality between
the field-free continuum states and the bound states. How-
ever, the SFA, by introducing the Volkov states, violates this
orthogonality. This is not a problem as long as we keep the
projector P.. Depending upon at which stage of the deriva-
tion the projector is dropped, different final results may be
obtained. Therefore, more important than its derivation is
that the final result incorporate the desired physics and pass
consistency checks.

In velocity gauge, the coupling between the states (22)
and (23) is accomplished by the matrix elements of p=—iV.
Since p=im[H,,r], all those matrix elements vanish in the
limit of degenerate states. Hence, there is no coupling, the
initial state does not have to be dressed, and the velocity-
gauge SFA with the field-free ground state is all right from
this point of view. Above, we arrived at the same conclusion
starting from the fact that the scalar potential is zero in ve-
locity gauge.

V. CONCLUSIONS

For large internuclear separation, the standard length-
gauge SFA no longer provides a satisfactory approximation.
In contrast, the length-gauge dressed-state SFA passes all
consistency checks that we investigated above, but so does
the standard velocity-gauge SFA. However, we know from
studies of the detachment of negative ions that the standard
velocity gauge fails for odd-parity ground states, in that it
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predicts the interference minima and maxima in the wrong
positions [14]. Similar contradictions to the solution of the
TDSE can be expected here, as soon as the building-block
field-free atomic orbitals wé%)(r,t) have odd parity. Hence,
only the length-gauge DSSFA is compatible with all require-
ments that we are aware of. This conclusion is supported if
the internuclear separation is large enough for the cross
terms between the potential of one center and the wave func-
tion concentrated about the other center to be negligible. This
case covers, for example, rare-gas molecules at equilibrium
internuclear distance and molecular ions such as H," near the
turning points of higher vibrational states. For the case of
small and intermediate internuclear separation 2a, we cannot
draw any conclusion. We expect the length-gauge DSSFA
also to be applicable for more complicated molecules (mul-
ticenter problems) provided all centers are well separated.
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