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We present a theoretical framework for the electronic dynamics of arbitrarily oriented molecular hydrogen in
strong and short electromagnetic fields. The ground state of H2 is obtained by propagating the time-dependent
Schrödinger equation in imaginary time by assuming the Hartree-Fock ansatz for the interaction between the
electrons. The interaction of H2 with the radiation field is considered in the single-active-electron approxima-
tion, with the continuum electron subject to Hartree-Fock radial potentials. We propagate the wave function by
a split-operator scheme projected on a spherical harmonics basis. Alignment-dependent yields and angular
distributions for one- and two-photon ionization induced by an external femtosecond light source are presented
and compared with available theoretical results.
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I. INTRODUCTION

Understanding the fundamental processes that occur when
atoms and molecules are subject to extreme conditions is
currently a major research area. Experimentally, such pro-
cesses are usually initiated by short intense laser pulses ra-
diating at infrared wavelengths �1� or in the near future by
the free electron laser which will provide intense ultraviolet
light sources �2,3�. In addition to the fundamental interest in
the interaction of molecules with intense and/or ultrashort
electromagnetic fields �1,4�, such processes have recently
been utilized at a more practical level for reconstruction of
nuclear probability distributions, visualization of molecular
orbitals, alignment of molecules as well as production of
high-order harmonics which in turn are used for the genera-
tion of ultra short fields at the subfemtosecond scale �4–10�.

Undoubtedly, molecules due to their multicenter nature
are more complex systems than atoms, thus making a theo-
retical description of the molecular energy-level structure a
highly demanding task and, accordingly, in most cases a
number of approximations are employed. In addition, there
are processes that may occur during the interaction of mol-
ecules with electromagnetic �EM� fields with no counterpart
in atomic systems. For instance, alignment and orientation of
the molecule with respect to the external field affect the ion-
ization and harmonic yield. Also the electronic wave func-
tion depends on the internuclear distance R and this may lead
to enhanced ionization at particular values of R.

From a theoretical point of view, it is a tremendous task to
treat the exact time-dependent response of a multielectron
system subject to a strong oscillating field by ab initio meth-
ods. Considering the interaction with the EM field, most the-
oretical studies make use of the strong-field approximation
�SFA� where the influence of the Coulomb potential on the
ejected electron wave function is neglected in favor of the

external field. With less severe approximations, an approach
that adopts the single-active-electron �SAE� approximation
was applied to the atomic case some time ago �11�. In the
SAE approximation, the time-dependent Schrödinger equa-
tion �TDSE� for a single electron moving in the effective
field generated by the nuclei and all the other electrons is
solved numerically. SAE models where one reduces the di-
mensionality of the multielectron problem by freezing the
most tightly bound electrons have proven to be very useful in
cases where multiple electronic excitations are insignificant,
and the SAE approximation is probably the most widely used
approach when studying phenomena such as single ioniza-
tion, above-threshold ionization �ATI� and high-harmonic
generation �HHG�.

Ab initio approaches of one-photon single- and double-
ionization of H2

+ have been developed �12–19�. In the multi-
photon case the nonperturbative driving by the external field
has impedeed fast progress. Lately, however, nonperturbative
ab initio methods to solve the TDSE by a number of different
techniques have been developed �20–24�. In most cases these
approaches were developed, and applied first, to the case of
the molecular hydrogen ion �H2

+�, being the simplest molecu-
lar system but also due to its fundamental importance
�21,25–31�. Studies of multiphoton ionization of H2 by solv-
ing the TDSE either by assuming the fixed nuclei approxi-
mation �23,32,33� or even including the electronic and vibra-
tional degrees of freedom �34� have appeared in the literature
only very recently. The solution of the TDSE for systems
with more than two electrons and/or including nuclear de-
grees of freedom is computationally involved and necessitat-
ing thus the use of high-power computer resources �35�.
Moreover in most cases, an important degree of freedom,
namely the orientation of the molecular axis with respect to
the field polarization has not been considered. The develop-
ment of the alignment techniques have opened up yet another
area of theoretical research. Experimentally, significant ori-
entation dependence of the ionization and the harmonic yield
production was observed �36,37�. Thus a number of impor-
tant issues needs to be investigated and answered, namely
the degree of influence of the molecular axis orientation to
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certain quantities such as ionization, dissociation and har-
monic yield, photoelectron energy spectra, etc.

Given our intention to study multielectron molecular sys-
tems under arbitrarily oriented intense EM ultrashort fields
we are looking for methods that can treat multielectron mol-
ecules with the least approximations possible but at the same
time are computationally tractable. Such approaches have
been developed in atomic and molecular physics studies, and
include time-dependent Hartree-Fock �TDHF� �11�, time-
dependent density functional theory �TDDFT� �38� to refer
to the most representative ones.

Though in atomic and molecular systems there is a vast
number of theoretical efforts in the spirit of TDHF �39–45�,
even some extensions to include correlation between the
electrons, the question of how much and under what condi-
tions correlation beyond the Hartree-Fock model is important
still remains unanswered. The underlying reason is the diffi-
culties introduced by the nonlinear nature of the TDHF equa-
tions in combination with the fact that the single-
configuration ansatz and the excitation process induced by
the EM field are inconsistent. Improvements of the restricted
Hartree-Fock �RHF� ansatz such as the unrestricted HF
�UHF� approach and inclusion of exchange effects appear to
be possible solutions to overcome such problems, although
the applications so far are only in one-dimensional �1D�
models �46–49�. Recently a systematic approach, multicon-
figuration TDHF, capable of treating multielectron excita-
tions and to include correlations between the electrons �be-
yond HF� was developed �50� and applied to 1D system.
Interestingly enough, when the same method was applied to
the corresponding 3D system contradictions with the 1D re-
sults were found, a sign that conclusions based on 1D model
systems should not be taken into account firmly �51�.

In the present work, we undertake an investigation of a
compromising problem. Confident by having applied the
present split-operator technique to the ionization of the mo-
lecular hydrogen ion �31,52� we extend the method by treat-
ing the arbitrarily oriented H2 in all its full dimensionality
�3D for each electron� at the cost of describing the ionization
process in the SAE approximation. We choose the H2 mol-
ecule as a generic system of diatomic molecules with two
electrons outside a closed shell. We are motivated by funda-
mental interest in dynamics of H2 when exposed to an in-
tense laser field but also this system offers a test bend for
extending naturally our split-operator technique to other di-
atomic molecules, e.g., O2 and N2. The adoption of the SAE
allows us to overcome two problems inherent in the TDHF
approaches, namely �a� the nonlinearity of the time-
dependent equations and �b� the inconsistency of a single-
determinant expansion of the time-dependent wave function
with the concept of the ionization process. As a result of the
above we restrict our study to cases where no multiple exci-
tations and/or double ionization play a crucial role in the
dynamics of the ionization, a fact that depends on the system
under consideration as well as the intensity, wavelength and
pulse duration of the radiation field. In H2 a TDHF 3D finite
element �FE� calculation at 532 nm showed that the FE and
the frozen core ionization rates differ by only 10% �44�. The
TDHF approach that treat both electrons exact, within one
dimension �48�, show that one orbital �“the inner”� stays lo-

calized and that there is negligible core excitation at equilib-
rium. Furthermore, the double ionization yield is propor-
tional to the single ionization yield for intensities up to
1015 W/cm2, but of much less magnitude �53�. In addition,
the SAE can be systematically improved by considering a
“frozen core” screened potential that takes into account the
relaxation of the H2

+ into its equilibrium position during ion-
ization �33,54�. Hence, theoretically, a description in terms of
a SAE model is expected to be fairly accurate and definitely
to grasp the physics qualitatively. This way, we try to be as
close as possible to the criteria that justify the SAE approxi-
mation, by choosing carefully the pulse characteristics.

For all the above reasons we believe that the present
study, as a first attempt to treat an arbitrarily oriented mo-
lecular hydrogen in a strong ultrashort EM field as realistic
as possible �also presenting in detail the technique� can pro-
vide, within its limits posed by the approximations dis-
cussed, a quantitative picture of the 3D ionization dynamics.

The paper is organized as follows. In Sec. II, we present
the basic theoretical framework for the calculation of the
ground state of H2, the construction of the effective HF po-
tential and the split-operator propagation technique of the
time-dependent wave function. In Sec. III, we give the for-
mulation related with the propagation of the active-electron
wave function in the presence of an EM field with the polar-
ization axis arbitrarily oriented with respect to the molecular
axis. In Sec. IV, we present the method used to calculate
ionization yield, energy and angular distribution of the pho-
toelectron. In Sec. V, we apply the method to one- and two-
photon ionization of molecular hydrogen exposed in a strong
UV few femtoseconds EM field. Finally, in the Appendix, we
have relegated much of the technical details.

In the presentation of the formulas, atomic units are used
�m=�= �e�=a0=1� throughout.

II. FORMULATION

We consider a two-electron diatomic molecule with
nuclear charges ZA and ZB and with the nuclei fixed at posi-
tions RA and RB. By defining r12= �r1−r2� and riA= �ri−RA�,
riB= �ri−RB�, we write the Hamiltonian governing the elec-
tronic dynamics as

He�r1,r2� = �
i=1,2

�−
1

2
�i

2 −
ZA

riA
−

ZB

riB
� +

1

r12
. �1�

The TDSE reads �i�� /�t�−He−VF���r1 ,r2 , t�=0, with the
field-molecule interaction in the dipole approximation given
by

VF�r1,r2,t� = �
i=1,2

VI�ri,t� = �
i=1,2

E�t� · ri, �2�

with VI�ri , t�=E�t� ·ri and E�t� the electric field.
For the two-electron wave function of, e.g., H2, we make

the Hartree-Fock ansatz, and express the two-electron wave
function as a product of single-electron orbitals, namely,

��r1,r2,t� = �1�r1,t��2�r2,t� , �3�

with �1 and �2 each normalized to unity.
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By inserting Eq. �3� in the TDSE, projecting over �i�ri , t�
for i=1,2 and making the following transformation �i
→�i exp�i	tdt�
�i ���i /�t��� we obtain a set of coupled
equations for the time evolution of the single-electron orbit-
als

i
�

�t
�i�ri,t� = �hi + VD

�j��ri,t� + VI�ri,t���i�ri,t� , �4�

for i , j=1,2 and i� j. The single-electron Hamiltonian hi for
the ith electron reads

hi = −
1

2
�i

2 + VM�ri� , �5�

with the molecular potential VM�ri�=−ZA /riA−ZB /riB. The
Coulombic interaction between the two-electrons is reduced
to a time-dependent mean-field potential felt by each of the
electrons �averaged over the spatial variables of the other
electron�,

VD
�j��ri,t� =� d3r j

�� j�r j,t��2

�ri − r j�
, �6�

with i , j=1,2 and i� j.

A. Determination of the H2 ground state orbitals

The Hartree ansatz for the ground state of H2 �ZA=ZB

=1� is to assume the field-free two-electron wave function be
a product of two identical single-electron orbitals

�0�r1,r2,t� = �0�r1,t��0�r2,t� . �7�

In this case �0=�1=�2 and VI=0 making the set of the
coupled equations in Eq. �4� identical. Accordingly we are
left with a single time-dependent equation

i
�

�t
�0�ri,t� = hi +� d3r

��0�r,t��2

�ri − r� ��0�ri,t� , �8�

with i=1,2. In comparison with the TDSE for a single-
electron system, we note the presence of an effective time-
dependent inter-electronic potential given by Eq. �6� with
� j =�0, which turns the TDSE into a non-linear differential
equation. It is worth noting that the Hartree-Fock and the
Hartree time-dependent equations give the same equations
for the ground state. This follows since the exchange part of
the Coulombic electron-electron interaction is simply half of
the direct part of the inter-electronic potential.

The propagation procedure for the calculation of the
ground state orbital of Eq. �8� is identical to the procedure
used when the wave function is subject to an EM field �de-
scribed in the next subsection� with the exception of two
points: �i� The external EM field is set to zero, thus the wave
functions are propagated under the molecular potential only.
�ii� The real time step �= ti+1− ti�0 is replaced by an imagi-
nary step by making the substitution �→−i�. Assuming that
we start out from an arbitrary initial state it is well-known
that propagation in imaginary time leads to the lowest energy
eigenstate of the Hamiltonian. Propagation in imaginary time
does not preserve the norm of the wave function, contrary

the norm changes with a rate which converges to the ground
state eigenenergy as

Eg = lim
t→�

lim
�→0

−
1

�
ln


��t + �����t + ���

��t����t��

. �9�

In order to test the accuracy of our method we present in
Fig. 1 the potential curves for H2 and H2

+ obtained by the
present approach. The potential curve is defined as the elec-
tronic ground state energy plus the static nuclear repulsion
energy for each fixed value of the internuclear distance. In
the figure we also show the potential curve for H2 obtained
by a configuration-interaction method �12�. The agreement
between the two curves is good at small internuclear dis-
tances and reasonable around the equilibrium position
��1.4 a.u.�. The discrepancy becomes appreciable in the dis-
sociation limit R→�. This latter behavior is easy to under-
stand: By using the wave function ansatz of Eq. �7�, we
restrict the two electrons to have the same functional depen-
dence and explicitly neglect the ionic bonding part of the
total wave function. The latter corresponds to an unequal
sharing of the electronic charge, which in the dissociation
limit leads to H− and a proton. The ground state ansatz �co-
valent bonding part�, which associates one electron with each
nucleus, is expected to become more accurate at smaller in-
ternuclear distances. This is indeed the situation that is re-
flected by the behavior of the potential curve of H2 obtained
by the present method. As an additional test of the potential
curve �of H2�, obtained with the present method, we have
performed a restricted HF calculation �55� and found excel-
lent agreement.

B. Propagation of H2 in the SAE approximation

Let us now consider the TDSE of H2 in an external radia-
tion field. In the single-active electron approximation, one of
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FIG. 1. �Color online� Potential curves for the H2 and H2
+. The

full and the dashed line represent the H2 ground state potential
curve calculated within the present method and with a full configu-
ration interaction �CI� method, respectively. The curve for the CI
method has been taken from �12�. The dotted line is the exact po-
tential curve for the H2

+, calculated with the present approach.
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the electrons remains strongly bound, in fact untouched by
the radiation field, while the other interacts with the field in
the presence of a screened field due to the nuclei and the
“frozen” electron. Thus if the energy of the initial ground-
state orbitals �0 is �0 the time evolution of the “frozen”
orbital �let us assume the inactive electron to be represented
by the orbital wave function �1�, is written as

�1�r1,t� = �0�r1�e−i�0t. �10�

Inserting this expression into the set of the coupled TDSEs
�4� results in an equation for the second orbital �i=2�, with
the direct time-independent �static� potential.

VD
�1��r2� =� d3r1

��0�r1��2

�r2 − r1�
. �11�

Let us, for notational convenience, drop the subscript from
all dynamical observables that determine the evolution of the
active electron and relabel r2→r, �2�r2 , t�→��r , t�, h2→h,
VI�r2 , t�→VI�r , t� and VD

�1��r2�→VD�r�, given that the
Hamiltonian corresponds to a single-electron diatomic mo-
lecular system. In this case, the TDSE to be solved for the
active electron is written as

i
�

�t
��r,t� = �h + VD�r� + VI�r,t����r,t� . �12�

Compared with the single-electron molecular system
�i.e., H2

+�, within the present SAE approximation, the pres-
ence of the extra electron, modifies the motion of the active
electron by the addition of a static potential VD in the ionic
molecular Hamiltonian. Note that, within the SAE approxi-
mation the non-linearity of the TDHF equations is removed
and the whole time-dependence of the potentials is due to the
external EM field.

In our present numerical implementation, we choose a
spherical coordinate system for the active electron
�24,30,31�. We represent the angular variables in a basis of
spherical harmonics and write the wave function as

��r,t� = �
l=0

�

�
m=−l

l
f lm�r,t�

r
Ylm�	,�� . �13�

In an actual calculation, we must truncate the spherical har-
monics expansion at some maximum l= lmax. In the remain-
ing formulas we abbreviate the truncated double summation
by �lm. The radial functions f lm which contain the time de-
pendence are discretized on an equidistant radial grid.

The propagation of the wave function proceeds by using a
split-operator spectral method in spherical coordinates �see
Appendix A�. If we assume the Hamiltonian H�t�=h
+VD�r�+VI�r , t�, the formal evolution of the wave function
from a time ti by a time step �, is given as
��r , ti+1��exp�−iH�t̄�����r , ti�, where �= ti+1− ti and
t̄= �ti+ ti+1� /2. In the present case, we separate the Hamil-
tonian into three terms, namely the radial kinetic
�Tr=−�1/2��2 /�r2�, centrifugal �Tl=L2 /2r2� and the poten-
tial �V�r , t�=VM�r�+VD�r�+VI�r , t�� terms. Then, within the
split-operator technique the wave function propagates as

r��r,t + �� = e−iTr��/2�e−iTl��/2�e−iV�t̄��e−iTl��/2�e−iTr��/2�r��r,t� .

The error in the propagation scheme above is approximately
cubic in � and occurs mainly due to the splitting of noncom-
muting operators.

By projecting Eq. �13� on the spherical harmonic basis
Ylm�	 ,�� we obtain a propagation scheme for each element
of the radial functions f lm�r�=r
lm ��� as

f lm�r,ti+1� = UrUl �
l�m�

Ulm;l�m�Ul�Urfl�m��r,ti� . �14�

The above propagation scheme represents the central evolu-
tion formula of the present split-operator scheme applied in a
spherical harmonic basis. In Eq. �14�, the radial time-
evolution operators are

Ur = e−i�−�1/2���2/�r2����/2�
ll�
mm�, �15�

Ul = e−i�l�l+1�/2r2���/2�
ll�
mm�, �16�

Ulm;l�m� = 
lm�e−iV�r,t̄���l�m�� . �17�

The quantity Ulm;l�m� describes the evolution of the wave
function due to the potential and the external field. As it is
obvious from the above split-operator scheme this operator
describes the mixing between the different partial waves in
the expansion of the wave function. The technical details of
the treatment of the operators Eqs. �15�–�17� are discussed in
the Appendix A, �see also Ref. �31��.

III. PROPAGATION WITH EM FIELD OF ARBITRARY
ORIENTED POLARIZATION AXIS

For arbritrary orientation of the linear field polarization
vector with respect to the molecular axis, defined by the
Euler angles �� ,� ,�, the wave function in the two different
frames is related through a rotation as �L�r� , t�
=D����M�r , t�, where �= �� ,� ,�, D��� the Wigner rota-
tion operator and r�= �r� ,	� ,��� the position vector ex-
pressed in the laboratory frame. Note that for rotation opera-
tions, r�=r. The Euler angle � corresponds to rotation
around the polarization vector, � is the angle between the
polarization and molecular axes, while  is a rotation around
the molecular axis.

Given that the diatomic molecule is rotationally symmet-
ric around its own axis, the results are independent on the
angle , thus we can set it to zero. However the dependence
of the results on the angle � is less obvious since we have
chosen to express our wave function in the molecular frame.
For the same value of � we can have different orientations
corresponding to different values of �. Such geometries will
lead to different results, e.g., for, angular distributions of
photoelectrons observed in the laboratory fixed frame. The
linearly polarized field is, however, cylindrically symmetric
around the zL axis, and therefore the two different angular
distributions will only differ by a trivial rotation around the
zL axis. To see this let us write the wave function in the
laboratory frame by employing an arbitrary Wigner rotation
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by an angle � which is known to transform the spherical
harmonic functions as �56�

Ylm�	,�� = �
m�

Dmm�
�l� ���Ylm��	�,��� . �18�

By using the above formula and noting that D
m�m
�l� ���

=exp�−i�m��dm�m
�l� ���exp�−im�, we obtain

��L��r�� = �
lm�

1

r�
f lm��r��e

−i�m�Ylm��	�,��� , �19�

with f lm��r��=�mflm�r�exp�−im�d
m�m
�l� ���. From the above

expression it easy to see the trivial phase dependence of the
laboratory-expressed wave function on the angles � and 
due to axial symmetry along the polarization and the molecu-
lar axis, respectively. Thus, we conclude that the only non-
trivial geometric dependence will be upon the angle � which
defines the angle between the molecular and the laboratory
axis. Therefore, we choose �= �0,� ,0� and make �a� a rota-
tion by the angle � of the wave function into its laboratory
frame, then �b� we propagate the wave function into the labo-
ratory frame, and finally �iii� make a backward transforma-
tion into the molecular frame. The above propagation proce-
dure for the arbitrary oriented axis is mathematically
represented by the following sequence of operations

��r,ti+1� = D†��� · UI�r,ti� · D��� · ��r,ti� , �20�

where UI�r , ti� denotes the propagation of the wave function
in the parallel orientation due to the field alone. The above
propagation scheme for arbitrary orientation of the polariza-
tion axis, exhibits the strength of the present approach since
it allows us to perform the calculations very efficiently. In a
parallel orientation, the system is cylindrically symmetric,
and hence, the azimuthal quantum number is preserved,
�m=0. This selection rule allows the matrix representation
of the EM field operator �Eq. �A7�� to take a block diagonal
form by m. This is no longer true for arbitrary oriented con-
figurations of the field polarization and the molecular axis.
First order transitions change the azimuthal quantum number
by one due to field components perpendicular to the z axis. It
is therefore impossible to obtain a block diagonal form of the
EM field matrix in the molecular frame. However, by rotat-
ing the system by the Euler rotation angle � into the labora-
tory frame, we guarantee that the azimuthal component of
the transformed wave function preserves its value for transi-
tions due to the EM field operator. Then, in this laboratory
frame the matrix again can obtain a block-diagonal form in
terms of the azimuthal quantum number and the calculation
proceeds as in the parallel case. All the advantages of the
block-diagonal structure are exploited for a highly effective
propagation scheme �31�.

IV. CALCULATION OF OBSERVABLES

The radial probability current of the time-dependent wave
function (jr�r , t�= r̂ · j�r , t�= r̂ · Im����r , t����r , t��) in terms
of our spherical basis expansion is given by

jr�r,t� =
1

r2 Im �
lm,l�m�

f lm
� �r,t�� �f l�m�

�r
�

�r,t�
Ylm

� ���Yl�m���� .

�21�

By use of the continuinity equation �� · j�r , t�+���r , t� /�t
=0�, it follows that jr�r0 ,� , t�r0

2d� provides the number of
electrons moving outwards, per unit time, within a solid
angle d�=sin 	d	 d� through a spherical surface placed at
some distance r0.

A. Angular distribution

By evaluating the probability current at the distance r0,
and integrating over time up to time t, we obtain the angular
distribution from the formula

dP

d�
�r,t� = Im �

t0

t

dt�r0
2jr�r0,�,t�� . �22�

The time t is chosen large enough that all radial outgoing
flux has passed the point of observation. The distance r0 is
chosen neither close to the central region nor to the box
boundaries.

B. Ionization yield

The total ionization yield can be obtained by either of the
following methods.

1. Use of the probability current

By integration of Eq. �22� over the angular variables we
obtain the ionization yield at time t as

P�t� = �
t0

t

dt� Im��
lm

f lm�r0,t��� �f lm

�r
�

r0,t�
� . �23�

2. Use of absorbing potential

In the present approach the molecule is artificially placed
inside a sphere of radius rb, by forcing the wave function to
be zero at this boundary. Physically this corresponds to the
case of an infinite high potential at the box boundary. The
placement of the system in a box, might be a source of arti-
ficial complications with the most prominent the unphysical
reflection of the time-dependent wave function at the bound-
aries. To overcome this problem one solution is the imple-
mentation of an absorbing boundary throughout the inner
region of the box, which mathematically is achieved through
the addition of an imaginary potential into the Hamiltonian
by the substitution V�r , t�→V�r , t�− iW�r�. In this work we
use

W�r� = −
1

�
ln�1 − cosp��

2
1 −

r

rb
��� , �24�

where p is a parameter that affects the “smoothness” of the
imaginary potential. In the present case we have chosen p
=50. It is obvious from the chosen form of the absorbing
potential that absorption is practically absent at the central
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region of the system �W�r�→0 for r→0�, as it should be,
while it is complete when the particle approaches the box
boundaries �W�r�→� for r→rb�. The role of imaginary po-
tential is twofold here. It not only solves the technical prob-
lem of the artificial scattering but also it can be used as a
method to describe the ionization process. This imaginary
potential removes smoothly the flux which approaches the
boundaries, affecting only the continuum part of the wave
function. Therefore, the loss of norm of the wave function is
interpreted as ionization of the system.

In the present split-operator formulation the introduction
of the absorbing potential acts as a mask function that damps
the wave function at large distances, �exp(−W�r��)��r , t�.
We note in passing that whenever we calculate angular dis-
tributions in presence of the absorbing potential we choose
as r0 a radial distance where absorption is negligible. We
make this choice of r0 in order to avoid the complications
introduced by the continuity equation � · j�r , t�+���r , t� /�t
=2W�r���r , t� in the presence of an absorbing potential.

C. Photoelectron energy spectrum

We calculate the photoelectron energy spectrum �PES� by
taking the Fourier transform �FT� of the autocorrelation �AC�
function of the time-dependent wave function ��t�. The AC
function after the end of the pulse is given by

C�t� = 
��r,T����r,T + t�� , �25�

where the brackets denote integration ovel all the spatial
variables. The FT of the AC function, as a method for the
determination of the position of the bound eigenenergies and
eigenstates of a time-dependent Hamiltonian was used
�57,58� in studying the hydrogen atom placed in a static elec-
tric and magnetic field �57,58�, and for the determination of
the population remained in the bound states after irradiation
of H2

+ with a laser pulse �20,25�. In the present case we have
extended the method to the determination of the population
of the continuum states �52�. To this end, we exploit the fact
that since the Hamiltonian is represented on a radial grid in a
sphere of radius rb, supplemented with vanishing boundary
conditions f�0, t�= f�rb , t�=0, the positive energy spectrum
�continuous spectrum� becomes discrete. This allows us to
treat the bound and the continuous spectral decomposition of
the time-dependent wave function in a unified way. To see
formally how the AC function is related with the energy
distribution function of ��r , t� we expand the latter in the
eigenstate basis �E�r� as

��r,t� = X dE b�E��E�r�e−iEt �26�

with b�E� describing the energy distribution of ��r , t� onto
the eigenstates of the field-free Hamiltonian and the symbol
X denoting expansion over the bound and the continuous
spectrum. Then by substitution of the above expansion to Eq.
�25� we obtain

C�t� = X dE b�E�
��r,T���E�r��e−iEt. �27�

By taking the Fourier transform of the above expansion at
energy E�0 as S�E�= �1/2���	dt C�t�exp�iEt�� we end with

S�E� = �b�E�
��r,T���E�r��� = �b�E��2. �28�

In the last equality we have exploited that from Eq. �26�
holds 
�E�r� ���r , t��=b�E�exp�−iEt�.

In practice we take the following Fourier transform of the
AC function,

S�E,�� =
2

�
��

T

T+�

dt C�t�h�t�eiEt� , �29�

where T denotes the pulse length and where
h�t�= �1−cos(2��t+T� /�)� /2 is a Hanning window. The
above transformation results in a series of peaks with
maxima very close to the discrete eigenenergies positions,
depending on the time length �. From this finite-spectral
function we extract the discrete eigenenergy positions �En� as
well as the respective weights �b�En��2 up to a phase factor,
allowing as to calculate the photoelectron energy spectrum.
Details of the present approach with applications to ioniza-
tion of hydrogen and molecular hydrogen ion are presented
elsewhere �52�.

V. RESULTS AND DISCUSSION

The results presented here are obtained with a box radius
of rb=120 a.u. The number of radial grid points is nr
=4096 which ensures that the initial ground state orbital is
satisfactorily converged as we demonstrate below. Further-
more, the results shown in the figures are converged with
lmax=8 in the sense that they remain invariant increasing lmax
from 6 to 8. Also by inspection of the angular momentum
content, we see that the population of l=8 is vanishing after
the pulse. As we showed in Fig. 1, the electronic binding
energy obtained under these potentials, is fairly accurate at
the equilibrium distance. The accuracy of the calculated
ground state is thus sufficient for our purposes.

After having constructed the effective Hartree-Fock po-
tential of H2, we proceed to the SAE approximation and
examine the behavior of the active electron under the exter-
nal EM field. The EM field, linearly polarized along the ê
unit vector, is characterized by the vector potential

A�t� = êA0 sin2��t/T�cos��t� , �30�

where A0=�I0 /�2, I0 is the peak intensity and � is the fre-
quency. The electric field is obtained as E�t�=−�tA�t�. We
present results for photon energies of �=20 eV ��13th har-
monics of Ti:sapphire laser� and �=10.85 eV ��7th har-
monic of Ti:sapphire laser�. The chosen intensities are rather
modest �I0=1013 W/cm2� in order to ensure that nonpertur-
bative effects do not play any role as well as due to the
availability of such sources nowadays �59–61�. The choice
of UV photons and fairly low intensities means that the
quiver motion of the continuum electron, due to the pondero-
motive potential field, is kept low. This allows us to use
manageable boxes for the present calculations.

A. Alignment dependent one- and two-photon ionization yields

In Fig. 2, we present ionization yields for two different
photon energies at the peak intensity I0=1013 W/cm2 as a
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function of the rotation angle �. The intensity is weak
enough to ensure that in the case of the 20 eV photon the
ionization yield is dominated by single-photon absorption
while in the case of ionization by 10.85 eV photons is domi-
nated by two-photon processes. In both cases the final con-
tinuum states that can be reached do not include any autoion-
izing states of H2. The behavior of these two cases is
different. In the single-photon case, the perpendicular ioniza-
tion yield is larger than the parallel yield by a factor of �2.
The opposite behavior is observed in the case of two-photon
absorption.

Let us now give an explanation of the behavior for the
single-photon absorption. Since the ground state orbital of
the molecular hydrogen is of 1�g type and the field is lin-
early polarized we can have transitions into continuum states
where the azimuthal quantum number changes as �m=0, ±1.
In the parallel orientation we can only have �m=0 thus al-
lowing only � transitions to occur as �g→�u. In the perpen-
dicular orientation only �m= ±1 �� transitions� transitions
are allowed, �g→�u. Both types of transitions may occur for
orientation angles between 0° and 90°. As we show in Ap-
pendix C, we can predict the alignment dependence of the
yield simply by knowing the value of the � and � transition
dipole moments, or equivalently, the ionization yield for per-
pendicular Y� and parallel Y � orientation as

Y��� = Y � cos2 � + Y� sin2 � . �31�

In Fig. 2 we also show the result of the above expression
�opaque circles� and find excellent agreement with the data
calculated from the full time-dependent calculation. In Ref.
�17� Semenov and Cherepkov give a value of the cross sec-
tion for the � transitions ��=0° � of about 1.977 Mb and for
the � transitions ��=90° � 4.904 Mb. Thus our ratio of per-
pendicular to parallel orientation yield Y��=90° � /Y��
=0° ��4.9�10−3 / �2.4�10−3�=2.04 is in quite good agree-

ment with the ratio of the � to � single-photon cross section
at �=20 eV, �1��� /�1����2.48.

Now we turn to the results for the ionization yield by
photons of energy �=10.85 eV corresponding to nonreso-
nant two-photon transition �filled squares�. Though, one can
think along the lines of the analysis presented for the single-
photon ionization, the situation in the two-photon case is
already much more complicated. Two-photon transitions now
have a larger number of paths to reach the final state, and
thus interference effects may play a role. For parallel orien-
tation, we have �m=0 and the path, starting from the ground
state is, �g→�u→�g. In a perpendicular orientation scheme,
we have �m= ±1, thus allowing paths as �g→�u→�g and
�g→�u→
g. For arbitrary orientations we have additional
paths due to combination of � and � transitions that may
lead to final states having �g symmetry in addition to �g and

g. For instance, two-photon transitions to �g final states can
occur as �g→�u→�g or �g→�u→�g. The fact that in the
perpendicular and the parallel orientation do not exist final
states as �g do not allow to us to derive a similar formula for
the two-photon ionization yield as a function of the orienta-
tion angle as the one obtained for the single-photon case �Eq.
�31��. In Ref. �62� Apalategui and Saenz calculated the two-
photon generalized cross section by lowest-order perturba-
tion theory �LOPT� for parallel and perpendicular orienta-
tion: �2

� =8�10−51 W/cm2 and �2
�=4.5�10−51 W/cm2,

respectively. Thus the decrease in ionization yield from par-
allel to perpendicular orientation is in agreement with our
time-dependent results, though the ratio in the case of LOPT
calculations ��� /���1.8� is much lower than our results
Y � /Y��20. Though we are not able to conclude about this
discrepancy, we mention that the value of this ratio was
changed depending on the number of partial waves retained
in the calculation of the initial state. This, possibly, suggests
that a convergent calculation of the effective term in the
Hamiltonian �the electron-electron Coulombic interaction�
should be considered not only in terms of the ground state
energy obtained, but also in terms of the quality of the wave
function. The latter, for instance, in the presence of an exter-
nal field can affect the results through the dipole transition
operator that enters into the calculations.

B. Photoelectron energy spectra

In Fig. 3 we present for parallel orientation ��=0° � the
photoelectron energy spectrum for the ionization of H2 by an
external field given by Eq. �30� with photon energy �
=20.15 eV, peak intensity I0=1013 W/cm2, 36 field cycles,
and the polarization axis along the molecular axis. We have
chosen three different boxes to produce the PES, rb=60,
62.5, and 65 a.u. with no absorbing potential present. After
the end of the pulse, the wave function was propagated for
250 field cycles with a time step of 0.02 a.u. We calculate a
partial-wave decomposed PES following a procedure de-
scribed in detail in �52�. Briefly, we exploit the orthogonal-
ization properties of the spherical harmonics, 
Ylm �Yl�m��
=
ll�
mm�, and write the AC function as C�t�=�lmClm�t� with

Clm�t� = 
f lm�T��f lm�T + t�� ,

with 
·� · � denoting integration only over the radial variable.
The above decomposition allows us to investigate separately
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FIG. 2. �Color online� Ionization yields as a function of the
orientation angle of field polarization vector with the molecular
axis. Data are shown for two photon energies. The data for the �
=10.85 eV case are multiplied by a factor of 20 for visualization
reasons.
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the contribution of each Clm�t� to the total AC function C�t�
and eventually the contribution of each partial PES dPlm /dE
to the total PES. Therefore we obtain the PES by performing
the FT to the partial AC function Clm�t� to obtain Slm�E ,��,
given as

Slm�E,�� =
2

�
��

T

T+�

dtClm�t�h�t�eiEt� . �32�

From the function Slm�E ,�� we determine the discrete
eigenenergies Enl �and therefore the density of states by ap-
proximating it as ��Enl�=2/ �En+1,l−En−1,l��. The total spec-
trum can be obtained if we sum over the various partial PES
shown in Fig. 3. In this figure we present only the dominant
ionization channels p and f . In a parallel orientation only �
transitions can occur; thus m=0. The dominant channel of
the first above-threshold ionization �ATI� peak appears to be
the p�l=1� channel and then the f�l=3� channel. At the high-
est position of the ATI peak �photoelectron energy of about
�5 eV� the ratio of the p channel with the f channel is about
1000 in agreement with the results by Semenov and Cherek-
pov �17� for the same photon energy. Interestingly enough
this behavior of the p and f ionization channel is the opposite
to our findings for the partial PES in the case of the single-
photon ionization of the molecular hydrogen ion �52�.

C. Alignment dependent angular differential ionization
probabilities

The differential cross section is the most complete infor-
mation that can be extracted about the molecular structure
since it contains contributions from the various partial
waves. From Eq. �22� with r0=60 a.u., we determine the
angular distribution for single-photon ��=20 eV� absorp-
tion. In Fig. 4, we show the results for three different geom-
etries �=0° �parallel orientation� �=45° and for �=90°
�perpendicular orientation�. The vertical dashed curve de-

notes the molecular axis. The corresponding ionization yields
are 2.5�10−3��=0° �, 3.5�10−3��=45° �, and 4.9
�10−3��=90° �. The shape in parallel orientation is a sym-
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FIG. 3. �Color online� Partial photoelectron energy spectra for
ionization of H2 with photon energy �=20.15 eV and parallel ori-
entation, �=0°.

FIG. 4. �Color online� Angular distributions of the ejected elec-
tron for three different orientations of the polarization axis of the
field ��=0° ,45° ,90° and �==0°� with respect to the molecular
axis and at a photon energy �=20 eV. For each orientation we also
show the corresponding ionization yield. The dotted line is along
the molecular axis.
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metric p shape with the two lobes directed along the polar-
ization axis. This reflects the fact that � transitions to l=3 �
f-waves� �or higher� partial waves are negligible compared
with � transitions to l=1 �p-waves�, consistent with the par-
tial PES shown in Fig. 3. In the perpendicular geometry only
the � transitions contribute and again the shape is like a p
partial wave. As in the parallel geometry, the reason is that �
transitions to higher partial waves are much smaller in mag-
nitude. Any deviation from this p-like shape would be the
sign of population of higher partial waves �17�. In the case of
�=45°, we also see a p-shape directed along the polarization
axis, since both � and � transitions contribute mainly to the
l=1 partial wave.

In Fig. 5 we show the photoelectron angular distribution
in the case of photon energy �=10.85 eV, corresponding to
two-photon absorption. The corresponding ionization yields
in the three geometries are 5.4�10−3��=0° �, 2.5�10−3��
=45° �, and 2.5�10−4��=90° �. Let us first analyze the situ-
ation in the parallel orientation. The transitions are then only
of � type and the ionization path in terms of the symmetry of
the final state is �g→�u→�g. In contrast to the single-
photon case, there is an appreciable probability for ejection
along the direction perpendicular to the polarization axis.
The shape of the angular distribution is largely independent
of the alignment angle.

VI. CONCLUSIONS

We have presented a time-dependent ab initio approach
for the strong-field ionization of H2 oriented at an arbitrary
angle with respect to the external field in terms of the TDHF
approach and the single-active electron approximation. In the
future this approach suggest a systematic way of studying
more complex diatomic molecular systems such as N2 and
O2. Explicitly, what we have in mind is to perform a Hartree-
Fock calculation of the doubly charged molecular ion. This
will produce an effective potential replacing ZA /riA+ZB /riB
in Eq. �1�. With this new effective potential, we may take
over the formulation of Sec. II and establish a consistent
single-electron model. How well such a procedure works for
the molecular case remains to be seen but the results ob-
tained by such a method in the atomic case are very encour-
aging �63�. We have made an effort to ascertain the reliability
of our technique through comparison with other available
theoretical results. Our chief objective in this paper was the
single- and two-photon ionization from the ground state of
the molecular hydrogen. We have chosen this objective for
three reasons: �a� For testing our approach since interpreta-
tion of the results is easiest in low-order ionization pro-
cesses, �b� due to availability of theoretical results for com-
parison, and �c� due to increasing interest in studies of
interactions between atomic and molecular systems and
strong radiation in the UV region given the emergence of
new high-order harmonics and free electron laser sources.

In the implementation of our technique, it is well defined
how the initial state and the propagated wave function are
obtained. It is also clear how we are able to obtain results for
arbitrary orientation of the EM field polarization vector and
the molecular axis. A number of points have discussed such

FIG. 5. �Color online� Angular distributions of the ejected elec-
tron for three different orientations of the polarization axis of the
field ��=0° ,45° ,90° and �==0°� with respect to the molecular
axis and for a photon energy �=10.85 eV. For each orientation we
also show the corresponding ionization yield. The dotted line is
along the molecular axis.
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as �i� extraction of the ionization yield, �ii� photoelectron
energy spectra, and �iii� photoelectron angular distribution
from the time dependent wave function after the end of the
pulse.

In our opinion, all the above are well justified within the
limits the HF approximation for the ground state and the
single-active-electron approximation. Equally important, we
believe that the present approach is sufficiently general to be
applied to other “two-electron” diatomic systems with more
complex cores. In such systems the HF and SAE approxima-
tions appear to be, probably, the most reliable and simulta-
neously cost effective way of studying their behavior under
strong EM fields.

APPENDIX A: EXPANSION OF THE POTENTIALS
AND PROPAGATION IN THE SPHERICAL

HARMONIC BASIS

In this appendix we give the details of the time propaga-
tion induced by the various operators that we have splitted
the total Hamiltonian into. According to Eqs. �14�–�17� the
subpropagators correspond to the radial kinetic operator, the
centrifugal operator as well as the molecular, direct and the
external EM field operator. The propagation methods used
for the radial kinetic and centrifugal operators �Secs. A 1 and
A 2� are identical to the methods outlined in Ref. �58� and
are included here for completeness.

1. Radial kinetic operator

The radial kinetic operator is independent of angular vari-
ables and acts on the radial wave functions f lm�r , t� individu-
ally. The radial functions are written as a vector flm�t�
= �f lm�r1 , t� , f lm�r2 , t� , ¯ f lm�rnr

, t��T, where we assume that
we know the function on nr equidistant grid points extending
to the radius rb. If we write Ur as a matrix representation and
let F be a unitary transformation that diagonalizes Ur, we
find the action of the radial kinetic operator

Ur · flm�t� = F† · F · Ur · F† · F · flm�t� . �A1�

We recognize F as being the discrete Fourier transform with
matrix representation �F� ji=exp�−ikjri� /�nr, where the dis-
crete momenta are �kj =2��j−1� /rb � j=1, ¯ ,nr�. The diag-

onal form of Ur is then �F ·Ur ·F†� j j =e−i�kj
2/2���/2�. Since the

wave function must be finite at the origin, we see from Eq.
�13� that the radial functions must vanish when r=0. We can
fulfill this boundary condition by replacing the Fourier trans-
formations by sine transformations which also diagonalize
the radial kinetic operator.

2. Centrifugal operator

Propagation of the wave function by the Ul operator is
trivial since it is diagonal in a spherical basis. In each time
step the radial function f lm�r , t� simply acquires a phase

Ulflm�r,t� = e−i�l�l+1�/2r2���/2�f lm�r,t� . �A2�

3. Potential operators

Since we work in spherical harmonics representation it is
convenient to express all potentials in terms of multipoles

V�i��r,t� = �
LML

uLML

�i� �r,t�YLML
�	,�� , �A3�

where the superscript i may stand for either M for static
potential of the nuclei, D for the direct interelectronic poten-
tial, or I for the field interaction.

The potentials are written as matrix representations in the
spherical harmonics basis with the elements

Vlm,l�m�
�i� �r,t� = �

LML

CLML
�lm,l�m��uLML

�i� �r,t� , �A4�

with CLML
�lm , l�m��= 
lm�YLML

�l�m�� being the angular fac-
tor that mixes different spherical harmonics components
through the multipole potentials. The spatial and parity sym-
metry properties of the potentials determine the nonvanish-
ing matrix elements of the angular factor, allowing us to
derive the radial multipole potential for each specific case.

a. Nuclear potentials

Let us now derive the expressions for uLML

�M� �r� for the case
of molecular hydrogen, where the two protons are located on
the z-axis at ±R /2. The charge distribution, and hence the
electrostatic potential, is then azimuthally symmetric,
namely V�r ,	 ,��=V�r ,	 ,�=0� and inversion symmetric
V�r�=V�−r�. The symmetries imply that only multipoles
with ML=0 and L=0,2 , .. can be nonzero. The nonzero mul-
tipoles are easily evaluated as

uL0
�M��r,t� = − 2� 4�

2L + 1

r�
L

r�
L+1 , L even, �A5�

where r�=max�r ,R /2�, r�=min�r ,R /2�.

b. Direct interelectronic potential

By expanding the density of the inactive electron in par-
tial waves �Eq. �13�� and substitute in Eq. �6�, we derive the
multipole radial potentials of the direct potential V�D��r , t�

uLML

�D� �r,t� =
4�

2L + 1
� dr�

r�
L

r�
L+1�LML

�r�,t� ,

�LML
�r,t� = �

ll�m

CLML
�lm,l�m�f lm

� �r,t�f l�m�r,t� , �A6�

with r�=max�r ,r��, r�=min�r ,r��. In the special case when
the inactive electron occupies an orbital with azimuthal
quantum number m and definite parity, the charge density
���r , t��2 is azimuthal and inversion symmetric. Correspond-
ingly, the direct potential only generates multipoles with
ML=0 and L even as in the case for the nuclear potential.
�See Fig. 6.�

Let us now to estimate the computational cost for the
direct potential. Assume that the grid is divided to nr points.
At each time step, a demand of nr integrals, each of them
consisting from an l� l��m�nr evaluations of the radial
orbitals f lm�r , t� and f l�m�r , t�, makes the computational scal-
ing to be of the order of �nr

2. However, in Appendix B we
show how we can reduce the scaling to a linear dependence
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of nr through a recursive scheme. This consists a major gain
which we wish to exploit in subsequent works beyond the
present SAE approximation.

c. Electromagnetic interaction potential

The interaction operator with the EM field in the spherical
basis, and in the dipole approximation for light of arbitrary
polarization �ê� is expressed �in the length gauge� as

VI�r,t� = E�t�ê · r = E�t��4�

3 �
q=−1

1

req
�Y1q�	,�� , �A7�

where eq are the spherical components of the polarization
vector in a Cartesian coordinate system. Thus by consider-
ation of the multipole expansion of the potentials Eq. �A4�
we see that the radial part of the EM field potential is given
by

u1q
�I��r,t� = eq

��4�

3
E�t�r , �A8�

while the mixing angular factor is C1q�lm ; l�m��
= 
lm�Y1q�l�m��. In the present case we use linearly polarized
light, thus q=0 �52�.

The EM interaction potential of a molecule in a linearly
polarized light along the molecular axis couples only states
with equal magnetic quantum number. The general scheme
of performing the propagation of the radial wave functions
f lm subject to the potential VI�r , t� is as follows. The matrix
representation of VI�r , t� is nondiagonal in the spherical basis

lm�VI�r , t��l�m��= �4� /3�1/2E�t�r
mm�
lm�Y10�l�m�. In order
to take its evolution action �exp�−iVI�r , t����, we diagonalize
the angular matrix defined by the elements �C10�lm,l�m

= 
lm�Y10�l�m� by the orthogonal transformation C10

=CI ·Cd ·CI
†. We arrange the f lm wave functions by the vector

f for each fixed value of r such that the matrix representation
of VI is block diagonal in terms of the azimuthal quantum
number m. Then we propagate the wave function as

U�t,�� · f�r,t� = CI · e−iVd�r,t�� · CI
† · f�r,t� . �A9�

In the above expression Vd�r , t�= �4� /3�1/2E�t�rCd is diago-
nal and exponentiation is performed with no cost by simply
taking the exponents of the diagonal elements. The key point
here is that though the interaction potential is time dependent
the diagonalization and the calculation of the matrices CI and
Cd is performed only once. At each time step a block diag-
onal multiplication of maximum dimension �lmax+1� is per-
formed in order to obtain the propagated wave function.

d. Computational considerations

In the factorization scheme �Eq. �14��, both the radial ki-
netic and centrifugal operators act independently on each of
the partial waves, represented by the radial functions
f lm�r , t�. In other words, the evolution of each f lm�r , t� is
completely independent of the evolutions all others radial
functions. This allows for a very efficient propagation of the
wave function. This is no longer true when we have to propa-
gate the wave function by the potential V�r , t�. The time
evolution of the f lm�r , t� is now coupled with the time evo-
lution of the other partial waves f l�m��r , t� since generally
V�r , t� has a nondiagonal representation on the spherical har-
monic basis. The general scheme of performing the propaga-
tion of the radial wave functions f lm subject to the potential
V�r , t� is presented in detail in Ref. �31�.

APPENDIX B: CALCULATION OF THE RADIAL SLATER
INTEGRAL

Our intention is to calculate the radial multipole potential
as it given in Eq. �A6�. These types of integrals are known as
Slater integrals and occur very often in atomic and molecular
structure calculations. If we define, p�k��r�=r2rk�k�r , t� and
q�k��r�=r2�k�r , t� /rk+1 the Slater expression for the direct po-
tential is written as

Y�k��r� =
1

rk+1 P�k��r� + rkQ�k��r�, Yk�0� = 0. �B1�

where we have defined P�k��r�=	0
rdr�p�k��r�� and Q�k��r�

=	r
�dr�q�k��r��. Each of the previous integrals in a numerical

integration scheme is approximated as Pi
�k�=� j=1wjpj

�k� and
Qi

�k�=� j=1wjqj
�k�. The index �i� stands for the boundary point

ri=r in the integrals P�k��r�, Q�k��r�. Furthermore, we have
suppressed the time dependence since the present procedure
is assumed to repeated at each time step. Thus time is con-
stant during the evaluation of the Slater integrals Y�k��r�. The
recursive scheme is based on the fact that the value of the
two integrals Pi

�k� and Qi
�k� are not independent each other,

but related through the boundary point r. Given that for each
numerical quadrature we may write

Pi+1
�k� = Pi

�k� + wi+1pi+1
�k� , �B2�

Qi+1
�k� = Qi

�k� − wiqi
�k�. �B3�

From the above equations it is evident that we can calculate
the Slater integral at position ri+1 as

0

0
m=0

m=0

m=1

....
1

m=1

lm

m= lm

+ 1

lm
2

+ 1

lm
2 lm

2 lm
2

lm

l = 1,3,..

l = 0, 2,..

l=2,4,..

l = 1,3,..

FIG. 6. Matrix representation of the nuclear and direct interelec-
tronic potential for a homonuclear diatomic molecule. The maxi-
mum angular momentum lm is assumed to be even. For better visu-
alization we have omitted the blocks corresponding the negative
magnetic quantum numbers.
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Yi+1
�k� =

1

ri+1
k+1 �Pi

�k� + wi+1pi+1
�k� � + ri+1

k �Qi
�k� − wiqi

�k�� , �B4�

if we know the integrals Pi
�k�, Qi

�k� at the position ri. There-
fore, by starting from i=1, where r1=0 we can recursively
calculate the nr integrals by only evaluating the integral for
Q1

�k�=Q�k��0�=	0
�dr�q�k��r�� and P1

�k�= P�k��0�=0. The next
value for i=2 is calculated from the recursive relation Eq.
�B4� by using the values of the integrals P1

�k�, Q1
�k� and p2

�k�

and q1
�k�. This way we evaluate the next nq−2 integrals by

having, in practice, evaluated only one integral, namely the
Q1

�k� integral.

APPENDIX C: ALIGNMENT DEPENDENT SINGLE-
PHOTON IONIZATION

In this appendix we calculate the alignment dependent
ionization yield for a single-photon transition from an initial
�g state. By assuming that the ionization yield, for a fixed
orientation scheme at angle �, is proportional to the differ-
ential cross section we next consider the single photon dif-
ferential cross section which in the length gauge is written as

d�

d�k
= 4�2���D�k��2, �C1�

where D�k�= 
�k
�−��r��ê ·r��0�r�� is the matrix element be-

tween the initial �0 and the final state �k
�−� and � is the fine

structure constant. The final state �k
�−� is an ingoing-wave,

energy normalized, continuum state of asymptotic momen-
tum k, which in a partial wave expansion reads

�k
�−��r� = �

lm

�k,lm�r�Ylm
� �k̂� , �C2�

where �k,lm are continuum channel wave functions.
It is convenient to evaluate the matrix element in the mo-

lecular frame. For an alignment angle � between the polar-
ization axis and the molecular axis, the polarization vector is
given in the molecular frame as ê=sin �x̂+cos �ẑ. By stan-
dard translation between Cartesian and spherical compo-
nents, we obtain

ê · r = r�4�

3 cos �Y10�r̂� +
sin �

�2
�− Y11�r̂� + Y1−1�r̂��� .

If we assume that the initial state is a �g state with angular
momentum projection m0=0, we see from the above expan-
sion that only m=0, ±1 components of the partial wave ex-

pansion �C2� can contribute to the matrix element. The ma-
trix element in Eq. �C1� can therefore be written as a sum of
three terms

D�k� = cos �d��k� +
sin �

�2
�− d�+�k� + d�−�k�� ,

where

d��k� =�4�

3 �
l


�k,l0�r��rY10�r̂���0�r��Yl0�k̂� ,

d�±�k� =�4�

3 �
l


�k,l,±1�r��rY1,±1�r̂���0�r��Yl,±1�k̂� .

The total cross section, integrated over all directions of the
outgoing electron, is now obtained as a function of �

���� = 4�2���cos2 �� d�k�d��k��2

+
sin2 �

2
� d�k„�d�+�k��2 + �d�−�k��2…� . �C3�

Note that cross terms of the type d�
��k�d��k� vanish when we

integrate over �k due to orthogonality of the spherical har-
monics for different azimuthal numbers. For �=0° and �
=90° we find the cross sections for the parallel and perpen-
dicular geometries as

�� = 4�2��� d�k�d��k��2,

�� = 4�2��
1

2
� d�k„�d�+�k��2 + �d�−�k��2… ,

respectively. We finally insert the expressions above in Eq.
�C3� and obtain

���� = cos2 ��� + sin2 ���. �C4�

According the LOPT the single-photon ionization rate at
time t is related with the total cross section as W�� , t�
=����I�t� /�, with I�t�=E2�t� the intensity profile of the EM
field and � the photon frequency. Thus the ionization yield is
obtained by integration of W�t� over the pulse duration to
obtain Y���=cos2 �Y � +sin2 �Y� which is equivalent to Eq.
�31�. In the above Y � =��I0�1 /� and Y � =��I0�1 /�, with �1
=	0

Tdt f2�t� being the effective interaction time and f�t� the
pulse envelope �Eq. �30��.
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