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We investigate how gas phase R-matrix calculations for electron collisions with the water molecule can be
efficiently used in a condensed environment. The electron band structure of cubic ice being fairly well studied,
we try to reproduce it using a generalization of the Korringa-Kohn-Rostoker band calculation method. We find
two cutoffs have to be applied to the R-matrix elastic scattering results in condensed matter: one on the range
of the molecular dipole and another in the angular momentum components of the scattering matrix. Their
origins and physical meaning are discussed.
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I. INTRODUCTION

Understanding the interaction of low energy electrons
�LEEs� �E�30 eV� in condensed matter is a subject of fun-
damental importance that finds applications in such diverse
fields as radiation chemistry �1,2� and biology �3�, beam- and
photon-induced surface chemistry �4–8�, space planetology
�9�, and dielectric aging �10�. These applications often re-
quire that the cross sections �CSs� involved in particular con-
densed phase processes be known in order to evaluate and
predict the effects of low-energy electron interactions. Such
CSs have to be obtained experimentally for specific condi-
tions that vary according to the nature of the condensed sys-
tem, its state of aggregation and the type of interfaces be-
tween different media. To avoid performing an experiment
for each particular case, it would be highly desirable to use a
theoretical framework that would allow one to generate con-
densed phase CSs or transform those obtained in the gas-
phase to condensed phase values by the inclusion of suitable
parameters. Unfortunately, these types of formulation, which
should include multiple electron scattering outside the target
molecule, are not presently available. Nevertheless, attempts
have been made to achieve this goal.

Lekner �11� first showed that, within the Born approxima-
tion, condensed-phase electron scattering CS could be de-
rived from the product of the gas-phase CS and the structure
factor of the solid. Much later, Fabrikant et al. �12–15�
evaluated dissociative electron attachment CS for halo- and
fluorohalo-carbons in the bulk of rare gas solids from
R-matrix calculations in which solid Kr was represented by
including the polarization energy and the electron’s effective
mass, but not the full band structure �e.g., the K-dispersion
relation�. Comparison between experimental and theoretical
CS allowed them to analyze the gas-phase parameters that
must be modified to generate condensed-phase CS from gas-
phase data.

The R-matrix is a powerful ab initio method for calculat-

ing electron-molecule scattering information �16,17� in the
gas phase. Its use in a condensed matter context, however, is
far from routine. In addition to the works on dissociative
electron attachment �12–15� mentioned previously, there
have been studies of inelastic scattering �18,19� from mol-
ecules adsorbed on surfaces or in the bulk of rare gas solids
at low energy. These have used a continuum treatment of the
substrate or bulk. More recently, a microscopic cluster treat-
ment of inelastic scattering by a molecule in a host medium
has been carried out �20�. This was done at the expense of
using a large angular momentum basis l�30 for the spheri-
cal harmonics describing the cluster. It would be interesting
to have a more computationally economical, yet micro-
scopic, approach in the condensed phase built on multiple
scattering between independent units, where each of these
are described by R-matrix data. This would be very useful,
for instance, in Monte Carlo electron transport calculations at
low energy �21�.

In the present article, we propose a framework based on
the R-matrix theory to describe LEE scattering from a mol-
ecule embedded in a solid. We use the H2O molecule and its
cubic ice phase as a model system. On the one hand, water is
an important biological liquid �22� for which scattering data
is crucial. On the other hand, the electron band structure of
the cubic phase of ice has been extensively studied �23–25�.
Although we shall be doing a band structure calculation of
ice using the Korringa-Kohn-Rostoker �KKR� method, our
objective is not to do yet another computation of the bands.
Rather, our aim is to provide a calibration reference which
will guide us in the choice of constraints to impose on the
gas phase R-matrix elastic scattering results for the study of
scattering from ice.

We shall first describe the essentials of the R-matrix
theory. This will be followed by a presentation of the KKR
method with an effort to link it to its multiple scattering
equivalent approach. We shall then present the results of our
numerical calculations and extract guidelines in the use of
the R-matrix within a condensed environment.

II. R-MATRIX

A brief description of the R-matrix method as applied
within the fixed-nuclei approximation is as follows. The
method is based on splitting coordinate space into two re-
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gions separated by a sphere of radius a, which we shall
henceforth call the R sphere, centered on the center of mass
of the molecule. The dominant electron-molecule interac-
tions are different in these two regions and can therefore be
treated differently. Inside the R sphere the incident electron
lies within the molecular electron cloud. Thus, both the ex-
change and electron-electron correlation are significant and
must be taken into account. The wave functions for the de-
scription of the N-electron target + scattering electron system
are expanded in the following way:

�k
N+1 = A�

ij

aijk�i�x1, . . . ,xN�uij�xN+1�

+ �
i

bik�i�x1, . . . ,xN+1� , �1�

where A is the antisymmetrization operator, uij�xi� are con-
tinuum orbitals describing the scattering electron and xi are
the spatial and spin coordinates of electron i; �i are target
wave functions and �i are known as L2 functions. These �i
are multicenter quadratically integrable functions constructed
from the target occupied and virtual molecular orbitals
�MOs� and are used to represent short range correlation and
polarization effects.

The target wave functions are normally obtained using the
configuration interaction �CI� method. The configurations in-
cluded in the expansion are generated as products of MOs.
To ensure a good balance between the target and N+1 de-
scription, a complete active space configuration interaction
�CASCI� model for the target description is chosen. In it all
excitations are performed among a set of orbitals, the active
space, that normally span the valence space of the target. In
the polyatomic R-matrix suite �26�, both the molecular and
the continuum orbitals uij�xi� are expanded in terms of
Gaussian-type orbitals �GTOs�. The basis functions for the
MOs, centered on each nuclei, are normally adapted from
standard quantum chemistry basis sets. The “continuum”
GTOs are centered at the center of mass of the system and
generated using the program GTOBAS �27�.

In the outer region, exchange and correlation are negli-
gible and the electron-target interaction is described in terms
of a long-range multipolar expansion. To obtain the wave
functions describing the system, a set of coupled single-
center differential equations are solved by propagating the
R-matrix to a region where the electron-molecule interaction
can be considered negligible �17�. In the limit r→�, the
differential equations have j different, linearly independent
asymptotic solutions for each energetically open channel i
�17�:

Fij�r� � ki
−1/2�sin �i	ij + cos �iKij� , �2�

where �i=kir− 1
2 li
, ki expresses the difference between the

total energy of the system and the eigenenergy of the corre-
sponding target state and li are the channel angular momenta.
The K matrix defined by Kij contains all the information
needed to derive the scattering observables such as the elas-
tic cross section.

For an accurate description of the water molecule we have
used the UK polyatomic R-matrix code �26� and followed the
work by Gorfinkiel et al. �28�. However, in this work, only
the ground state has been included in the close-coupling ex-
pansion. For the target description we used the double-zeta
plus polarization �DZP� Gaussian basis set for O �29� and the
triple-zeta �TZ� basis for H �30�. In contrast to Ref. �28�, no
diffuse functions were added: �1� in order to keep the size of
the R sphere small for compatibility with the muffin-tin
theory and �2� we limited our calculation to the ground state;
the diffuse functions were needed in Ref. �28� mainly to
improve the description of the excited states. The same pro-
cedure for generating the pseudonatural orbitals �NOs� and
the same CASCI model as in Ref. �28� were used. The re-
sulting ground state energy is −76.108 Hartree and the dipole
moment, 0.7687 a.u. The latter is slightly higher with our
compact basis set �although still only 5% higher than the
experimental value� but the ground-state energy is very simi-
lar to the one obtained in Ref. �28�; both are in good agree-
ment with other published data.

The radius of the R-sphere must be chosen in such a way
that all the electronic density of the state included in the
calculation is negligible outside it. Using a compact basis set
allowed us to test smaller R-matrix radii than a=10 a.u, the
one used in Ref. �28�. The final calculations were carried out
with a radius of a=6 a.u. Special care was taken to verify
that the sphere contained all the electronic density. The par-
tial wave expansion was initially limited to l�4 as in Ref.
�28�. The elastic cross section calculated with our model and
that of Ref. �28� agreed very well. For the present study, we
calculate the required K matrix by removing the dipole con-
tribution outside the R-sphere.

III. KKR

The R-matrix, which confines the detailed physics de-
scription within its R sphere, is in principle, well suited to a
multiple scattering approach of the muffin-tin-type used in
solid state theory �31� and recently proposed for macromol-
ecules �32–34�. In the KKR, the scatterers sit in the muffin
cavities and bathe in a constant potential energy V0 also fill-
ing the space between muffins. V0 is of order of the polar-
ization energy seen by an electron between the muffins. The
KKR method is well suited to a band theoretical calculation
�35� of centrosymmetric molecules. As Segall and Ham �35�
mention in their Sec. IV, the method might be expected to
behave poorly in more complex situations such as those with
two atoms per unit cell as in the diamond structure. Calcu-
lations in such cases, however, turn out to be quite good.
That is the reason why we initially believed the KKR might
prove appropriate even for molecules with a dipole, such as
H2O. Let us now review the theory.

A. One scatterer per unit cell

1. Simple centrosymmetric atoms

The Bloch eigenmodes for an infinite crystal are deter-
mined by the nontrivial solutions of a set of coupled linear
equations for the angular momentum amplitudes at the sur-
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face of the muffin tins. Consequently, the determinant of the
coefficient matrix is zero for those solutions. Bloch’s theo-
rem imposes translational symmetry throughout the crystal.
This zero determinant search, for molecules described by
phase shifts, is expressed as �31�

��̄LL� + �	LL�cot�	l�� = 0, �3�

where L= �l ,m�, �=�E, E is the kinetic energy of the elec-
tron �here in Ryd� relative to V0, 	l is the phase shift,

�̄LL� = 4
il−l��
L1

i−l1DL1
CL1,L,L�, �4�

CL1,L,L�=	d
YL
*�
�YL��
�YL1

�
�, and YL is a spherical har-
monic. The quantities DL1

�k� ,E� depend on the crystal struc-
ture as well as the wave vector k� and the energy E of the
electron. Their expression is

DL1
= DL1

�1� + DL1

�2� + D0
�3�	L10 �5�

with

DL1

�1� =
4



m

il1

�l1�
p

kp
l1YL1

* �k̂p�

�2 − kp
2 exp���2 − kp

2�/�� , �6�

DL1

�2� = − 
−1/22l1+1

�l1 �
n�0

eik�·A� n�A� n�l1YL1

* �Ân�

��/2

�

d��2l1

�exp�− �2�A� n�2 +
�2

4�2� , �7�

D0
�3� = −

��

2

�
s=0

�
��2/��s

s ! �2s − 1�
, �8�

where � is a convergence factor for the sums over the lattice

vectors �A� n� and the reciprocal lattice �K� p�, k�p=K� p+k�, k� is
the Bloch wave vector, and 
m is the volume of the unit cell.
We have used the value �=8
 /al

2, where al is the fcc lattice
parameter of cubic ice. This value of � is used in similar
sums appearing in the theory of low-energy electron diffrac-
tion �LEED� �38�. The value of DL1

is independent of the
exact value of �.

2. Link to multiple scattering theory

The formalism developed by Caron and Sanche �33� for
multiple scattering, proposes the self-consistent relation

ilBL
�n� = �

L2L2�
�

n��n

XLL2�
nn� il2BL2

�n���SL2�L2

�n�� − 	L2L2�
�/2i �9�

for the incident amplitude BL
�n� on each scatterer n �no exter-

nal wave, only internal Bloch waves� where XLL2�
nn� is a kernel

describing the multiple scattering part between n� and n
through a sum over all angular momenta L1 involving the
CL1,L,L2�

coefficients, spherical harmonics, and spherical Han-

kel functions of the first kind hL1

�1���Rnn��; Rnn� is the distance
between the two scatterers n and n�. For a crystal with a

single centrosymmetric scatterer per unit cell,

�S
L�L
�n��−	LL�� /2i=ei	lsin�	l�	LL�, and putting ilBL

�n�= B̃L
�n�

= B̃Leik�·R� n where R� n defines the position of the scatterer n

�each atom sees an amplitude BLeik�·R� n within the Bloch
wave�, one gets

B̃L = �
L�

�
n�0

XLL�
0n e−ik�·R� 0nei	l�sin�	l��B̃L� �10�

which becomes in matrix form

�I − X��B̃ = 0 �11�

with

XLL� = �
n�0

XLL�
0n e−ik�·R� 0n and �LL� = ei	l�sin�	l��	LL�.

�12�

The nontrivial solution to Eq. �11� implies �I−X� � =0 or
��−1−X�=0 in which ��−1�LL�= �e−i	l / sin�	l��	LL�
= �cot�	l�− i�	LL�. Writing CLL�=cot�	l�	LL�, one obtains
�C− iI−X � =0 which, multiplied by �, yields

��C + �̄� = 0, �13�

where

�̄ = − ��iI + X� . �14�

Equation �13� is nothing but Eq. �3�. We have thus found the
connection between the multiple scattering theory and the
KKR method.

With noncentro symmetric scatterers, the scattering ma-
trix is no longer diagonal. Defining the T matrix by TLL�
= �SLL�−	LL��, one finds

B̃L =
1

2i
�
L�

�
L1

XLL1
TL1L�B̃L� �15�

which, in matrix notation, can be written as

�I −
1

2i
XT�B̃ = 0. �16�

Following the steps leading to Eq. �14�, we finally get

�i��I + 2T−1� + �̄� = 0. �17�

This is the generalization of Eq. �3� for arbitrary scatterers.
Note that i�I+2T−1� is the inverse of the K matrix.

B. Generalization to many scatterers per unit cell

Segall �36� has generalized the KKR to complex crystals
with more than one molecule per unit cell. The idea is to
introduce a subcell index j for each scatterer forming the

basis of the unit cell such that R� n→R� n,j =R� n+�� j �here �� j
locates the jth molecule within the unit cell�,
TLL�→TLL�

j 	 j j�, KLL�→KLL�
j 	 j j�, B̃L

�n�→ B̃L
�n,j�, XLL�

nn� →XLL�
nj,n�j�,

XLL�→XLL�
j j� , �̄LL�→ �̄LL�

j j� . The Bloch functions satisfy

B̃L
�n,j�= B̃L

j eik�·R� n and

ADAPTING GAS-PHASE ELECTRON SCATTERING R … PHYSICAL REVIEW A 76, 032716 �2007�

032716-3



�i�K−1 + �̄� = 0. �18�

The difference with Eq. �17� resides in the dependence on
the index j of the different parameters. One has

�̄LL�
j j� = 4
il−l��

L1

i−l1DL1

j j�CL1,L,L�, �19�

where DL1

j j =DL1
as before, whereas

DL1

j j� = D̃L1

j j��1� + D̃L1

j j��2�, j � j�, �20�

with

D̃L1

j j��1� =
4



m

il1

�l1�
p

kp
l1eiK� p·��� j−�� j��YL1

* �k̂p�

�2 − kp
2 exp���2 − kp

2�/�� ,

�21�

D̃L1

j j��2� = − 
−1/22l1+1

�l1 �
n

eik�·A� j,j�,n�A� j,j�,n�l1YL1

* �Âj,j�,n�

� 

��/2

�

d��2l1exp�− �2�A� j,j�,n�2 +
�2

4�2� , �22�

and A� j,j�,n=A� n− ��� j −�� j��.

IV. RESULTS

A. Cutoff in dipole range

When applying the method described above, one has to be
careful with molecules, such as H2O, which have a dipole
moment. Due to its very long range, the dipole leads to very
large and even divergent scattering cross sections at low en-
ergy. In the philosophy of a muffin-tin approach, all interac-
tions are of finite range. A cutoff in the range of action of the
dipole must then be introduced. One might think that it
should be cutoff at the radius of the muffins, 2.6 a.u. for the
ice structure we are studying �23�, as one would normally do
with the polarization energy of a centrosymmetric atom.
But this is far from obvious since the dipole energy

Edip=−2d� · r̂ /r2 Ry is angle dependent and there can be no
matching of the potential energy of the scatterer with the flat
V0 between muffins as one would expect of traditional KKR
calculations. Removing the dipole field for r�ac, where ac is
a cutoff radius, is done at the cost of introducing a disconti-

nuity −2d� · r̂ /ac
2 at the muffin edge. As ac decreases, more

dipole is removed but the discontinuity increases. There is
hopefully a trade off at some intermediate value of ac at
which the scattering reasonably represents that of the core of
the water molecule while minimizing the mismatch. Admit-
tedly, this is far from obvious. What we are then proposing is
to find the best value of ac at which a multiple scattering
approach for ice will yield a decent band structure. This pre-
serves the spirit of the KKR which plays a technical support
role in the summation of the multiple scattering information

contained in X and thus �̄ to infinity.
We can illustrate these ideas by showing the total elastic

cross section of the H2O molecule for several different cut

off values for the dipole interaction. All the cross sections
were calculated with a radius a=6 a.u.. Then a propagation,
using the dipole field in the procedure outlined in Eqs. �1�
and �2� of Ref. �37�, to five different ac values ranging from
2.6 a.u., that is the half distance between nearest water mol-
ecules, to 10 a.u. was performed. This propagation has the
approximate effect of adding or subtracting the dipole inter-
action in the region between a and ac. Figure 1 shows these
cross sections. For ac=10, and even for ac=8, the cross sec-
tions still display at low energies the behavior that is ex-
pected for a dipole driven collision. Use of these radii would
therefore imply the inclusion of a significant amount of the
dipole interaction, against the premises of the method which
does away with the overlapping electron scattering potentials
in the condensed phase. The cross sections for ac=2.6 and 4,
on the other hand, are appreciably smaller than those of the
other values at the higher energies. This is somewhat unsat-
isfying in the context of the KKR or the sibling theory of
LEED �38� since the propagation to smaller radii should af-
fect mostly the low-energy part �39�. This would indicate
that these may similarly not be the best ac values to employ.
We shall see that we get correct energy-band behavior in this
whole range of ac values: it is therefore not possible to ex-
clude forthright any values in this range. Only through a
close comparison with experimental data can a selection be
made. The analysis we have just done can, after the fact,
shed some light on the reason why the midrange values are
privileged. Its use as a predictive tool, at least in as much as
allowing us to restrict the range of ac values to be tested,
cannot be ascertained from the treatment of a single system.

B. KKR calculations

The ferroelectric cubic phase of ice has a face-centered
cubic crystal structure with two H2O molecules per unit cell.

It is well described by Parravicini and Resca �23�. The DL1

j j�
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FIG. 1. Total elastic cross section for electron-gas phase H2O
collisions for different values of the cutoff radius ac.
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coefficients are calculated using the structural information of
ice given in Parravicini and Resca’s paper. Care is taken to
properly rotate the scattering matrix, and thus KjLL�

−1 , from the
R-matrix coordinates to the corresponding position j in the
unit cell. The H2O molecules have their dipoles in the ẑ
direction in our R-matrix calculation which is the common
direction chosen in the ferroelectric phase. The two mol-
ecules in the unit cell should then be rotated by an angle
�= ±
 /4 around this direction. This is done by using the
rotation matrix

Wl,m,l,m� = e−i�m	mm� �23�

�see Ref. �40�� on the K matrix

K̃ = WKW−1. �24�

Note that the tetrahedral symmetry around each molecule of
the cubic ice form studied is not strictly respected by the
hydrogen in this procedure, but nearly so.

Technically, we have looked for the significant zeros of
the determinant �18� at any of 20 given wave numbers k in
the crystal �111� direction within the first Brillouin zone. We
do an energy sweep using 1000 energy values between 0 and
15 eV. We look for sign changes in the determinant and
make sure the minimal eigenvalue of the coefficient matrix
goes smoothly through zero. We also take care to eliminate

poles �see the structure of DL
�1� and D̃L

jj��1��.
Figure 2 shows the Bloch eigenmode energies using the

full R-matrix angular momentum basis l�4 and a cutoff
radius of ac=6 a.u. This has little in common with what one
expects of a band structure for energies less than, say,
0.5 Ry. But the upper part is consistent with the work of
Ching et al. �25�, their Fig. 1�a�, 12–16 eV range in the �L
direction. When we do a similar calculation, this time re-
stricting the angular momenta to l�2, we discover a very
credible band structure as seen in Fig. 3. It compares ex-
tremely well with the Ching et al. conduction band in their
6–12 eV range. But the upper energy bands are not as well
described as in the previous situation; the negative curvature

of the uppermost band with band crossing around k=0.35 is
incorrect. We have repeated the calculations with this re-
duced angular momentum basis and ac ranging from 2.6 a.u.
to 10 a.u. The lower energy bands are always well described.
The effective mass m* and the energy ECB at the bottom of
the conduction band, where the energy is given by
k2 /m*+ECB Ry, change appreciably as a function of ac. Fig-
ure 4 shows the results. At larger ac, spurious very-low en-
ergy modes appear because of the too large dipole contribu-
tion. The estimates for the effective mass vary between 0.8
and 1.0 �41�. The more reliable one �42�, which fits the ex-
perimental scattering measurements in amorphous ice, gives
m*=0.8. This is very satisfying, well within our range of
values and very close to the value ac=6 a.u. which was se-
lected as being the one yielding the most plausible cross
section. One could thus select ac=6.5 a.u. as yielding the
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FIG. 2. Bloch eigenmode energy as a function of the wave num-
ber in the �111� crystal direction for R-matrix data from a partial
wave expansion up to l�4 using ac=6 a.u.
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ing the partial wave expansion to l�2 and using ac=6 a.u.
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best fit to experimental data. We can conclude that the dipole
cutoff distance does not seem to be critical as there is a very
wide range of values for which there is an acceptable band
structure. However a calibration based on the effective mass
enables a proper selection. It is quite interesting to note that
our band structure is highly similar �width of the conduction
band, comblike splitting at the higher energy� to the calcula-
tion of Ching et al. This is probably because they have used
a modern first-principles self-consistent orthogonalized lin-
ear combinations of atomic orbitals method in the local den-
sity approximation. Finally, we have estimated the average
polarization energy

Epol 
 

unit cell

� muffins

dV�
n

�− �/�r� − R� n�4��

unit cell

�muffins

dV

�25�

an electron feels between the muffin tins using the experi-
mental value for the polarizability � of 10.13 �a.u.�3 �43�.
We find Epol
−0.25 Ry. Adding this reference energy to
ECB
0.19 Ry at ac=6.5 a.u. �the dipolar energy averages
out to zero�, we estimate the bottom of the conduction band
to be at roughly −0.06 Ry relative to vacuum. This is in very
good agreement with the estimate of −0.75 eV of Ref. �41�.
It is instructive to compare these findings with those at
ac=2.6. Not only do we find that the upper band structure
conserves the look of the upper part of Fig. 3 even for
l�4, but the bottom of the conduction band would also be at
−0.15 Ry, a much too negative value. This confirms our ini-
tial intuition derived from the elastic cross section.

V. DISCUSSION

Now, how can one understand the need to restrict the
low-energy calculations to l�2? This has to do with the
angular momentum energy barrier E�l ,r�= l�l+1� /r2 Ry that
an electron sees when approaching a molecule with an angu-
lar momentum l. Only electrons with kinetic energy Ee larger
that E�l ,r� will get closer than r to the scatterer. Thus, any
electron of energy Ee undergoing multiple scattering between
two molecules a distance dm apart will only be able to do so
for those values of l such that E�l ,dm��Ee. This can also be
examined from a semiclassical point of view. For an electron
with angular momentum L�kr, one can write L2
 l�l+1�
=k2r2. It is only for r�dm that two molecules can exchange
information through the electron since it is otherwise outside
their reach. This means that the relevant angular momenta
are those for which l�l+1� /k2= l�l+1� /Ee�dm

2 . This is con-
sistent with what we see in our results.

Let us put some numbers on this condition. For cubic ice,
dm
5.2 a.u. and E�3,dm�=0.44 Ry. This means that in the
energy range Ee�0.44 Ry, one can only have l�2. But
then, E�5,dm�=1.11, which explains why the band structure
for l�4 should be better at the upper energies.

We have just mentioned physical arguments for the angu-
lar momentum cutoff. But what is the mathematical reason?
Let us go back to Eq. �18� or its multiple scattering equiva-

lent �16� which is easier to analyze. It turns out that �̄ and X

become quite divergent for large values of angular momenta

at low energy. As mentioned previously, XLL�
j j� involves a sum

over L1 of the spherical Hankel function of the first kind
hL1

�1���Rnn��. This Hankel function diverges as ��Rnn��
−�l1+1�

for small values of its argument ��Rnn��. The singular behav-
ior is obviously dominated by the nearest-neighbor distance
dm. For l=4, l1 can be as large as 2l=8 �see Eq. �4��. So even
though one expects the l=4 components of the K and T
matrices to get smaller as the energy decreases, it is the
product XT in Eq. �16� which is ill behaved because of the
predominance of the Hankel function.

We should mention that we are currently applying these
multiple collision ideas on a H2O dimer �44�. We are able to
produce a cross section that is within 5% of the one calcu-
lated with a full R-matrix treatment for energies larger than
2.5 eV. This covers the range of energies encountered in our
present band calculations.

In conclusion, we have found that the R-matrix gas phase
elastic scattering data can be used in cubic ice to reasonably
reproduce its electronic band structure. A proper value of the
cutoff radius must be determined which leads to a physically
significant K matrix that respects the spirit of the KKR. Two
cutoffs have to be applied. The first one is on the range of the
molecular dipole. The second cutoff on angular momentum
depends on both the energy and the intermolecular distance.
Strictly speaking, only values l� lo should be retained such
that E�lo ,dm��Ee�E�lo+1,dm� although our dimer calcula-
tions indicate that there is some flexibility in its application.
The effective reach of the molecules passes through this an-
gular momentum cutoff in addition to the R-sphere radius.
These findings should also apply in condensed phases with
other molecular constituents. Ideally, a calibration on a crys-
talline phase should be attempted provided reliable experi-
mental or theoretical values are available for the electron
states. With the trimmed T-matrix, one could make compu-
tationally efficient large cluster calculations which include
multiple scattering and extract useful information on cross
sections, in a fashion similar to the approach in Ref. �20�, for
instance.
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