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Quasicontinuum relativistic many-body perturbation theory photoionization cross sections
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Calculations of photoionization cross sections for alkali-metal atoms are carried out in the framework of
relativistic many-body perturbation theory (RMBPT) using quasicontinuum B-spline orbitals. All third-order
terms are included, in contrast to previous calculations based on either random-phase approximation (RPA),
Brueckner orbitals, or their combination. The particular advantage of quasicontinuum states is that high-order
MBPT codes do not require modification for applications to the photoionization problem. The agreement with
experiment is improved compared to RPA and Dirac-Hartree-Fock approximations. The results also exhibit
close form invariance. The presented formalism can be extended to other photoionizing transitions.
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I. INTRODUCTION

Photoionization cross sections are important in many ap-
plications such as astrophysics, plasma physics, atmospheric
science, and lighting industry. Despite a long history of their
measurements and calculations, current availability of high-
quality synchrotron radiation sources in vacuum-ultraviolet
and x-ray spectra, and impressive progress in precision of
atomic theory for bound state properties, the photoionization
cross sections for most atoms remain mostly uncertain. It is
particularly intriguing in the case of alkali-metal (AM) at-
oms, which can be regarded among the simplest atoms for
theory. For example, otherwise highly accurate relativistic
many-body perturbation theory (RMBPT) methods when ap-
plied to bound-bound transition reach much lower accuracy
for alkali-metal atoms in calculations of photoionization
cross sections, which are essentially proportional to squares
of dipole matrix elements (MEs) between bound and con-
tinuum states. So why are the bound-bound MEs much more
accurate than the bound continuum?

From the analysis of experimental techniques employed
for measurements of photoionization cross sections of AM
atoms, it appears that the accuracy of experimental data was
limited by uncertainty in the density calibration and system-
atic effects due to AM molecules. The AM molecules were
particularly problematic since they were always present
along with AM atoms and their cross sections were not
known well. Marr and Creek [1] observed molecular absorp-
tion in the vicinity of the atomic ionization threshold and
used different temperature measurement to exclude the ef-
fects of molecules. Photoionization cross sections of Rb,
Rb,, Cs, and Cs, were measured in Ref. [2] and were used
along with other available data, including absolute cross sec-
tion of Ref. [3] in which the density was measured directly
with a hot-wire ionizer, to reanalyze Rb and Cs photoioniza-
tion cross sections. It seems that the best experimental value
for Cs at the threshold energy is 0.1 Mb, which differs 2
times from the older measurement of Marr and Creek [1],
0.2 Mb, with the uncertainty in density being responsible for
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such large disagreement. In the case of Rb, normalization in
Ref. [2] has been done on semiempirical values of Ref. [4],
which can introduce systematic errors, despite the ability of
theory to follow relative experimental cross sections. Signifi-
cant uncertainty is also present in other AM atoms.

Accuracy of theory, on the other hand, strongly depends
on the type of the atom and the energy range and can be
quite low. Within the AM sequence, the Li atom can be cal-
culated with the highest precision, which is obvious from the
comparison of Dirac-Hartree-Fock (DHF) and relativistic
random-phase approximation (RRPA) theories that reveal
smallness of correlation corrections, but the precision for
other AM atoms as judged by such comparison is progres-
sively lower from Na to Cs (see, e.g., Ref. [5]). The difficul-
ties for theories are primary due to correlation corrections,
strong cancellation in lowest order, especially near cross sec-
tion zeros, and to some degree relativistic corrections. Most
atoms have significant polarizabilities and including many-
body effects beyond DHF approximation is essential. This
can be done consistently in the framework of RMBPT, which
is the subject of this work. Previously RMBPT calculations
were performed at the level of RRPA and Brueckner-orbital
(BO) approximation [5,6]. Relativistic effects are also impor-
tant: fine-structure continuum components have considerably
different contributions to the photoionization cross sections
than expected from nonrelativistic theory. Even though
photoionization theories might have accuracy issues, they are
still very important not only for the understanding of experi-
mental observations and exclusion of systematic errors in
measurements, but also for extending the photoionization da-
tabase to include more transitions and to increase energy
range.

In order to achieve confidence in theoretical values, com-
parison with experiment is essential for benchmark systems
as well as good understanding of atomic interactions in such
systems. This is why it is important to systematically study
alkali-metal atoms, especially on the subject of many-body
effects involving continuum states, which are still not well
understood compared to the level of understanding achieved
for transitions of bound states.

In this paper, the method of quasicontinuum states will be
used to allow the application of accurate transition (third and
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higher order) and energy (second and higher order) RMBPT
codes without modifications to calculations of photoioniza-
tion cross sections of Na, K, Rb, and Cs. This is the exten-
sion of quasicontinuum RMBPT theory previously applied to
the calculations of electron elastic scattering cross sections
on noble-gas atoms [7]. The form-invariant (FI) third-order
RMBPT and its modified versions that include some dia-
grams in high (infinite) order will be illustrated. In the third
order, the MBPT contains a large number of nontrivial dia-
grams, so it is indeed of clear advantage to be able to use
no-modification approach. Furthermore, for other atoms, cal-
culations based on configuration-interaction RMBPT can be
performed in the future, as the extension of the approach
presented here.

Previously, some subsets of third-order diagrams were
used [6], but neglecting others is not much justified. It is
possible that, for example, structural radiation (SR) correc-
tions neglected in previous calculations are large. Another
important point is that BO-chain corrections, also not con-
sidered in previous calculations, can have significant contri-
butions to the phase of a continuum wave function, as was
shown in Ref. [7] where BO diagonalization was essential to
obtain agreement with experiment for phase shifts and cross
sections. Some uncertainty in the method proposed here
might have existed due to the extraction of a coefficient of
proportionality between quasicontinuum and continuum
wave functions obtained from a quasicontinuum spectrum
according to the method of Ref. [8], but the agreement of our
results based on cavity calculations in DHF and RRPA ap-
proximations with DHF and RRPA results based on con-
tinuum wave functions [5,9] gives assurance in the accuracy
of the normalization in the quasicontinuum approach.

II. THEORY

A. Photoionization cross-section formula
for quasicontinuum states

Photoionization cross sections are similar to absorption
cross sections of transitions between discrete states, both be-
ing related to electric-dipole matrix elements (MEs). The
main difference is in normalization. Disregarding small dif-
ferences in normalization between relativistic and nonrelativ-
istic wave functions of low-energy electrons, we can use the
nonrelativistic solution of the normalization problem devel-
oped in Ref. [8]. According to Ref. [8], the ratio between a
nonrelativistic quasicontinuum radial wave function P,(r),
where 7 is the principal and [ is the orbital quantum number,
and a continuum wave function P, where € is the electron
energy, can be found from quasicontinuum energies E,,,

(PE,)z 12 .
P,)  OEudn  E,y-E,

The relation between continuum and quasicontinuum wave
functions is also intuitively obvious from considering
Thomas-Reiche-Kuhn (TDK) sum rule for the oscillator
strengths f,
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(N is the number of electrons in an atom, € is the photoelec-
tron energy, n runs over discrete states), in which the inte-
gration over continuum can be replaced by the summation
over discrete quasicontinuum states to obtain the same result
with high precision.

The photoionization cross section can be calculated using
a simple expression given in Ref. [10],

d
o(E) =4.03 X 10-18—f cm?,
de

3)
where E is the photon energy. The energy derivative of
photoionization oscillator strength f for photoelectron energy
E,; can be calculated by dividing the oscillator strength
f(E,) for the transition to a quasidiscrete state nl by an en-
ergy interval with an adjacent state (upper or lower), or in
symmetric version, more accurately, by a half-interval be-
tween the upper and lower adjacent states as in Eq. (1),

if ~ Zf (Enl) ( 4)
de (En+]l - En—ll) .
If relativistic calculations are performed, the cross sections
due to py, and ps,, states should be added to obtain total
photoionization cross section from the ground state.

The advantage of the approach based on quasicontinuum
instead of continuum states is the possibility to use accurate
and complicated high-order (R)MBPT codes developed for
discrete states without any modification. However, the above
equation introduces some error due to its approximate nature,
and comparison with calculations based on continuum states
is needed to estimate this error.

B. RMBPT

Third-order FI RMPBT theory for transition amplitudes to
be applied here is described in Ref. [11] and references
therein. The RMBPT expansion is performed in the “frozen”
V¥-1) DHF Hamiltonian basis which is most convenient for
one-valence electron atoms and ions because many potential
diagrams that exist in alternative bases vanish. This basis
also automatically incorporates dominant relativistic effects,
in particular the spin-orbit interaction. Because the V¥~V
DHEF basis contains continuum states as well as an infinite
number of Rydberg states, it is inconvenient in practical cal-
culations. Instead a compact discrete B-spline basis of V¥-1
DHF Hamiltonian in a cavity that approximates accurately
lowest bound states and replaces continuum and Rydberg
states with a finite number of discrete states is introduced.
Technically this cavity-bound basis is constructed by solving
the DHF equation in a small B-spline basis, and the resulting
DHEF cavity-bound basis functions are approximated by the
linear combinations of B splines that are eigensolutions of
the DHF Hamiltonian matrix. To check numerical accuracy
of results, the calculations for several cavity sizes and num-
ber of splines were performed. It turned out that the 40-
spline basis was much less accurate than that of 60 splines,
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so the latter was chosen for final calculations. The conse-
quence of insufficiency of the number of splines was exhib-
ited in dramatic increase of intervals between quasi-
continuum states and in “disappearance” of expected quasi-
continuum states.

The “bag” boundary condition is imposed P(R)=Q(R) in-
stead of nonrelativistic P(R)=0 [and presumably Q(R)=0],
where R is the cavity radius and P and Q are large and small
components, to avoid spurious solutions from negative-
energy continuum. The “bag” boundary condition is closely
equivalent to a nonrelativistic one as far as normalization is
concerned if the velocity of the electron near the boundary is
much slower than the speed of light. For low-energy photo-
ionization this condition is well satisfied and the theory laid
out in the preceding section for the nonrelativistic boundary
condition immediately applies to relativistic calculations.

The summation over magnetic sublevels in RMBPT ex-
pression is performed analytically with the aid of the
Wigner-Eckart theorem and angular momentum diagrams
(see, e.g., Ref. [12]) to increase computational speed. Since it
is well known that in general results in the length and veloc-
ity forms can be substantially different, matrix elements and
cross sections in both forms are calculated and compared.

C. Brueckner orbitals

As shown in Ref. [7], all-order Brueckner orbital (BO)
corrections can be important to achieve good accuracy of
phase shifts of continuum wave functions, so in this paper in
addition to the third FI theory, we apply a complete third
order theory that also incorporates all-order BO corrections.
The Brueckner orbitals for this theory are calculated in a
cavity DHF B-spline basis as the eigenvectors of the Hamil-
tonian matrix HEO,

= €6+ 2,(8), (5)

=

where the self—energy matrix 2,

2ij(ﬁ‘o) = E

kemn

ij»
(= 1Yw*in~iiclc X, (icmn)Z,(mnjc)
(2.11 + 1)(2k+ 1) gyte.—g,—¢&,

N (= 1YHivle Xy (inbe)Zy(bejin)
wen 2Ji+ D)2k +1) gg+&,—8,—¢

(6)

is obtained from a second-order RMBPT energy by replacing
two of the same initial and final valence states v with two
arbitrary states i and j and the DHF energy of the valence
state g, with a fixed energy g, the same for a set of BOs of
a given angular momentum. (Notations are the same as in
Ref. [7].) Because the dependence of BOs on g is relatively
slow, for convenience we choose the zero-order DHF energy
g, as gq instead of more accurate higher-order energies.
However, it would be inappropriate to use energies that are
different by more than 0.1 a.u., which might be attractive
because it would save computation time if we could use, for
example, 9p energy for calculating 9p and 10p quasicon-
tinuum BOs. One indication of the problem is substantial
decrease in form invariance of results if wrong energies are
used. Brueckner orbitals based on the DHF basis contain
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automatically dominant relativistic corrections. Because the
B-spline basis in the cavity is discrete, the diagonalization of
the BO Hamiltonian is straightforward.

The all-order BO energy rather than the second-order
RMPBT energy Ef)z):Evv(sv) was important for obtaining
correct phase shift of continuum wave functions in Ref. [7]
because higher-order “chain” BO terms are not small due to
smallness of denominators (€,—¢;),

_ 2pi(80) iy (g0)
- tgv €y~ &

Eui(so)zii(so)zw(%)
> (g, —&)(e, — &) *

EW 4+ E® 4

i#v,j#v
(7)

Moreover, in the case of true continuum states the denomi-
nators can be infinitely small, leading to an apparent conver-
gence problem. Thus quasicontinuum states are more conve-
nient than true continuum states in RMBPT for these
particular diagrams where vanishing denominators can be
encountered, although we do not need to calculate these dia-
grams separately because the diagonalization of the BO
Hamiltonian H produces accurate BO energies that auto-
matically 1nclude all “chain” self-energy corrections E
E(G) etc. It is also worth mentioning that the high-order terms
that are not derivatives of the BO chain are expected to be
less important for phase shifts of low-energy continuum
states because the denominators in these terms are not small,
being on the order of core-excitation energy. This is true as
long as quasicontinuum energy does not approach the core-
excitation energy (on the order of 1 a.u.). In the case when it
does approach the core-excitation energy, small denomina-
tors can appear in many diagrams and the perturbation theory
will be inaccurate. Thus the energy range above 0.5 a.u. is
avoided in current calculations.

The third-order BO Zi) and BO chain corrections for

&°

transition MEs such as Z;7 and of higher orders

leig) Z( Z( .= E 2vi(‘(:O)Ziw 4 E Zviziw(so)
izv €€ izw  €w T €
2 Zuizig(so)zgw(so) )

ijFw (ew - Ei)(fw - 6j)

also play an important role due to the same reason of small-
ness of denominators €,—¢; and €,—¢€; when w, i, and j are
quasicontinuum states and the cavity is large. Moreover,
these denominators become infinitely small in the case of
continuum. It is interesting to note that there is enhanced
sensitivity of MEs to the phase shifts of continuum wave
functions at energy at which due to oscillatory nature of
these wave functions cancellation can occur. Because the in-
clusion of BO chain corrections dramatically affected phase
shifts, it is anticipated that these corrections can be signifi-
cant in calculations of bound-continuum transitions. In order
to include this important effect we will use the BO basis
obtained by diagonalization of the Hamiltonian matrix de-
fined by Eq. (5).
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As alternative to the approach described here, BOs can be
also obtained by solving the differential equation which in-
cludes nonlocal correlation potential 2(r,r’) [13,14]. Thus
the problems of small denominators in chain diagrams and
infinite dimension for a continuum basis are avoided.

D. RRPA matrix elements

It is well known that RPA (relativistic version, RRPA)
corrections are large and if included bring cross sections cal-
culated in length and velocity forms in agreement (Ref. [5]
and references therein). In the current theory, RRPA correc-
tions are included following the procedure described in Ref.
[11] at the level of third-order form-invariant theory. While
in second-order theory there is only a RPA ME between ini-
tial and final valence states Z‘;‘:A, in the expressions of third
FI MBPT, there are also MEs between arbitrary states, Zﬁp A,
which inclusion was necessary for obtaining precise agree-
ment of AM transition amplitudes calculated in length and
velocity forms. One parameter relevant to calculations de-
scribed in Ref. [11] is the number of core-RPA iterations. In
the current calculations, it is chosen 20, which saturates well
convergence and is sufficient to achieve a high level of
agreement between length and velocity forms.

E. Third-order FI theory and BO+SR+RPA theory

In Ref. [11], high-accuracy third-order FI theory (FI3) has
been developed and applied to alkali-metal resonant transi-
tions. A point of deviation from conventional third-order
theory described in Ref. [15] is that in the FI theory DHF
ME:s are replaced with RPA MEs and derivative terms are
added. The application of the FI3 theory to photoionization
in current work goes well beyond previous attempts of in-
cluding MBPT terms at relatively simple levels such as RPA
(Ref. [5] and references therein), third-order BO, or their
combination [6]. The current theory includes not only all
third-order corrections but also some diagrams such as RPA,
which are very important for photoionization, in high order
(iterated 20 times the core-RPA diagram). From the analysis
of results in this work it is found that even complete FI
third-order theory is not sufficient in heavy atoms because it
does not contain substantial high-order (beyond third) BO
corrections. So previous FI3 theory is modified to include
all-order BO corrections. This is done by implementing
third-order calculations in the BO basis obtained by diago-
nalization of the BO Hamiltonian matrix built in the quasi-
continuum DHF B-spline basis. The BO basis has energies
correct to second order and is automatically normalized, so
the derivative and normalization terms as well as the third-
order BO term (to avoid double counting) are excluded.
Structure-radiation (SR) as well as RPA terms, on the other
hand, are retained. This, the most complete theory of photo-
ionization of AM atoms, will be referred to as the BO+SR
+RPA theory. Previously, similar theory that includes BO,
RPA, SR corrections was successfully applied to calculations
of various low-state discrete Cs transitions [16].

F. Form independence and numerical accuracy

Form independence of results calculated using form-
independent theories is a good cross check of numerical ac-
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curacy and various errors. Form independence of present
photoionization RRPA cross sections based on 60 splines
was in the case of Na at the level of four digits, but went
down to 1% level in the case of Cs, which can be attributed
to the reduction in accuracy of B-spline approximation, in-
completeness of the basis, and the smallness of RRPA MEs
due to cancellations. On the other hand, 1% level form inde-
pendence of results at low energy with the same basis was
achieved in calculations with the FI3 theory for both Na and
Cs. This level of form independence provides important veri-
fication of sufficient numerical accuracy. In addition, we dis-
covered that the BO+SR+RPA results were also fairly form
independent. In the Cs case at low energy, length-velocity
difference was on the order of 7%, and in the Na case about
2%. This agreement not only provides confidence in numeri-
cal accuracy and absence of crude mistakes for calculations
with a new code (the BO+RPA+SR code is obtained by
modification of the extensively tested FI3 code), but also
removes uncertainty with respect to the choice of the form of
the transition operator. Very often the accuracy of calcula-
tions is estimated from the length-velocity variation, which
in the case of FI theories would not be appropriate, but in the
case of form-dependent theory such as BO+RPA+SR can be
used. The form agreement gives also the confidence in the
accuracy of the BO basis consisting of only 20 excited states.

III. PHOTOIONIZATION CROSS-SECTION
CALCULATIONS AND COMPARISON OF RESULTS

In this section, the results of calculations using quasicon-
tinuum B-spline wave functions will be presented for Na, K,
Rb, and Cs and compared with other calculations and mea-
surements. Because experiments have significant uncertain-
ties, comparison for several AM atoms is important to judge
the accuracy of theory. Different approximations such as
DHF, RRPA, BO, third-order FI RMPT, and BO+RPA+SR
are compared to illustrate the significance of correlation cor-
rections.

A. Na photoionization cross section

To evaluate the accuracy of normalization, which might
contain uncertainty due to use of quasicontinuum wave func-
tions, in Fig. 1 we compare current quasicontinuum DHF
length-form cross sections with the length-form DHF cross
sections calculated using conventional continuum wave
functions in Ref. [9]. The current 60-spline quasicontinuum
calculations are in close agreement with the results of Ref.
[9]. Next in Fig. 2 we show a comparison of calculations in
various MBPT approximations with experiment. First, our
most accurate values, third-order MBPT (40 and 60 spline)
and BO+RPA+SR (60 splines) closely agree and are quite
accurately form independent. Our RRPA results (60 splines)
deviate substantially from RRPA results of Ref. [5] at low
momentum, but agree quite accurately for p>0.25 a.u. Al-
though the normalization problem might have been present
in the current quasicontinuum calculations, close agreement
of DHF values in the current work with those of Ref. [9]
indicates that normalization in the current calculations is
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FIG. 1. Comparison of Na DHF length-form photoionization
cross sections: squares, results of Ref. [9]; open circles, current
60-spline quasicontinuum calculations.

quite accurate. There is good agreement of our RRPA cross
section (for example, at p=0.1 0=3.15 X 107 cm?) with the
RRPA cross section of Ref. [17], 0=3.583 X 1072 cm? at p
=0.1, while the RRPA result of Ref. [5] is o=5.14
% 10720 cm?, suggesting that our RRPA values at low mo-
mentum are more accurate than those of Ref. [5]. At p=0.5
and p=0.7, the three calculations agree precisely. In other
alkali-metal atoms (following sections), our quasicontinuum
RRPA results agree closely with those of Ref. [5], so the
disagreement for Na at low momentum is quite anomalous.

The third order calculations definitely improve the agree-
ment with experiment compared to RRPA. However, even
the most precise calculations have some disagreement with
experiment. The disagreement can be partially attributed to
experimental problems such as uncertainty of contributions
of AM diatomic molecules and uncertainty in AM density, as

0.20 4
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0.10

Cross section (Mb)

0.05

0.00

T
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
p (a.u.)

FIG. 2. Comparison of Na photoionization cross sections:
dashed-dotted line, best values of Ref. [1]; long dashed line, experi-
ment of Ref. [18]; solid line, current FI3 RMBPT (40/60 splines);
solid circles, BO+SR+RPA theory; short dashed line, RRPA cal-
culations of Ref. [5]; open circles, current RRPA 40/60 splines.
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FIG. 3. Comparison of K photoionization cross sections: solid
line, experiment, best values from Ref. [1]; short dashed line, RRPA
of Ref. [5]; open circles, current RRPA 60 splines; long dashed line,
FI3; solid circles, BO+SR+RPA 60 splines.

we discussed in the introduction. It is expected that theory
for Na should be more accurate than for heavier alkali-metal
atoms, and because good agreement is achieved for K, Rb,
and Cs, one can conclude that experiment is less accurate in
Na than FI3 and BO+RPA+SR theories.

B. K photoionization cross section

In Fig. 3 we show comparison for K. The first point to
make is that current quasicontinuum RRPA results agree ac-
curately with RRPA calculations of Ref. [5], so the normal-
ization factors are correct. Second, good agreement of FI3
and BO+SR+RPA at p<0.4 can be noted. Some disagree-
ment at higher momentum could be attributed to slower con-
vergence of RMBPT due to reduction in energy denomina-
tors. We also observe that BO+RPA+SR approximation at
low energy is somewhat more accurate than FI3. The supe-
rior accuracy of BO+RPA + SR will become more obvious in
heavier alkali-metal atoms such as Rb and Cs, considered
next. Also we find that significant improvement is achieved
compared to previous RRPA calculations of Ref. [5] by in-
cluding third-order corrections.

C. Rb photoionization cross section

Similar to the case of K, the current quasicontinuum
RRPA calculations are in close agreement with RRPA calcu-
lations of Ref. [5] and are not shown here. Moreover RRPA
results are in significant disagreement with experiment.
However, BO+SR+RPA theory (Fig. 4) gives good agree-
ment with experiment, especially if the experimental cross
section is multiplied by a factor of 1.35 which can be appro-
priate taking into account uncertainty in Rb density used to
extract cross sections from photoabsorption. The agreement
of FI3 theory is somewhat worse, but still much better than
that of RRPA. So the Rb case reveals the importance of
all-order BO corrections neglected in FI3 theory. This prop-
erty can be related to the problem of the phase shift for
calculations of which in cases of continuum wave functions
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FIG. 4. Comparison of Rb photoionization cross sections: solid
line, experiment, best values from Ref. [1]; dashed line, the same
experimental data multiplied by 1.35 to account for possible density
uncertainty to match better theory; solid circles, BO+SR+RPA (60
splines); open circles, FI3 (60 splines).

of noble-gas atoms BO chain corrections were important [7].
The scatter observed in calculations of FI3 and BO+RPA
+SR can be attributed to variations in normalization factors
when the cavity sizes and the principal numbers of the qua-
sicontinuum wave functions were varied. Another interesting
point is that as photoelectron momentum increases from 0.3
to 0.55 a.u., the divergence between FI3 and BO+RPA
+SR monotonously grows, which might be the sign of dete-
rioration of RMBPT accuracy due to the decrease in energy
denominators of self-energy. At some point RMBPT will fail
to converge and must be replaced with all-order methods
such as configuration interaction that allows us to treat core
excitation nonperturbatively.

D. Cs photoionization cross section

Finally, we consider the case of Cs, which has the largest
core-polarization effect. In Fig. 5 we compare theoretical cal-
culations performed at different RMBPT approximations.
There are several interesting points arising from this com-
parison. First, one can see large differences between DHF
and RRPA, especially at high momentum, meaning large cor-
relation corrections. Second, our quasicontinuum RRPA
(open circles) values agree quite well with RRPA results of
[5] (dotted line). This, as in cases of other AM atoms, proves
fair accuracy of our normalization factors. Moreover, current
quasicontinuum DHF values are in close agreement with
DHF results of [5] (not shown in Fig. 5). Third, FI3 differs
significantly from RRPA, indicating large correlation correc-
tions beyond RRPA. Fourth, FI3 disagrees with BO+RPA
+SR theory, and because both contain all third-order terms,
the effects beyond third order, in particular BO chaining, are
very important in Cs. This is in contrast to the case of Na,
where FI3 and BO+RPA+SR theories agreed closely. The
BO+RPA+SR theory more or less agrees with BO+RPA
calculations of Ref. [6], although in that work only third-
order BO correction was included. The calculations of Ref.
[6] were in good agreement with experiments normalized at
threshold by 0.1 Mb. This threshold is consistent with cross-
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FIG. 5. Comparison for Cs theoretical photoionization cross sec-
tions. Current quasicontinuum 60-spline calculations: crosses,
length DHF; triangles, length FI3; open circles, length RRPA; solid
circles, velocity BO+RPA +SR. Dotted line, continuum RRPA from
Ref. [5]; dashed line, continuum BO+RPA from Ref. [6].

section measurements that did not rely on the saturation den-
sity equation but used hot-wire measurements to determine
the density experimentally [3].

In Fig. 6 we also present a comparison of the best current
theory (BO+RPA+SR) with experiment and the theory of
Ref. [6]. Since experimental cross sections have uncertainty
due to AM density inaccuracy, we have rescaled the experi-
mental values to the best agreement with theory within rea-
sonable range. This scaling factor is not necessarily the best,
and several works [2,6] adopted 1.7 smaller normalization,
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FIG. 6. Comparison of theoretical and experimental photoion-
ization cross sections for Cs. Experimental results of Ref. [1] (solid
line) and relative measurement of Ref. [2] are rescaled to the same
value at threshold minimum, 0.17 Mb, for best matching our theory.
BO+RPA+SR calculations (circles) are compared with experi-
ments and BO+RPA calculations of Ref. [6].
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TABLE 1. Breakdown of contributions to reduced dipole matrix
element for Cs transitions from the ground state to 13p;,, and
13p3/, quasicontinuum states in the cavity R=100 a.u.

Term L (psn)  Vipsp)  Lpip)  Vipin)
DHF -0.104  -0.068 0.034 0.012
RRPA -0.021 -0.021 -0.023 -0.023
Norm 0.000 0.000 0.000 0.000
BO3(dressed) -0.047  -0.065 0.027 0.035
SR(dressed) -0.013  -0.008 0.009 0.005
deriv(DHF) -0.013 0.000 0.004 0.000
Total FI3 -0.094 -0.094 0.017 0.018
RRPA +BO3(dressed) -0.068 -0.086 0.004 0.013

but in the original measurements of Ref. [1] and after adjust-
ment using JANAF tables (the cross sections are given in
Ref. [2]) cross sections were obtained closer to our rescaled
values shown in Fig. 6. At low momentum there is a differ-
ence with the calculations of Ref. [6], which included the
RRPA and the third-order BO corrections, but neglected the
SR and higher-order BO chain corrections. Although the
agreement with rescaled experiment was also achieved for
this theory, it is not yet obvious that experimental normaliza-
tion is 100% accurate.

To understand the difference with calculations of Ref. [6],
in Table I we show the breakdown of contributions near
threshold (p=0.0988 a.u.) where the differences were par-
ticularly large. The sum of RRPA and BO3 (RRPA dressed)
corrections in the table is expected to approach the RRPA
+BO(3) theory of Ref. [6], although there is a difference in
higher-order corrections due to RRPA dressing. The current
RRPA+BO3(RRPA) theory predicts the cross section at p
=0.1 a.u. to be equal to 0.11 Mb, in much closer agreement
with calculations of Ref. [6], which might explain the dis-
agreement with the FI3 theory due to SR and derivative cor-
rections. These corrections, ignored in all previous calcula-
tions, according to the table are quite large and important and
indicate slow convergence of perturbation theory. Thus al-
though our treatment of RMPBT terms is most complete due
to poor convergence it is quite possible that our results might
be less accurate than those of some other theories in the case
of Cs. Similar situation was observed in calculations of
ground-state energy of AM atoms in which second-order
theory agreed better than third-order theory.

PHYSICAL REVIEW A 76, 032710 (2007)

Another interesting point is the form dependence of BO
+RPA theory, which does not include SR and the derivative
term, in contrast to form independence of FI3 and RRPA.
The form dependence is the ambiguity of theory, unless there
is a clear reason for choosing the appropriate form. We also
note that the BO correction dominates in third order, mean-
ing that BO chain corrections must be considered, which is
done by using BO+RPA+SR theory.

IV. CONCLUSION

Using quasicontinuum B-spline states, photoionization
cross sections for Na, K, Rb, and Cs from the ground state
are calculated with RMBPT. Current ab initio calculations
are most complete in terms of inclusion of RMBPT correc-
tions. The improvement in accuracy compared to RRPA is
demonstrated for all alkali-metal atoms, although some dis-
agreement with experiment was also observed which could
be due to inaccuracy of experiments. This work is the exten-
sion of a previous application of RMBPT and quasicon-
tinuum states to the elastic scattering problem. There is a
significant potential in this approach because complicated
RMBPT codes developed for discrete states do not need
modification and all previous work can be leveraged to vari-
ous continuum problems. This paper illustrates in particular
how third-order RMBPT codes can be used for calculations
of photoionization cross sections, and this allowed detailed
analysis of various perturbation terms. Unfortunately the
lack of high-quality experimental data does not allow us to
test high-order RMBPT theories of photoionization cross
sections at the appropriate level. For such tests it would be
necessary to conduct precise experiments in which system-
atic effects due to density uncertainty are clearly excluded.
For example, the measurement of absorption using transi-
tions that are accurately known can provide accurate knowl-
edge of AM density to exclude the dominant systematic ef-
fect due to density uncertainty. On the other hand, as the
further development of theory, it can be applied to photoion-
ization cross sections of noble-gas atoms, where density and
cross sections are known with better accuracy, and maybe to
other calculations. The current theory can be used to extend
the photoionization database, for example, to calculate
photoionization of ions where RMBPT theory have better
convergence, but experiments can be difficult. The photoion-
ization of ions is important for modeling plasmas.
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