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The dispersion coefficients for the van der Waals interactions between the rare gases Ne, Ar, Kr, and Xe and
the low-lying states of Li, Na, K, and Rb are estimated using a combination of ab initio and semiempirical
methods. The rare-gas oscillator strength distributions for the quadrupole and octupole transitions were derived
by using high-quality calculations of rare-gas polarizabilities and dispersion coefficients to tune Hartree-Fock
single-particle energies and expectation values.
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I. INTRODUCTION

Recently a formalism �1� was presented that allows the
van der Waals interaction between two atoms �2,3�, e.g.,

V�R� = −
C6

R6 −
C8

R8 −
C10

R10 − ¯ �1�

to be computed in a relatively straightforward manner. The
Cn parameters in Eq. �1� are the dispersion coefficients while
R is the distance between the two nuclei.

In this previous work, the dispersion coefficients for
ground and excited states of alkali-metal atoms interacting
with helium and atomic hydrogen were presented �1�. The
present work extends the calculations to encompass the
heavier rare gases, namely, neon, argon, krypton, and xenon,
to give improved descriptions of the interaction potential at
large distances.

One of the main applications of this work lies in the area
of pressure broadening �4–6�. The theory of spectral line
broadening relies on an accurate description of the potential
curves between the two states undergoing the transition and
the perturbing atom. The size of the dispersion parameters
has a major influence upon the broadening since many of the
collisions occur at large impact parameters. While there have
been a number of investigations of the dispersion interaction
between ground state alkali-metal atoms and the rare gases
�2,7–12�, this is not true for the alkali-metal-atom
excited states which have received only the most cursory
attention �12�.

This is surprising since the alkali-metal–rare-gas combi-
nation represents an almost ideal laboratory in which to in-
vestigate the general theory of pressure broadening of radia-
tion by a perturbing atom or molecule. There have been a
number of laboratory investigations of broadening for
lithium �13–15�, sodium �16–21�, potassium �22�, and ru-
bidium �23,24�. In addition, there have been a number of
theoretical investigations of alkali metal spectral line broad-
ening caused by the rare gases �15,25–30�. Knowledge of the
van der Waals interaction is also important for the determi-
nation of the refractive index of alkali-metal-atom matter
waves traveling through rare gases �31–33�. The present pa-
per gives the dispersion coefficients between the two lowest
alkali-metal s states and the rare gases. In addition, disper-
sion coefficients between lowest lying p and d states and the
rare gases are also given. All dispersion coefficients are
reported in atomic units �a.u.�.

II. GENERATION OF THE TRANSITION
MOMENT ARRAYS

A. Theoretical overview

The approach used to generate the dispersion coefficients
is based on the work of Dalgarno who originally derived
expressions in terms of oscillator strength sum rules �2,3�.
This reduced the calculation of the Cn parameters for two
spherically symmetric atoms to sums over the products of the
absorption oscillator strengths �originating in the ground
state� divided by an energy denominator. The sums should
include contributions from all discrete and continuum exci-
tations. In practice a pseudostate representation is used
which gives a discrete representation of the continuum
�1,34�. The sum over oscillator strengths needs to be rewrit-
ten in terms of a sum over the reduced matrix elements of the
electric multipole operator in cases where one �or both� of
the atoms is in a state with L�0 �1�.

The major part of any calculation involves the generation
of lists of reduced transition matrix elements for the two
atomic states. This involves quite lengthy calculations to
generate the excitation spectrum of the pseudostate represen-
tation. It is then a relatively straightforward calculation to
use the formalism outlined in Zhang and Mitroy �1� to pro-
cess the lists of matrix elements and generate the dispersion
coefficients.

B. The alkali-metal atoms

The transition arrays for the alkali-metal atoms are those
which were used in calculations of the dispersion interac-
tions between these atoms and the ground states of hydrogen
and helium �1�. These are computed by diagonalizing the
fixed core Hamiltonian in a large basis of Laguerre-type or-
bitals. The core Hamiltonian is based upon an HF description
of the core with a semiempirical core polarization potential
tuned to reproduce the energies of low-lying spectrum.

Core excitations are included in the dispersion parameter
calculation. Oscillator strength distributions were con-
structed by using independent estimates of the core polariz-
abilities to constrain the sum rules �34–37�. The methodol-
ogy of using constrained sum rules is also used for the rare
gases and is discussed more fully in the next section.

C. The rare gases

The rare-gas transition arrays that contribute to the disper-
sion parameter calculation are obtained from constrained
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sum rules. The data for the dipole transitions come from a set
of previously published pseudo-excitation-energies and di-
pole oscillator strengths �38�. The pairs of �f0i ,E0i� were con-
strained to give f-value sum rules in agreement with empiri-
cal estimates of these sum rules �39�. For all practical
purposes, these sets of empirical estimates �f0i ,E0i� are ex-
pected to give estimates of dispersion coefficients that are
accurate to about 1% �38,39�.

The data for the quadrupole and octupole transitions were
derived by tuning an f-value distribution obtained from
Hartree-Fock calculations to high-accuracy calculations of

the polarizabilities and the dispersion coefficients between
two identical rare-gas atoms �34,37�. We use the sum rule for
the multipole polarizability ��l�

��l� = �
i

f0i
�l�

�0i
2 �2�

and

lN�r2l−2� = �
i

f i
�l� = S�l��0� �3�

�40� to help estimate an f �l�-value distribution function of
reasonable accuracy. Equation �3� reduces to the well known
Thomas-Reiche-Kuhn sum rule

N = �
i

f i
�1� = S�1��0� �4�

for l=1. In these equations, N is the total number of elec-
trons, and �r2l−2� is a radial expectation value of the ground-
state wave function.

The other sum rules used to constrain the �f i
�l� ,�i� distri-

butions are those for the dispersion coefficients C8 and C10.
These are

C8 =
15

4 �
ij

f0i
�1�f0j

�2�

�0i�0j��0j + �0i�
+

15

4 �
ij

f0i
�2�f0j

�1�

�0i�0j��0j + �0i�
�5�

and

C10 = 7�
ij

f0i
�1�f0j

�3�

�0i�0j��0j + �0i�
+ 7�

ij

f0i
�3�f0j

�1�

�0i�0j��0j + �0i�

+
35

2 �
ij

f0i
�2�f0j

�2�

�0i�0j��0j + �0i�
. �6�

First, we assume that the contribution from each closed sub-
shell is equal to the number of electrons in the subshell �Ni�
multiplied by the mean value of r2l−2 for the subshell. The
�r2l−2� expectation value for each subshell is computed by
using the Hartree-Fock �HF� wave function. These expecta-
tion values are expected to be accurate at the level of 1–2 %
�ignoring relativistic effects� for the systems under consider-
ation.

Next, the excitation energy for each subshell is set to the
Koopmans energy �i �i.e., the single-particle energy coming
from a HF calculation� plus an energy shift �1

�l�. The moti-
vation for this is the expectation that the HF single-particle
energies will give a reasonable initial approximation to the
oscillator strength distribution originating from each shell
�34,37�. The overall purpose of the energy shift is to refine
the distribution so that it is consistent with the results of
some sum rules for quantities such as the quadrupole polar-
izability for which reasonably accurate values are known.

For the valence np shell there are two energy shifts. Five
of the six electrons are given energy shifts of �1

�l�, while one
electron is given a different energy shift of �2

�l�. The multi-
pole polarizability computed with this oscillator strength dis-
tribution is

TABLE I. Multipole oscillator strength �f �l�� distributions and
corresponding excitation energies for the rare gases. The numbers in
the square brackets denote powers of 10.

l=2 l=3

�E f �2� �E f �3�

Ne

33.9925 0.133878 33.6045 1.75422�−2�
3.15043 3.86864 2.76243 11.2038

2.07044 12.2909 1.68244 58.9965

0.759537 2.45818 0.772737 11.7993

Ar

119.209 3.98387�−2� 119.162 1.53543�−3�
12.9212 8.04905�−1� 12.8742 4.31731�−1�
10.1705 2.09210 10.1235 1.14016

1.87635 9.39598 1.82935 56.1225

1.19002 33.1090 1.14302 314.699

0.497717 6.62181 0.475217 62.9399

Kr

520.604 9.64829�−3� 520.610 8.88348�−5�
70.3421 1.65122�−1� 70.3471 1.76317�−2�
63.44877 3.84045�−1� 63.4538 3.68588�−2�
11.28845 1.32692 11.2936 1.03610

8.77049 4.12244 8.77559 3.53790

4.26423 7.42956 4.26933 8.61329

1.59193 12.1612 1.59703 90.0166

0.963181 44.5482 0.968281 528.064

0.445401 8.90964 0.401311 105.613

Xe

1224.66 4.23665�−3� 1224.61 1.70417�−5�
189.625 6.86382�−2� 189.582 3.00160�−3�
178.067 1.54981�−1� 178.024 5.88693�−3�

40.4602 4.63478�−1� 40.4172 1.21755�−1�
35.5061 1.32979 35.4631 3.49418�−1�
26.4033 1.85270 26.3603 4.64015�−1�

8.14081 2.50232 8.09781 3.42416

6.29285 8.22655 6.24985 12.7347

3.06236 17.5948 3.01936 38.5874

1.22936 17.7446 1.18636 1.81736�2�
0.742226 62.4884 0.699226 9.51970�2�
0.380326 12.4977 0.372196 1.90394�2�
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��l� = �
i�np

Nilri
2l−2

��i + �1
�l��2 +

5lrnp
2l−2

��np + �1
�l��2 +

lrnp
2l−2

��np + �2
�l��2 . �7�

The parameters �1
�2� and �2

�2� are adjusted until ��2� and C8
agree with the reference values of these quantities. The C8
dispersion parameter also requires knowledge of the dipole
oscillator strength distribution which is taken from the em-
pirical distributions of Kumar and Meath �38�. Once the
quadrupole oscillator strength distribution has been fixed, the
process can be repeated using ��3� and C10 to fix the values
of �1

�3� and �2
�3�.

A tabulation of the f �l� distributions derived from this pro-
cess are given in Table I. Table II gives the polarizabilities
and Cn values �for homo-nuclear dimers� computed with
these f �l� distributions. Once the oscillator strengths have
been determined, the reduced matrix elements needed for the
evaluation of the dispersion parameters are obtained from

f0n
�l� =

2���0;L0��rlCl�r̂����n;Ln��2�En0

�2l + 1��2L0 + 1�
, �8�

where �En0=En−E0. This expression can be inverted and the
positive square root taken without any loss of generality
since the rare-gas ground states have an angular momentum
of zero.

The usefulness of this approach does depend on using
accurate reference values of the quadrupole and octupole po-
larizabilities, and accurate values of C8 and C10 to fix �i

�l�.
These are now discussed.

1. Neon

Using the oscillator strength distributions of Kumar and
Meath �38� gave ��1�=2.669a0

3 and C6=6.383 a.u. A refer-
ence value of 7.52a0

5 was adopted for ��2�. This was taken
from a coupled cluster calculation with full allowance for
single and double excitations and with an estimate of the

impact of triple excitations �CCSD�T�� �43�. This calculation
gave ��1�=2.68a0

3. An independent CCSD�T� calculation
gave ��2�=7.525a0

5 �44�.
The reference value for the octupole polarizability

42.07a0
5 was taken from a many-body perturbation theory

�MBPT� calculation �41�. This MBPT calculation gave ��1�

=2.656a0
3. The reference values for the Ne-Ne dispersion co-

efficients C8=90.344 a.u. and C10=1535.6 a.u. were also
taken from an MBPT calculation �41�.

2. Argon

Using the oscillator strength distributions of Kumar and
Meath �38� gave ��1�=11.08a0

3 and C6=64.30 a.u. The value
of 52.8a0

5 was adopted for ��2�. This was derived from a
coupled cluster calculation with full allowance for single and
double excitations and with an estimate of the impact of
triple excitations �43�. This calculation also gave ��1�

=11.12a0
3. This is a light atom and relativistic effects have a

small impact upon the polarizabilities �a CCSD�T� calcula-
tion using a pseudopotential for the core gave a relativistic
correction of only −0.1a0

5 to ��2� �45��.
The reference value for the octupole polarizability,

536.4a0
7 was taken from a MBPT calculation �41�. The

MBPT calculation gave ��1�=11.06a0
3 and ��2�=51.86a0

5. The
reference Ar-Ar dispersion coefficients C8=1623.2 a.u. and
C10=40963 a.u. were also taken from this MBPT calcula-
tion �41�.

3. Inclusion of relativistic effects

Relativistic effects have a larger impact upon the structure
and excitation spectrum for krypton and xenon than they do
for neon and argon. Preferably, one would choose reference
values for krypton and xenon directly from relativistic calcu-
lations, but the problem with this is that the best nonrelativ-
istic calculations usually have a better treatment of electron

TABLE II. The polarizabilities �in a.u.� and homonuclear dispersion coefficients �in a.u.� computed from
the f ���-value distributions of Table I and Ref. �38� are in the row labeled present. The reference values used
to tune the f �2� and f �3� oscillator strength distributions are discussed in the text. Values from nonrelativistic
MBPT calculations �41� and relativistic MP2 calculations �TDMP2� �42� are also given. The notation a�b�
represents a�10b.

System Method ��1� ��2� ��3� C6 C8 C10

Ne Present 2.669 7.518 42.07 6.383 90.27 1.533�3�
MBPT 2.656 7.328 42.07 6.553 90.34 1.536�3�

TDMP2 6.543 91.79 1.589�3�
Ar Present 11.08 52.80 536.4 64.30 1.621�3� 4.903�4�

MBPT 11.06 51.86 536.4 64.30 1.623�3� 4.906�4�
TDMP2 11.15 52.78 553.1 64.80 1.644�3� 5.024�4�

Kr Present 16.79 98.20 1.255�3� 129.6 4.040�3� 1.501�5�
MBPT 17.21 99.30 1.273�3� 135.1 4.187�3� 1.555�5�

TDMP2 16.85 96.75 1.241�3� 130.1 3.981�3� 1.474�5�
Xe Present 27.16 213.7 3455 285.9 1.200�4� 5.882�5�

MBPT 28.22 223.3 3640.6 302.3 1.281�4� 6.198�5�
TDMP2 27.17 202.8 288.4 1.139�4�
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correlations than the best relativistic calculations. The strat-
egy adopted is to use estimates of the relativistic corrections
to the ��l� and Cn coefficients to adjust the best nonrelativis-
tic values.

4. Krypton

The oscillator strength distributions of Kumar and Meath
�38� gave ��1�=16.79a0

3 and C6=129.6 a.u. The value of
98.2a0

5 was adopted for ��2�. This was derived from a
CCSD�T� calculation which gave 99.86 �43�. An independent
CCSD�T� calculation using a pseudopotential for the core
estimated the decrease in ��2� due to relativistic effects to be
1.65a0

5 �45�. The CCSD�T� calculation gave ��1�=17.07a0
3 if

a correction of 0.01a0
3 is made for relativistic effects �45�.

The reference value adopted for the octupole polarizabil-
ity was ��3�=1254.8a0

7. This was determined by adding a

relativistic correction of −17.8a0
7 �taken from a second order

Moller-Plesset calculation �42�� to a value of 1272.6a0
3 taken

from a large basis MBPT calculation �41� �this MBPT calcu-
lation gave ��1�=17.21a0

3�.
The reference values for the Kr-Kr dispersion coefficients

were C8=4040 a.u. and C10=1.501�105 a.u. These values
were derived from the relativistic second order Moller-
Plesset perturbation theory calculations �MP2� of Hattig and
Hess �42� �note the data that is quoted was identified as
TDMP2 in this paper�. This calculation gave estimates of
C6=130.1 a.u. and ��1�=16.85a0

3 which are in very good
agreement with those of Kumar. However, the MP2 values of
��2�=96.8a0

5 and ��3�=1241a0
7 are, respectively, 1.5 and

TABLE III. The dispersion coefficients �in a.u.� between two
ground-state rare-gas atoms. Values from nonrelativistic MBPT cal-
culations �41� and relativistic MP2 calculations �TDMP2� �42� are
also listed. The numbers in the square brackets denote powers of
ten.

System Method C6 C8 C10

Ne-Ne Present 6.383 90.27 1.533�3�
MBPT 6.5527 90.344 1.5356�3�

TDMP2 6.543 91.79 1.589�3�
Ne-Ar Present 19.50 3.889�2� 9.335�3�

MBPT 19.753 3.9012�2� 9.3352�3�
TDMP2 19.85 3.965�2� 9.618�3�

Ne-Kr Present 27.30 627.38 1.740�4�
MBPT 28.009 6.3814�2� 1.7658�4�

TDMP2 27.74 6.270�2� 1.768�4�
Ne-Xe Present 39.66 1.128�3� 3.857�4�

MBPT 40.518 1.1623�3� 3.8978�4�
TDMP2 40.54 1.094�3�

Ar-Ar Present 64.30 1.621�3� 4.903�4�
MBPT 64.543 1.6232�3� 4.9063�4�

TDMP2 64.80 1.644�3� 5.024�4�
Ar-Kr Present 91.13 2571.1 8.677�4�

MBPT 93.16 2.6167�3� 8.8260�4�
TDMP2 91.16 2.566�3� 8.685�4�

Ar-Xe Present 134.5 4.527�3� 1.807�5�
MBPT 137.97 4.6694�3� 1.8425�5�

TDMP2 135.7 4.403�3�
Kr-Kr Present 129.6 4.040�3� 1.501�5�

MBPT 135.08 4.1873�3� 1.5545�5�
TDMP2 130.1 3.981�3� 1.474�5�

Kr-Xe Present 191.9 7.026�3� 3.035�5�
MBPT 201.27 7.3891�3� 3.1603�5�

TDMP2 193.2 6.774�3�
Xe-Xe Present 285.9 1.200�4� 5.882�5�

MBPT 302.29 1.2807�4� 6.1984�5�
TDMP2 288.4 1.139�4�

TABLE IV. The dispersion coefficients �in a.u.� between the
ground states of alkali-metal atoms and rare-gas atoms. The data
from the Standard and Certain �SC� tabulation �8� are also listed;
the two numbers represent the estimates of lower and upper bounds
for the coefficients. The numbers in the square brackets denote
powers of ten.

System Method C6 C8 C10

Li-Ne Present 43.79 2.229�3� 1.531�5�
SC 42.9–44.8 2.00�3�–2.20�3� 1.21�5�–1.47�5�

Li-Ar Present 174.0 9.493�3� 6.781�5�
SC 171–177 8.63�3�–9.49�3� 5.53�5�–6.69�5�

Li-Kr Present 259.6 1.476�4� 1.087�6�
SC 255–262 1.34�4�–1.48�4� 8.92�5�–1.08�6�

Li-Xe Present 410.7 2.521�4� 1.957�6�
SC 402–414 2.30�4�–2.54�4� 1.63�6�–1.97�6�

Na-Ne Present 50.41 2.721�3� 1.993�5�
SC 46–137 2.40�3�–3.19�3� 1.57�5�–1.94�5�

Na-Ar Present 196.8 1.153�3� 8.769�5�
SC 184–508 1.03�4�–1.53�4� 7.11�5�–9.30�5�

Na-Kr Present 292.7 1.787�4� 1.398�6�
SC 273–737 1.59�4�–2.48�4� 1.14�6�–1.53�6�

Na-Xe Present 460.9 3.033�4� 2.496�6�
SC 430–1130 2.71�4�–4.52�4� 2.05�6�–2.90�6�

K-Ne Present 77.44 5.309�3� 4.936�5�
SC 73.8–83.9 4.57�3�–5.04�3� 3.71�5�–4.38�5�

K-Ar Present 299.3 2.228�4� 2.132�6�
SC 292–318 1.95�4�–2.16�4� 1.65�6�–1.94�6�

K-Kr Present 444.1 3.431�4� 3.352�6�
SC 432–469 3.01�4�–3.33�4� 2.60�6�–3.06�6�

K-Xe Present 697.9 5.751�4� 5.836�6�
SC 680–737 5.07�4�–5.64�4� 4.60�6�–5.42�6�

Rb-Ne Present 88.00 6.355�3� 6.231�5�
SC 78.0–94.2 5.33�3�–5.99�3� 4.94�5�–5.63�5�

Rb-Ar Present 336.4 2.656�4� 2.681�6�
SC 310–352 2.27�4�–2.56�4� 2.16�6�–2.48�6�

Rb-Kr Present 498.0 4.083�4� 4.203�6�
SC 460–518 3.50�4�–3.93�4� 3.40�6�–3.89�6�

Rb-Xe Present 780.1 6.819�4� 7.281�6�
SC 725–813 5.87�4�–6.63�4� 5.92�6�–6.84�6�
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1.1 % smaller than the reference values adopted for these
polarizabilities. Accordingly, the effective f �l�-value distribu-
tions of Hattig and Hess �42� for l=2 and 3 were rescaled by
1.015 and 1.011 and used in conjunction with their f �1� dis-
tributions to recompute C8 and C10 resulting in the values
listed at the start of this paragraph.

5. Xenon

The oscillator strength distributions of Kumar and Meath
�38� gave ��1�=27.16a0

3 and C6=285.9 a.u. A value of ��2�

=213.7a0
5 was adopted as the reference. This was determined

by adding a relativistic correction of −9.64a0
5 �taken from a

second order Moller-Plesset calculation �42�� to a value of
223.29a0

3 taken from a large basis MBPT calculation �41�
�this MBPT calculation gave ��1�=28.23a0

3�. The C8 refer-
ence values for the Xe-Xe interaction were determined by a
procedure similar to that used for the Kr-Kr case. The rela-
tivistic MP2 f �2�-value distribution of Hattig and Hess �42�
was rescaled by 1.054 �=213.7/202.8� and used in conjunc-
tion with their f �1� distribution to give C8=1.200�104.

This procedure could not be adopted for ��3� and C10 be-
cause Hattig and Hess did not report any calculations for this
case. Accordingly, the relativistic correction was estimated
by assuming it was the same relative size as the correction
for the quadrupole transition. Using the data from Hattig and
Hess, one gets a correction of 0.949=202.8/213.7. Scaling
the MBPT octupole polarizability of 3640.6 by 0.949 gave a
reference value of ��3�=3455a0

7. �Note that the scale factors
for the relativistic correction for ��2� and ��3� were roughly
similar in size, e.g., for krypton they were 0.985 and 0.989,
respectively.� The value of C10 was estimated by simply res-
caling the MBPT value of 6.198�105 by 0.949 giving

5.882�105 as the reference value. This probably underesti-
mates the size of the relativistic correction since the
quadrupole-quadrupole sum in C10 should be rescaled by
�0.949�2 while the dipole-octupole sums are rescaled by
0.949.

III. CALCULATIONS AND RESULTS

A. Dispersion parameters

The dispersion coefficients were computed using the for-
malism presented in Ref. �1�. This formalism reduces the
dispersion coefficients to sums over sets of reduced matrix
elements of the two atoms. The oscillator strengths for the
rare gases can be converted to reduced matrix elements with-
out any error since the expressions for the dispersion rela-
tions involving one atom in an S state only involve squares
of the reduced matrix elements for the S-state atom.

B. The heteronuclear rare-gas combinations

The complete set of dispersion coefficients for all the pos-
sible rare-gas combinations are listed in Table III. The ulti-
mate accuracy of the tabulated coefficients is largely limited
by the accuracy of the many-body calculations used to derive
the reference values. Most of the dispersion coefficients were
based on the MBPT dispersion coefficients of Thakkar et al.
�41�. The present values of the dispersion coefficients for
combinations involving Kr or Xe should be regarded as more
accurate than the MBPT values since the impact of relativis-
tic effects have been incorporated as corrections.

The other set of dispersion coefficients listed in Table IV
are the TDMP2 values of Hattig and Hess �42�. The TDMP2

TABLE V. The dispersion coefficients �in atomic units� for the � and � symmetries, between the resonant
np excited state of alkali-metal atoms and the ground-state atoms of rare gases. The numbers in the square
brackets denote powers of ten.

System � �

C6 C8 C10 C6 C8 C10

Li-Ne 9.822�1� 1.549�4� 1.849�6� 5.492�1� 7.522�2� 3.586�4�
Li-Ar 4.011�2� 6.379�4� 7.846�6� 2.201�2� 3.969�3� 1.949�5�
Li-Kr 6.049�2� 9.690�4� 1.216�7� 3.296�2� 6.818�3� 3.529�5�
Li-Xe 9.728�2� 1.584�5� 2.062�7� 5.244�2� 1.351�4� 7.578�5�
Na-Ne 1.492�2� 3.112�4� 4.739�6� 8.511�1� 1.395�3� 8.680�4�
Na-Ar 6.088�2� 1.283�5� 1.998�7� 3.413�2� 7.032�3� 4.354�5�
Na-Kr 9.187�2� 1.947�5� 3.078�7� 5.120�2� 1.186�4� 7.562�5�
Na-Xe 1.479�3� 3.171�5� 5.160�7� 8.167�2� 2.294�4� 1.539�6�
K-Ne 2.006�2� 5.065�4� 9.204�6� 1.187�2� 2.328�3� 1.670�5�
K-Ar 8.127�2� 2.089�5� 3.866�7� 4.717�2� 1.122�4� 8.022�5�
K-Kr 1.223�3� 3.169�5� 5.937�7� 7.060�2� 1.858�4� 1.358�6�
K-Xe 1.964�3� 5.151�5� 9.887�7� 1.123�3� 3.500�4� 2.664�6�
Rb-Ne 2.290�2� 6.289�4� 1.239�7� 1.379�2� 2.971�3� 2.256�5�
Rb-Ar 9.241�2� 2.595�5� 5.197�7� 5.451�2� 1.403�4� 1.066�6�
Rb-Kr 1.390�3� 3.934�5� 7.969�7� 8.150�2� 2.301�4� 1.785�6�
Rb-Xe 2.229�3� 6.391�5� 1.324�8� 1.295�3� 4.2797�4� 3.448�6�
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Cn coefficients are consistently smaller for interactions in-
volving either krypton or xenon. This is expected since rela-
tivistic effects generally lead to contractions of the orbitals
which result in smaller polarizabilities and dispersion inter-
actions. The present values of the dispersion coefficients
generally lie between the TDMP2 and MBPT values for in-
teractions involving krypton or xenon.

C. The alkali-metal–rare-gas coefficients

The dispersion constants between the rare gases and the
alkali-metal-atom ground states are given in Table III and
compared with the compilation of Standard and Certain �SC�
�8�. The values of SC were determined by constructing

f-value distributions using a combination of experimental
and theoretical information about polarizabilities, sum rules,
and transition energies to give bounded estimates of the po-
larizabilities and thus the dispersion coefficients using Pade
approximates �8,10�. It can be seen from Table III that many
of the bounds given in the SC tabulation are quite loose, and
in the case of interactions involving sodium, the variation
between the upper and lower bounds is more than a factor of
2. Some older compilations of dispersion coefficients for the
alkali-metal–rare-gas combinations �2,7,10–12� are not listed
for reasons of brevity.

The present values should be regarded as superior to the
SC compilation for three reasons. The pseudo-oscillator-
strength distributions for the higher multipoles of the rare
gases and alkali-metal cores should be better than the essen-
tially one-term expressions for the dynamic polarizabilities
used by SC �8,10�. In addition, the data used to bound the
pseudo-f-value distributions is in many cases better. Finally,
the dipole f-value distributions for the rare gases �38� and the
valence f-value distributions used for the alkali-metal atoms
�36� represent an update of the data that was available to SC
in 1985 �8�.

The C8 and C10 dispersion coefficients were usually larger
than the upper bounds given by SC. The only alkali-metal
atom for which this does not occur is sodium, but the spread
quoted by SC for the sodium upper and lower bounds is
significantly larger than the spreads given for lithium, potas-
sium, and cesium.

In addition to the ground state, the dispersion coefficients
between the np alkali-metal excited state and the rare gases
are given in Table V. Apart from the early work of Mahan
�12�, these values represent the only calculations of the dis-
persion coefficients between the alkali-metal np states and
the rare gases from neon onward �note that there have been
some calculations of the dispersion coefficients for helium
�1,46��. Data on the excited state potentials do exist �47–52�
but almost nothing is known about the long-range forms of
the potentials. The present calculations rectify this omission.
The obvious trend in the table is the tendency for the disper-
sion coefficients to get larger as either the alkali-metal atom
or the rare-gas atom increases in size.

The dispersion coefficients for the interaction of atoms in
excited �n+1�s states with the rare gases are listed in Table
VI. The results of Proctor and Stwalley �PS� �7� are pre-
sented for comparison. The PS results were derived by using
various constraints on oscillator strength sum rules �based on
experimental and theoretical data� to determine the oscillator
strength distribution as a function of excitation energy. Al-
though PS quoted uncertainties, these are not given here
since their uncertainties in many cases seem to be overopti-
mistic. The present Cn are all larger than those of PS. This is
not surprising since PS did not include any contribution from
the alkali-metal-atom cores in the calculation. Therefore it
would be expected that the differences from the PS values
would get larger as the size of the alkali-metal atom in-
creases, and this is the case. The difference between the
present and PS C6 for the Li-Ne combination was 2.0 out of
310 a.u. For the Rb-Ne case, the difference for C6 was 25.6
out of 469.6 a.u. This situation was reminiscent of the com-
parison with PS for the alkali-metal–He Cn coefficients of

TABLE VI. The dispersion coefficients �in a.u.� between the
�n+1�s excited state of an alkali-metal atom and a rare-gas atom in
its ground state. The data from the Proctor and Stwalley tabulation
�7� are also listed. The numbers in the square brackets denote pow-
ers of ten.

System Method C6 C8 C10

Li-Ne Present 310.4 8.185�4� 2.578�7�
PS 308.4 8.106�4� 2.545�7�

Li-Ar Present 1.280 �3� 3.410�5� 1.077�8�
PS 1.273 �3� 3.377�5� 1.062�8�

Li-Kr Present 1.934 �3� 5.189�5� 1.645�8�
PS 1.921 �3� 5.090�5� 1.597�8�

Li-Xe Present 3.118 �3� 8.480�5� 2.710�8�
PS 3.091 �3� 8.149�5� 2.546�8�

Na-Ne Present 337.0 9.427�4� 3.153�7�
PS 331.1 9.286�4� 3.095�7�

Na-Ar Present 1.386 �3� 3.926�5� 1.317�8�
PS 1.368 �3� 3.868�5� 1.291�8�

Na-Kr Present 2.095 �3� 5.973�5� 2.010�8�
PS 2.064 �3� 5.831�5� 1.943�8�

Na-Xe Present 3.375 �3� 9.756�5� 3.306�8�
PS 3.322 �3� 9.431�5� 3.099�8�

K-Ne Present 435.5 1.488�5� 6.064�7�
PS 417.6 1.443�5� 5.877�7�

K-Ar Present 1.786 �3� 6.192�5� 2.529�8�
PS 1.727 �3� 6.031�5� 2.450�8�

K-Kr Present 2.697 �3� 9.413�5� 3.855�8�
PS 2.607 �3� 9.096�5� 3.690�8�

K-Xe Present 4.341 �3� 1.534�6� 6.319�8�
PS 4.199 �3� 1.459�6� 5.898�8�

Rb-Ne Present 469.6 1.685�5� 7.237�7�
PS 444.1 1.630�5� 6.973�7�

Rb-Ar Present 1.921 �3� 7.009�5� 3.017�8�
PS 1.838 �3� 6.787�5� 2.907�8�

Rb-Kr Present 2.899 �3� 1.065�6� 4.597�8�
PS 2.773 �3� 1.024�6� 4.378�8�

Rb-Xe Present 4.665 �3� 1.736�6� 7.530�8�
PS 4.468 �3� 1.643�6� 7.001�8�
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helium �1�. Part of the difference between the present and PS
Cn can be attributed to the core. For example, omission of
the core for the Rb�5s�-Ne interaction results in C6=449.7
and C8=1.681�103 a.u., both of these values are still larger
than the PS values.

The PS dispersion coefficients for the Li–rare-gas systems
were recently utilized in a combined experimental and theo-
retical analysis of the noble gas pressure broadening of the
7Li 2s–3s transition by Rosenberry et al. �15�. Rosenberry et
al. were not able to get detailed quantitative agreement for
either the pressure broadening or pressure shift. The present
values of C6 for the Li–rare-gas case agree with those of PS
to better than 1%, and to within 5% for C8, so any inaccu-
racies in the PS Cn coefficients are unlikely to be a major
contributor to any error.

Table VII reports the dispersion coefficients between the
lowest nd state of the alkali-metal atoms with the rare-gas
ground states. The C6 coefficients for a given alkali-metal
atom show a tendency to get larger as the rare-gas atom gets
larger. This behavior is expected. The Cn coefficients exhibit
one pattern that is unexpected. The dispersion coefficients
for a given rare gas tend to be largest for Li and smallest for
rubidium; for example, the C6 dispersion coefficients for the
�, �, and � states of Li-Ar decrease steadily as the Li is
substituted by Na, K, and Rb. This behavior is caused by the
nature of the downward transition from the nd state to the
resonant np excited state. The oscillator strength for this
transition is negative. As the alkali-metal atoms get larger,
the negative contribution from this transition to C6 gets
larger leading to a reduction in the value of C6. It is worth
noting that the static dipole polarizability of the lowest nd
state decreases as the alkali-metal atom gets larger �36�.

One of the larger sources of error in the present calcula-
tions will be the oscillator strength distributions for the
alkali-metal-atom cores since these were defined with a
single ��l� shift. The coefficient with the largest core contri-
bution is C6 for Rb-Ne, where 23% of C6 arises from the
core. Calculations of C6 for the positronium–rare-gas and
hydrogen–rare-gas interactions suggest the error involved in
using a single ��1� does not exceed 5% �37�. So the influence
of the errors in the core f �l�-value distributions could result in
C6 being too large by about 1–2 %. The influence of the core
decreases as the excitation level of the alkali-metal atom in-
creases �e.g., the core has a 4% effect on the Rb�6s�-Ne C6�,
or the multipolarity of Cn increases �e.g., the core has a 6%
effect on the Rb�5s�-Ne C8�, and decreases as the size of the
rare-gas atom increases �e.g., the core has a 16% effect on
the Rb�5s�-Xe C6�.

IV. SUMMARY

The van der Waals coefficients between the rare gases and
some low-lying excited states of the alkali-metal atoms have
been determined using sum rules over oscillator strengths
and transition moments. The dipole oscillator strength distri-
butions for the rare gases were taken from the empirical
tabulations of Kumar and Meath �38�. The oscillator strength
distributions for the higher multipoles were determined by
tuning distributions derived from HF wave functions to ex-
pectation values taken from sophisticated many-body calcu-
lations.

The most recent previous compilation of the alkali-metal–
rare-gas dispersion interactions is the one by SC �8�. The

TABLE VII. The dispersion coefficients �in atomic units� for the �, �, and � symmetries, between the lowest nd excited state of the
alkali-metal atoms with the ground state of rare-gas atoms. The numbers in the square brackets denote powers of ten.

System � � �

C6 C8 C10 C6 C8 C10 C6 C8 C10

Li-Ne 428.3 3.132�5� 1.800�8� 380.4 1.138�5� 1.087�7� 236.5 −1.609�4� −2.874�5�
Li-Ar 1.770�3� 1.299�6� 7.474�8� 1.571�3� 4.723�5� 4.755�7� 972.9 −6.199�4� −1.395�6�
Li-Kr 2.678�3� 1.969�6� 1.135�9� 2.376�3� 7.173�5� 7.481�7� 1.469�3� −8.975�4� −2.209�6�
Li-Xe 4.323�3� 3.193�6� 1.848�9� 3.834�3� 1.168�6� 1.303�8� 2.365�3� −1.325�5� −3.815�6�
Na-Ne 422.7 3.035�5� 1.725�8� 375.7 1.104�5� 1.043�7� 234.7 −1.552�4� −2.770�5�
Na-Ar 1.743�3� 1.259�6� 7.164�8� 1.548�3� 4.578�5� 4.566�7� 961.5 −5.969�4� −1.341�6�
Na-Kr 2.636�3� 1.908�6� 1.088�9� 2.340�3� 6.954�5� 7.188�7� 1.451�3� −8.634�4� −2.121�6�
Na-Xe 4.253�3� 3.094�6� 1.772�9� 3.773�3� 1.133�6� 1.252�8� 2.334�3� −1.272�5� −3.652�6�
K-Ne 310.3 1.763�5� 8.399�7� 276.9 6.427�4� 5.172�6� 176.7 −8.498�3� −1.423�5�
K-Ar 1.267�3� 7.310�5� 3.489�8� 1.128�3� 2.667�5� 2.289�7� 712.0 −3.190�4� −6.713�5�
K-Kr 1.911�3� 1.109�6� 5.303�8� 1.701�3� 4.054�5� 3.630�7� 1.070�3� −4.534�4� −1.034�6�
K-Xe 3.073�3� 1.799�6� 8.648�8� 2.733�3� 6.617�5� 6.408�7� 1.711�3� −6.432�4� −1.694�6�
Rb-Ne 258.2 1.252�5� 5.305�7� 231.4 4.583�4� 3.321�6� 151.0 −5.600�3� −8.989�4�
Rb-Ar 1.044�3� 5.190�5� 2.204�8� 932.9 1.901�5� 1.483�7� 599.1 −2.054�4� −4.107�5�
Rb-Kr 1.571�3� 7.873�5� 3.352�8� 1.402�3� 2.892�5� 2.364�7� 896.7 −2.867�4� −6.128�5�
Rb-Xe 2.518�3� 1.278�6� 5.473�8� 2.245�3� 4.728�5� 4.212�7� 1.427�3� −3.899�4� −9.364�5�
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present values should be regarded as superseding the SC val-
ues. The underlying f-value distributions for the rare gases
and alkali-metal atoms give dipole polarizabilities and dis-
persion interactions that are generally accurate to about 1%
for the rare-gas–rare-gas and alkali-metal–alkali-metal cases
�1,34,53–55�. The present C8 and C10 dispersion coefficients
are generally larger than the SC values or near the high end

of allowable range indicated by SC.
The scope of the present article has been restricted to the

ns, �n+1�s, and np and lowest md states of the alkali-metal
atoms, mainly to keep the length of the present article to a
reasonable size. However, generating tables of dispersion co-
efficients for other low-lying excited states of alkali-metal
atoms would be relatively straightforward.
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