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We were previously successful in representing a series of low-lying Ps+H scattering resonances as due to
quasibound Coulomb states in the closed-channel e++H− system. Here we investigate the analogous Coulomb
states of Ps−+H+, which are also accessible from the Ps+H scattering system, but at considerably higher
collision energies. We locate several such states and suggest that they may be scattering resonances, but
because there are many open-channel thresholds lying below they may have large widths and shifts.
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I. INTRODUCTION

After the first Ps+H singlet-state resonance was found by
the stabilization method �1� and later by complex-rotation
calculations �2� it was of interest to characterize the mecha-
nism producing the resonance. It was suggested �3� that the
resonance �and presumably an infinite set of additional reso-
nances� was generated by the Rydberg quasibound states in
the closed, rearranged e++H− channel. This conjecture was
supported by the absence of resonances in the triplet spin
state; this would be expected since the hydrogen ion exists
only in the singlet state �but see some recent work that seems
to find one triplet resonance �4��. In addition, Blackwood,
McAlinden, and Walters �5� showed that adding a term rep-
resenting the hydrogen ion to their scattering trial function
�containing an expansion in eigenstates and pseudostates�
gave rise to the series of resonances predicted in Ref. �3�. In
Ref. �12�, Walters discusses the possibility that the other
negative ion, Ps−, might also have some effect on the scat-
tering problem. In this paper we will compute energies of the
quasibound states of Ps−+H+ and will suggest that they may
produce analogous resonances at higher scattering energies.
Again, such resonances would occur only in the electronic
singlet spin state, since the positronium ion ground state is a
spin singlet.

In the earlier work �3� simple wave functions were used to
represent the negative hydrogen ion, and in the present cal-
culations the same sort of approximation is employed for the
positronium ion. Here, however, we do not employ a simple
variational function but construct a physically reasonable ex-
pression, choosing its two parameters to fit the results of
accurate calculations. This is, of course, just a first approxi-
mation. Definitive work on locating and verifying these pos-
sible resonances requires real scattering calculations, includ-
ing as many of the open channels as practical, or perhaps an
extensive complex rotation study.

II. FORMULATION

A. Basic ideas

The Hamiltonian describing the system of two electrons
�r�1 ,r�2� and a positron �x��, with distances measured from a

proton fixed at the origin, in Rydberg atomic units, is the
following:

H = − �1
2 − �2

2 − �x
2 + 2�1

x
−

1

r1
−

1

r2
+

1

�r�1 − r�2�
−

1

�r�1 − x��

−
1

�r�2 − x��� . �1�

We wish to describe the Ps− ion approximately as a Ps atom
plus a relatively distant second electron, so it is useful to
convert to a system of Jacobi coordinates as follows:

P� =
1

3
�x� + r�1 + r�2�, ��1 = r�1 − x�, R� 2 = r�2 −

1

2
�r�1 + x�� .

�2�

The first of these coordinates is the center of mass of the Ps
ion, the second is the internal coordinate of the Ps atom with
electron 1, and the last is the position of electron 2 relative to
the center of mass of the Ps atom containing electron 1.
�A second equivalent set results from the interchange
of 1 and 2.� We propose a wave function for the quasibound
states that takes the following form in these Jacobi
coordinates:

��r�1,r�2,x�� = F�P� �����1,R2� + ���2,R1�� . �3�

The expression in the bracket is the exact wave function of
the Ps ion where the two terms are needed to account cor-
rectly for the symmetry between the two electrons; we have
suppressed the singlet spin function. The function F de-
scribes the motion of the Ps ion in the field of the proton and
will include an infinite number of states of all possible or-
bital angular momenta.

Before we consider an approximate form for the function
� let us re-write the Hamiltonian H=H0+H1 in terms of our
Jacobi coordinates. We have
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Notice that H0 does not contain any mention of the center-
of-mass coordinate P; it is the Hamiltonian for the free Ps
ion. �Again, it could be rewritten with 1 and 2 interchanged.�
The motion of the Ps ion relative to the fixed proton is de-

termined by the second term, H1, through the function F�P� �.
The total energy is given variationally in the usual way:

E =
� � � d��*�H0 + H1��

� � � d����2
, �5�

and the unknown function is determined from �E
�F =0. Since

we have included the exact wave function of the Ps ion in
our trial function �, the effect of H0 is just to produce the
exact energy of the ion, E�Ps−�=−0.524 01 Ry. The varia-
tional equation for F is the following:

�−
1

3
�P

2 + V̄ − ��F�P� � = 0, �6�

where �=E−E�Ps−�. Before we define V̄ it will be conve-
nient to write the general form for the expectation value of
any operator Q:

Q� =
I�Q�
I�1�

,

where

I�Q� =� � d��1dR� 2Q��2��1,R2� + �2��2,R1�

+ 2���1,R2����2,R1�� . �7�

Then the effective potential is just V̄= V1�, where V1 was
defined in Eq. �4�, and once we have chosen a reasonable,
approximate form for the function � we can proceed to

evaluate V̄ and solve Eq. �6� to obtain the eigenvalues �.

B. The positronium ion wave function

We have previously used the following wave function �6�

f�R� =
�e−�R − e−	R�

R
�8�

�with 	
�� to describe the motion of the center of mass of
a positronium atom relative to a helium positive ion, with the

two parameters adjusted to give some known results. It has
the virtue of approaching the correct asymptotic form at
large R, being finite for vanishing R, and possessing one
additional parameter to adjust. In the present case we choose
the approximate wave function for the positronium ion to
have the form

���,R� = ����f�R� , �9�

where the normalized Ps wave function ����
= 1

�8�
exp�−� /2�. The normalization integral �equivalent to

I �1� of Eq. �7�� is

D =� � d��1dR� 2��2��1�f2�R2� + �2��2�f2�R1�

+ 2���1�f�R2����2�f�R1�� . �10�

The first two terms in this integral give the same result, since
we are free to rewrite the volume element in the second term
by interchanging subscripts 1 and 2. These two terms are
separable, so the result can be obtained very easily and ana-
lytically:

DI + DII =
4��	 − ��2

	��	 + ��
. �11�

To evaluate the third term in the normalization integral it is
necessary to rewrite the second set of Jacobi coordinates in
terms of the first set:

��2 = R� 2 +
1

2
��1; R� 1 = −

1

2
R� 2 +

3

4
��1. �12�

Then the third term in D takes the form
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0
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Here �= �̂ · R̂, and this multiple integral must be performed
numerically.

Next we determine the two constants appearing in the
function f . The constant � is related to the binding energy B
as �=�2

3B, and from the variational binding energy �7� of
0.024 01 Ry we get the value �=0.126 52. There are several
ways to determine the value of 	. We calculate the expecta-
tion value of some operator using our approximate wave
function and compare the result with the corresponding value
obtained with an accurate wave function. We have chosen to
use the expectation value of r12

2 . In our Jacobi form

r12
2 = �R� 1 −

1

2
��2�2

= R1
2 +

1

4
�2

2 − R1�2�12. �14�

Again, the first two terms in Eq. �7� give identical analytic
results:
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I1�r12
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2 � = 4�� 3�	 − ��2
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2�3 +
1

2	3 −
8
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�15�

�Notice that here only two terms of Eq. �14� remain in the
integrand, since the part involving � vanishes.� The third
term I3�r12

2 � resembles DIII of Eq. �13� with the additional
factor from Eq. �14� inserted. �In this case all three terms are
nonzero.� According to the accurate calculations of Ref. �7�
r12

2 �=93.1714, and we can reproduce this value to better
than four figure accuracy if we take 	=0.2241. �With these
values of the parameters the normalization D=16.5879.� As
a check on the consistency of this model wave function we
calculate another expectation value, �1

2�, which should be
48.4152 according to Ref. �7�. Our model gives 52.6265, in
error by only 8.7%. This seems like a sufficiently good fit for
us to proceed.

One more known quantity can be used as a test of the
quality of our model wave function. The asymptotic normal-
ization of the wave function is defined in our notation as
1/ �D=0.2455. This is to be compared with an accurate
value �7� of 0.1856. The error of 32% is only marginally
acceptable.

C. The effective potential

We have seen above that the effective potential V̄ also
involves an expectation value, but this time there is an addi-

tional vector, P� , which is the position of the center of mass
of the Ps ion relative to the �fixed� proton. As usual, the
direct part of Eq. �7� can be done analytically. Notice that the
first two terms vanish by symmetry �as often happens when
Ps wave functions are involved �8��. So the direct part of the
effective potential is

V̄d�P� = −
4

D
� d���2��� � dR�

f2�R�

�P� + �2/3�R� �
=

−
16�

D � 1

P
�

0

�3/2�P

dR�e−�R − e−	R�2

+
3

2
�

�3/2�P

 dR

R
�e−�R − e−	R�2� . �16�

The normalization of the Ps function has been invoked, and
the angular integral was trivial. The final result for this part
of the potential is

V̄d�P� =
− 16�

D
� 1

P
� 1

2�
�1 − e−3�P� +

1

2	
�1 − e−3	P�

−
2

�	 + ��
�1 − e−�3/2��	+��P��

+
3

2
�E1�3�P� + E1�3	P� − 2E1�3

2
�	 + ��P��� ,

�17�

where E1 is the exponential integral. The remaining part of

the potential is considerably more complicated, and we have
not been able to reduce the inherently six-dimensional inte-
gral to three dimensions as we did previously, using spherical
coordinates. The trouble is that there are more angles in the
calculation of the potential than in the simple integrals dis-
cussed above. Once we concluded that a six-dimensional nu-
merical integral must be evaluated for each value of P, it
proved to be easier to work in rectangular coordinates. We

take P� to lie along the z axis, and we write the complicated
vectors that appear in the following way:

�A� + B� � =��
1

3

�Ai + Bi�2, �18�

where the subscripts refer to the three rectangular compo-
nents of each vector. The volume element is just the product
of the six differentials d�1d�2d�3dR1dR2dR3, and the limits
on each integral are ±. We were able to evaluate these
multiple integrals to at least three significant figures.

TABLE I. Energies of the high-lying states, arranged in order of
increasing energy.

State Eigenenergy � �Ry� Total energy E �Ry� Ps energy �eV�

1s −0.375 −0.899 8.18

2p −0.281 −0.805 9.46

2s −0.227 −0.751 10.19

3d −0.207 −0.731 10.46

3p −0.175 −0.699 10.90

4f −0.151 −0.675 11.22

3s −0.146 −0.670 11.29

4d −0.134 −0.658 11.46

4p −0.116 −0.640 11.70

5g −0.110 −0.634 11.78

5f −0.102 −0.626 11.89

4s −0.100 −0.624 11.92

5d −0.092 −0.616 12.03

5p −0.082 −0.606 12.16

5s −0.072 −0.596 12.30
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FIG. 1. Potential V�P� �upper curve� and, for comparison, Cou-
lomb potential −2/ P �lower curve� in Rydberg units, as functions of
P in units of Bohr radii.
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We carried out the numerical integrations for a range of
values of P from 0 to 15 at intervals �=1, followed by
interpolation to construct a smooth representation of the ef-
fective potential. Beyond P=15 the effective potential is not
significantly different from the asymptotic Coulomb form
−2/ P. In Fig. 1 we have plotted the effective potential and
the Coulomb potential for comparison.

We solved Eq. �6� numerically for all the states of princi-
pal quantum number N�5 and give their energies in Table I.
The table shows the eigenenergies �, the total energies
E=−0.52401+� in Ry, and the kinetic energy in eV of
the Ps atom forming each resonance, KE= �E−EPs−EH�Ry
= �E+1.5� 13.6058 eV.

III. CONCLUSIONS AND DISCUSSION

We have investigated the consequences of a model de-
scribing certain hypothetical quasibound or resonant states of
the PsH system constructed from perturbed Coulomb bound
states of the system Ps−+H+. We have used a very simple
approximation for the negative ion and have properly sym-

metrized the wave function with respect to the two electrons.
As expected, there is a series of such resonances that con-
verge to the Ps−+H+ threshold. We have noted that the many
channels that are open in the region of these states are likely
to broaden them and shift their positions. The most practical
way to look for such resonances might be the complex-
rotation technique �9�, which requires quite large expansions
but does not need one to describe the open channels explic-
itly. We expect that some of the lower resonances predicted
here, especially low-lying s states, will prove to be spurious
�9,10�, since our trial functions are not orthogonalized to the
open-channel wave functions.

This calculation, in addition to its intrinsic interest, may
lead to an analogous calculation of resonances in the Ps2
system. �Some earlier work on resonances in this system has
been carried out by Adhikari �11� using a scattering tech-
nique.� The quasibound states in question would then be
Ps−+e+ �and its charge conjugate� and the direct potential is
the same as that derived here. Additional complication arises
due to the need to antisymmetrize the wave function with
respect to the two positrons as well as the two electrons.
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