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Previously proposed schemes of coupling short-range density-functional-based with long-range wave-
function-based methods are tested for the notoriously difficult case of correctly describing the charge distri-
bution in compounds containing late transition elements. We show that for the dipole moments of the group-11
transition metal hydrides and halides the recently developed Coulomb-attenuated Becke three-parameter Lee-
Yang-Parr hybrid functional already leads to a substantial improvement compared to other density functionals.
Further improvement is achieved by combining a gradient-corrected short-range functional of the Perdew-
Burke-Ernzerhof type with coupled-cluster theory. The results clearly demonstrate that mixing of long-range ab
initio Hartree-Fock and post-Hartree-Fock methods helps to remove deficiencies of current density functionals.
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I. INTRODUCTION

Density-functional theory �DFT� and wave-function-
based ab initio methods are to some extent complementary.
DFT provides a very efficient �and yet reliable� treatment of
dynamical correlation effects, in a formally independent-
particle framework with modest basis sets, while an accurate
ab initio description is computer time expensive. On the
other hand, ab initio methods provide an efficient treatment
of static correlation and near degeneracies and also of long-
range correlation, where DFT approximations currently are
less reliable.

Let us mention some shortcomings in approximating �for-
mally exact� DFT. For example the local-density approxima-
tion �LDA� and the generalized-gradient approximations
�GGA� are local or semilocal and do not include highly non-
local long-range dispersive-type �van der Waals� interactions
�1�. As a result, most GGAs do not lead to binding for rare
gas dimers in the gas phase �2�. Second, strongly correlated
systems like Mott insulators of transition metal compounds
are not well described by GGAs �3�, and consequently an
on-site repulsion Hubbard-like term is commonly added
�LDA+U approach �4�� to improve the description of elec-
tron correlation in d shells. In fact, transition-metal- or
f-element-containing compounds are a problematic class of
materials for DFT, as the charge distribution in these com-
pounds is not well described by either the LDA or variants of
the GGA �5,6�. Spin symmetry breaking in transition metal
compounds and consequently spin-spin coupling in magnetic
materials are also affected by these deficiencies �7,8�.

On the other hand, one of the shortcomings in wave-
function-based theories is the need for extensive basis sets
and rather long configuration expansions due to the difficulty

of explicitly describing the interelectronic cusp of the wave
function. It has therefore been suggested �9–12� to relieve
wave-function-based methods from the description of
this cusp, by splitting off the short-range �SR� part,
containing the singularity at rij =0, from the interelectronic
interaction operator �i�j1/rij of the Hamiltonian. The SR
�exchange-�correlation contributions are then calculated by
DFT, and ab initio methods are applied to the smooth long-
range �LR� part only.

In this paper, we use such a coupling in order to remove
some of the DFT deficiencies mentioned above. An ideal test
ground is the group-11 halides where the performance of
DFT is less than satisfactory. It was shown only recently that
dipole moments of transition metal compounds are not well
described by standard or hybrid GGAs �5,13�. Dipole mo-
ments are underestimated in some cases by more than 0.5 D
for the group-11 halides at the Becke three-parameter Lee-
Yang-Parr �B3LYP� �14� level of theory �13�. This rather
poor description of the valence charge density in turn results
in a poor description of the charge density distribution close
to the nucleus. Thus electric field gradients at the nucleus are
affected as well, leading to completely unreliable results
�5,15�. First, we apply the Coulomb-attenuated �CAM�
B3LYP functional, a functional recently developed by Yanai,
Tew, and Handy �16�, within an all-electron Dirac-Coulomb
formalism. This functional already gave notably improved
properties like dipole polarizabilities compared to the stan-
dard B3LYP functional �17�. We then check whether a com-
bination of SR LDA and SR GGA functionals with LR
Møller-Plesset second-order perturbation �MP2� theory and
with LR coupled-cluster �CC� methods—namely, LR CC
with single and double excitations �LR CCSD� and with ad-
ditional perturbative triples �LR CCSD�T�� �18,19�—can fur-
ther improve the situation. For these purposes we used the
already existing SR LDA functionals �20,21� as well as our
lately developed SR GGA functional �22,23� of the Perdew-
Burke-Ernzerhof �PBE� type �24�.
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II. METHODS

The above-mentioned short-range–long-range decomposi-
tion of the interelectronic interaction operator of the Hamil-
tonian is done using the standard error function erf and its
complement erfc=1−erf:

�1�

Then the appropriate short-range density functional can be
constructed using Levy’s constrained-search formalism �25�.
We start with the standard formula for the ground-state en-
ergy:

E0 = min
�

�min
�→�

���T + Vne + Vee���� . �2�

Subtracting and adding �� �T+Vne+Vee
LR ���, i.e., the expres-

sion to be treated explicitly by wave-function methods,
yields

E0 = min
�

�min
�→�

���T + Vne + Vee��� − min
�→�

���T + Vne

+ Vee
LR��� + min

�→�
���T + Vne + Vee

LR���� . �3�

Canceling out �� �Vne ��� in the first two terms on the right-
hand side leads to

E0 = min
�

�E0
SR��� + min

�→�
���T + Vne + Vee

LR���� , �4�

E0
SR��� = min

�→�
���T + Vee��� − min

�→�
���T + Vee

LR��� , �5�

where E0
SR constitutes a �universal� short-range energy

functional E0
SR, which, in turn, can be split into a Hartree

term JSR and an exchange-correlation term Exc
SR:

E0
SR��� = JSR��� + Exc

SR��� , �6�

JSR��� =
1

2
	 ��r1�

erfc��r12�
r12

��r2�dr1dr2. �7�

Equations �5�–�7� define the short-range exchange-
correlation density functional Exc

SR, which contains the differ-
ence of exchange-correlation between full and long-range in-
teraction, as well as corresponding kinetic-energy
contributions. We point out that this procedure is very similar
to that used in standard density-functional theory. So far,
everything is exact. Exc

SR can be approximated in different
ways. In this paper we use specially designed short-range
functionals of the LDA �20,21� and GGA �22,23� type. Note
that the value of the parameter �, occurring in the definition
of the GGA exchange functional �22,23�, should be corrected
to 0.804.

As an immediate consequence of Eqs. �4� and �6�, we
have

E0 = min
�


���T + Vne + Vee
LR��� + JSR���� + Exc

SR����� .

�8�

Here, �� is the one-particle density associated with �. It is
easy to show by variation of � that the “long-range” wave
function �LR minimizing the expression within the curly
brackets on the right-hand side of Eq. �8� must be an eigen-
function of the Hamiltonian

ĤSR−KS
LR = T + Vne + Vee

LR + VH
SR��� + Vxc

SR��� , �9�

where VH
SR= �JSR

�� �i.e., the short-range Hartree potential� and

Vxc
SR=

�Exc
SR

�� �i.e., the short-range exchange-correlation poten-
tial� are density-dependent one-electron potentials supple-
menting the long-range Hamiltonian T+Vne+Vee

LR. This
means that standard ab initio methods of quantum chemistry
can be applied to the problem at hand, with three modifica-
tions: �a� All two-electron integrals must be calculated with
the long-range interelectronic interaction Vee

LR, instead of the
full interaction Vee; �b� additional one-electron potentials
�VH

SR���+Vxc
SR���� have to be included when calculating �LR;

�c� the ground-state energy E0 must be calculated from Eq.

�8� rather than from the expectation value of ĤSR−KS
LR . Note

that ĤSR−KS
LR approaches the usual Kohn-Sham operator of

DFT, and �LR the Kohn-Sham determinant, when the cou-
pling parameter � of Eq. �1� approaches zero. Thus, �LR is
not the true wave function of the system: It does not explic-
itly contain short-range exchange-correlation effects, and ap-
proaches the true wave function of the system only in the
limit �→�. Note also that the computational effort of the
mixed method equals the effort of the corresponding ab ini-
tio method plus an additional DFT calculation. In the follow-
ing it will be shown why this method nevertheless offers
interesting features.

With an exact Exc
SR �and in the limit of an exact long-range

wave function�, the results should be independent of the cou-
pling parameter � in Eq. �1�. For the following calculations
we chose �=0.5, which was found to be a reasonable com-
promise between accuracy and efficiency �cf. �23,26��.

The key point in the CAM DFT approximation is a more
general split of the Coulomb operator, compared to Eq. �1�,

Vee = �
i�j

1 − �� + 	 erf��rij��
rij

+ �
i�j

� + 	 erf��rij�
rij

,

�10�

where the two parameters � and 	 have to satisfy the con-
straints 0
�+	
1, 0
�
1, and 0
	
1. The param-
eter � determines the weight of the Hartree-Fock �HF� ex-
change for all distances, while additional long-range HF
exchange is mixed in with parameter 	. As DFT part we
used the B3LYP functional �14�—the Coulomb-attenuated
form therefore is called CAM B3LYP �16�, with �=0.19,
	=0.46, and �=0.33. The original routines have been writ-
ten by Salek �17� and recently implemented into the program
package DIRAC �27�.
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III. COMPUTATIONAL DETAILS

The experimental bond distances of the group-11 hydrides
and halides are taken from Ref. �28� for the Cu and Ag
compounds and for AuH, and from Refs. �29–31� for the Au
halides. As the first-order density matrix is not available for
MP2 and CCSD, dipole moments �D were determined by
calculating the energy E for different electric field strengths
F �F1=−2�F, F2=−�F, F3=�F, F4=2�F, �F=0.001 a.u.�
and using numerical differentation:

�D = �E�F1� − 8E�F2� + 8E�F3� − E�F4�
12�F

� . �11�

Note that the LDA, PBE, B3LYP, and CAM B3LYP as
well as the HF calculations of Table I were all-electron four-
component relativistic calculations carried out using the pro-
gram DIRAC �27�, based on the Dirac-Coulomb Hamiltonian.
We used our own optimized basis sets with �20s16p11d3f�
for Cu, �21s22p12d4f� for Ag, and �26s24p16d12f� for Au.
For the halides we used the following basis sets: �13s7p4d�

for F, �17s12p4d� for Cl, �19s17p9d2f� for Br, and
�20s19p11d2f� for I. The basis set for hydrogen was
�11s6p4d3f�. This basis will be referred to as basis A in the
following. In order to study the influence of spin-orbit effects
and to be able to directly compare to the scalar-relativistic
pseudopotential results we also performed spin-free �SF�
CAM B3LYP calculations.

All SR DFT–LR ab initio calculations �DFT�LDA, PBE;
ab initio=HF, MP2, CCSD, CCSD�T�� of Table II were per-
formed employing our recent implementation in the MOLPRO
2006 ab initio suite of programs �32�. In these calculations,
we applied augmented correlation consistent polarized va-
lence triple-
 �aug-cc-pVTZ� basis sets for hydrogen, fluo-
rine �33,34�, and chlorine �35�. Energy-consistent relativistic
effective core potentials �36,37� were used together with
aug-cc-pVTZ valence basis sets for bromine and iodine �36�,
and with cc-pVTZ valence basis sets for the metal atoms
�38�. This basis will be denoted as basis B in the following.

As accurate experimental dipole moments for the
group-11 halides are scarce, we determined high-accuracy
reference values. They were calculated from the �aug-�cc-
pV5Z HF energies and from extrapolations of the
�aug-�cc-pVnZ �n=4,5� correlation energies to the complete
basis set limit �CBS� according to Ec=ECBS+an−3 �39�.

TABLE I. Dipole moments �D �D� of CuX, AgX, and AuX �X=H, F, Cl, Br, and I� from standard HF
calculations and from DFT calculations using the LDA, PBE, B3LYP, and CAM B3LYP functionals, with
basis set A �see text�, and from basis set extrapolated standard CCSD�T� calculations �CBS�. Experimental
data �Expt.� are taken from Refs. �40,43–45�; errors in the last digit are quoted in parentheses. Note that the
first six columns have been calculated in all-electron four-component relativistic calculations. Nevertheless,
we compare these values with the scalar-relativistic results in the last column, because the spin-orbit correc-
tion is small. The contribution of the latter is evaluated at the CAM B3LYP level, where spin-free results are
given in the SF CAM B3LYP column.

Basis A
CBS �45�
CCSD�T� Expt.LDA PBE B3LYP CAM B3LYP SF CAM B3LYP HF

CuH 1.92 2.07 2.38 2.63 2.63 3.88 2.71

CuF 4.39 4.40 4.87 5.11 5.11 6.13 5.29 5.77�20� �43�
CuCl 4.10 4.19 4.63 4.94 4.95 6.19 5.19

CuBr 3.82 3.92 4.40 4.77 4.78 6.24 4.94

CuI 3.32 3.46 3.94 4.38 4.47 6.06 4.60

AgH 2.17 2.40 2.68 2.98 2.98 4.10 2.92

AgF 5.08 5.13 5.59 5.86 5.87 6.81 6.04 6.22�20� �43�
AgCl 4.80 4.99 5.38 5.76 5.77 6.92 5.95 6.076�60� �44�
AgBr 4.49 4.69 5.12 5.58 5.59 6.97 5.67 5.620�30� �45�
AgI 3.91 4.16 4.57 5.12 5.22 6.73 5.27 4.550�50� �40�
AuH 0.88 1.04 1.24 1.47 1.49 2.45 1.37

AuF 3.44 3.45 3.91 4.24 4.31 5.40 4.37

AuCl 2.86 3.00 3.38 3.79 3.86 5.14 3.90

AuBr 2.46 2.61 2.99 3.44 3.48 4.99 3.48

AuI 1.86 2.06 2.41 2.89 2.98 4.61 2.94

MAD 1.01 0.87 0.48 0.13 0.11 1.20

D −1.01 −0.87 −0.48 −0.11 −0.08 1.20

���� 0.21 0.21 0.14 0.10 0.10 0.25
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These values are supposed to be quite accurate and mostly
agree fairly well with the experimental values. However, we
found a deviation of over 0.7 D in the case of the AgI mol-
ecule, where we calculated 5.27 D compared to the experi-
mental value of about 4.55 D �40�. Using the continued-
fraction formalism of Goodson �41� we approximated the
full configuration-interaction limit from HF, CCSD, and
CCSD�T� data, and found that the correction due to higher-
order excitations does not exceed 0.03 D for AgI. Comparing
CAM B3LYP and SF CAM B3LYP reveals that spin-orbit
corrections are about 0.1 D �cf. Table I�; core-valence corre-
lation also seems to play a certain role: Treating the outer
core 4s4p shell of Ag at the correlated level further dimin-
ishes the difference by roughly 0.15 D. All these effects can-
not fully account for the observed difference between basis
set extrapolated CCSD�T� and experiment, but we note that
an earlier measurement of Hoeft and Nair �5.10 D� �42�
agrees much better with our theoretical findings.

For all data sets we calculated the mean absolute devia-
tion �MAD� with respect to the complete basis set extrapo-
lated CCSD�T� values �D

ref, the mean deviations �D�, and the
standard deviation of the errors ������, where

���� =
�
i=1

N ���Di
− �Di

ref� − D�2

N
. �12�

IV. RESULTS AND DISCUSSION

The question is whether or not sensitive properties like
dipole moments undergo a substantial improvement when

mixing short-range density-functional-based with long-range
wave-function-based methods. Tables I and II contain the
results of our calculations at the CAM B3LYP �Table I� and
SR DFT–LR CC �Table II� levels of theory. Clearly, we ob-
serve what has been pointed out before �5,6�, i.e., the func-
tionals currently in use in DFT approximations not only yield
dipole moments with rather large MADs of 0.4 to 1.0 D,
they also scatter substantially with ���� of up to 0.24 D.
This is illustrated in Figs. 1 and 2.

We note that the CAM B3LYP approximation, differently
from its borderline cases B3LYP and HF, yields quite good
results already: whereas B3LYP with a MAD of 0.48 and
���� of 0.14 clearly underestimates the dipole moments of
group-11 hydrides and halides, and HF with a MAD of 1.20
and ���� of 0.25 drastically overestimates them, CAM
B3LYP only slightly overestimates them with a MAD of 0.13
and ���� of 0.10. A comparison with the spin-free calcula-
tions �SF CAM B3LYP� shows that spin-orbit effects are
rather small ��0.1 D�, as they are only of second order.
Four-component LDA and PBE results are also included in
Table I, which can be compared to the corresponding scalar
relativistic pseudopotential results in Table II. Differences
between both results are mainly due to inclusion of spin-orbit
coupling and the different basis sets used.

We now compare our best results—namely, SR PBE–LR
CCSD�T� ones—with the pure PBE and pure CCSD�T�
limit: SR PBE–LR CCSD�T� yields maximum errors of
0.18 D overestimation �AuH� and of 0.12 D underestimation
�AgBr� for the hydrides and halides, respectively. The mean

TABLE II. Dipole moments �D �D� of CuX, AgX, and AuX, �X=H, F, Cl, Br, and I� from DFT calculations, from ab initio HF, MP2,
CCSD, and CCSD�T� calculations, and from the corresponding mixed SR DFT–LR ab initio calculations, with basis set B �see text�. In each
column with DFT values two adjacent numbers are given, which refer to LDA and PBE results, respectively. Comparison is made to basis
set extrapolated standard CCSD�T� calculations �CBS�. For experimental results, see Table I.

Basis B
CBS

CCSD�T�DFT DFT-HF DFT-MP2 DFT-CCSD DFT-CCSD�T� HF MP2 CCSD CCSD�T�

CuH 1.98 2.17 3.15 3.20 2.94 2.99 2.81 2.86 2.80 2.85 3.95 2.95 3.07 2.87 2.71

CuF 4.43 4.44 5.57 5.55 5.41 5.40 5.32 5.30 5.31 5.28 6.20 5.41 5.60 5.43 5.29

CuCl 4.17 4.31 5.55 5.56 5.30 5.31 5.20 5.21 5.17 5.18 6.26 5.30 5.51 5.30 5.19

CuBr 3.80 3.96 5.33 5.35 5.01 5.03 4.91 4.93 4.87 4.89 6.17 5.07 5.29 5.06 4.94

CuI 3.41 3.59 5.10 5.12 4.71 4.74 4.60 4.63 4.56 4.59 6.00 4.74 4.98 4.71 4.60

AgH 2.14 2.38 3.45 3.53 3.10 3.18 2.99 3.06 2.97 3.04 4.17 3.15 3.24 3.08 2.92

AgF 5.06 5.14 6.33 6.32 6.13 6.12 6.04 6.03 6.02 6.01 6.90 6.28 6.35 6.19 6.04

AgCl 4.74 4.95 6.33 6.36 5.98 6.02 5.88 5.91 5.85 5.88 6.99 6.15 6.24 6.06 5.95

AgBr 4.33 4.56 6.08 6.12 5.65 5.70 5.54 5.59 5.50 5.55 6.88 5.86 5.97 5.77 5.67

AgI 3.88 4.13 5.82 5.87 5.28 5.34 5.18 5.24 5.13 5.18 6.69 5.44 5.59 5.36 5.27

AuH 0.94 1.12 1.92 2.00 1.54 1.61 1.49 1.57 1.48 1.55 2.53 1.30 1.59 1.45 1.37

AuF 3.58 3.62 4.91 4.91 4.59 4.59 4.47 4.46 4.44 4.43 5.51 4.57 4.70 4.46 4.37

AuCl 2.97 3.15 4.54 4.59 4.02 4.08 3.93 3.99 3.89 3.94 5.25 3.98 4.17 3.94 3.90

AuBr 2.48 2.69 4.16 4.23 3.54 3.61 3.47 3.54 3.42 3.49 5.04 3.51 3.76 3.52 3.48

AuI 1.97 2.20 3.75 3.83 3.02 3.11 2.97 3.06 2.92 3.01 4.72 2.87 3.22 2.96 2.94

MAD 0.98 0.81 0.49 0.53 0.11 0.15 0.06 0.07 0.07 0.07 1.24 0.15 0.31 0.10

D −0.98 −0.81 0.49 0.53 0.11 0.15 0.01 0.05 −0.02 0.02 1.24 0.13 0.31 0.10

���� 0.24 0.23 0.14 0.17 0.07 0.08 0.07 0.08 0.08 0.08 0.23 0.10 0.04 0.04
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absolute deviation is 0.07 D, ���� 0.08 D. The maximum
error of the PBE functional is an underestimation of 0.54 D
�CuH, AgH� and of 1.14 D �AgI� for the hydrides and ha-
lides, respectively. The MAD amounts to 0.81 D, ���� is
0.23 D. Thus, the PBE results can be improved by an order

of magnitude when mixing in LR CCSD�T�. The scattering
behavior also becomes better: ���� decreases to one-third of
its original value for the mixed calculation. The CCSD�T�
maximum errors are much better than the PBE ones: We find
an overestimation of 0.16 D �CuH, AgH� and of 0.15 D
�AgF� for the hydrides and halides, respectively. The
CCSD�T� MAD is a bit larger than for the mixed method,
namely, 0.1 D, whereas its ���� is somewhat smaller–half as
big as for the mixed method. The SR PRB–LR CCSD�T�
results are thus comparable to pure CCSD�T� results.

Let us now study how the modification of the DFT level
affects the results: Using pure LDA instead of pure PBE
leads to a MAD deterioration of about 0.2 D, whereas the
standard deviation of the error increases only by 0.01 D. In
contrast, using SR LDA instead of SR PBE leaves the MAD
and ���� unchanged, and only the mean deviation �D� un-
dergoes a small change from 0.02 D to −0.02 D. Not only
can the LDA results be ameliorated by an order of magnitude
by mixing in LR CCSD�T�—the outcomes are even nearly
indistinguishable from SR PBE–LR CCSD�T� results. The
situation changes for DFT functionals with full exact ex-
change, denoted as DFT�c�. LDA�c� as well as PBE�c� over-
estimate the dipole moment by over 1.3 D, ���� is about
0.25 D; admixture of LR CCSD�T� only slightly reduces the
MAD to roughly 1.0 D and halves ����. Once more it turns
out that the combination of nonlocal HF exchange with local
DFT correlation is less recommendable than DFT with a lo-
cal description of both exchange and correlation.

Altering the theoretical level on the ab initio side from
CCSD�T� to CCSD significantly deteriorates the MAD from
0.1 to 0.31 D. The SR PBE–LR CCSD MAD, however, is
exactly the same as the SR PBE–LR CCSD�T� MAD; only
the D changes by 0.03 D; ���� is unaffected for CCSD and
SR PBE–LR CCSD, respectively. Basically the same hap-
pens when using SR LDA LR CCSD. This means that for the
mixed method, triples can be omitted without any loss of
quality, in contrast to the pure ab initio case. This is in line
with our previous findings �22,23�. Note that dipole moments
calculated with pure MP2 have a MAD of not more than
0.15 D and a ���� of 0.1 D, outperforming the pure CCSD
results. Mixing in of SR DFT leaves these more or less un-
modified.

Comparing the pure LDA and pure HF limits with the SR
LDA–LR HF method �Table II� reveals the role of LR cor-
relation: Though the mixture of both methods approximately
halves the MAD from 0.98 D in LDA and 1.24 D in HF to
0.49 D in SR LDA–LR HF and diminishes ���� from
0.24 D in LDA and 0.23 D in HF to 0.14 D in SR LDA–LR
HF, the correlation contribution that is required to reach the
SR DFT–LR CCSD �T� values of 0.07 D MAD and 0.08 D
���� is considerable.

Unfortunately, the basis set dependency of the mixed
methods is not better �rather slightly worse� than for the pure
ab initio method. This was shown by appropriately extending
our calculations from a basis of triple-
 quality �basis B� to a
basis of quadruple-
 quality. Presumably, this is due to the
fact that the pure DFT methods also show an unexpectedly
large basis set dependency, which also seems to affect the
basis set dependency of the mixed methods. Nevertheless,
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FIG. 1. �Color online� Calculated dipole moments �D �D� of
CuX, AgX, and AuX �X=H, F, Cl, Br, and I� versus the CCSD�T�
basis set limit values. Calculations were performed using pure
B3LYP, CAM B3LYP, and pure HF with basis A.
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FIG. 2. �Color online� Calculated dipole moments �D �D� of
CuX, AgX, and AuX �X=H, F, Cl, Br, and I� versus the CCSD�T�
basis set limit values. Calculations were performed using pure PBE,
the SR PBE–LR CCSD method, and pure CCSD with basis B.
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the results for the mixed methods with quadruple-
 basis are
still very satisfying: SR PBE–LR CCSD�T�, for example, has
a MAD of 0.09 D and a ���� of 0.09 D.

V. CONCLUSIONS

The CAM B3LYP approximation describes dipole mo-
ments of all group-11 hydrides and halides reasonably well,
and we hope that this method could also be applied for the
calculation of electric properties in other transition-metal-
containing compounds. The mixture of SR DFT �LDA or
PBE with local DFT exchange� and LR CCSD further im-
proves the situation and yields excellent results already for a
medium size basis of triple-
 quality. They show a smaller
MAD than the CCSD�T� results with the same basis set qual-
ity though the computational cost for the mixed method is

lower. To get results that surpass SR DFT–LR CCSD calcu-
lations with triple-
 basis sets, at least CCSD�T� calculations
with quadruple-
 basis sets are required. Interestingly, in the
case of the mixed methods, the effect of perturbative triples
is nearly negligible. The mixed method seems to be less
sensitive to both the quality of the density functionals and
the level of ab initio correlation treatment than pure DFT or
ab initio methods.
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