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The “released-phase” diffusion quantum Monte Carlo method is used to calculate the ground-state energies
of atoms with nuclear charges from Z=2,3 ,4 , . . . ,26 for magnetic field strengths relevant for neutron stars.
The feature of our study is the use of adiabatic approximation wave functions as guiding wave functions to
initialize the quantum Monte Carlo procedure. Our calculations are motivated by the discovery of broad
features in the thermal spectra of isolated neutron stars, which may be due to heavy atoms. Our results confirm
previous results for nuclear charge numbers up to 10, and are the most accurate ones available in the literature
to date for Z�10.
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I. INTRODUCTION

The subject of atoms in strong magnetic fields has been a
“hot topic” ever since the discovery of huge magnetic fields
in white dwarf stars �103 to 105 T� and in neutron stars �106

to 109 T� in the 1970s. The intriguing new aspect of atomic
physics at those field strengths is that the effects of the mag-
netic field become of the same order of, or larger than, the
effects of the Coulomb binding, and thus nonperturbative,
and atomic structure is completely rearranged. For the nth
excited states of the simplest system, the hydrogen atom, the
switchover from Coulomb field to magnetic field dominance
occurs around B0 /n3, with B0=4.701 08�105 T the atomic
unit of magnetic field strength, which shows that for low-
lying states white dwarf magnetic fields are necessary, while
for Rydberg states n�30 laboratory field strengths are suffi-
cient to produce the nonperturbative, nonintegrable, situation
which rendered the hydrogen atom in strong magnetic fields
a paradigm of “quantum” chaos in the 1980s. A review of the
relevant results for hydrogen and helium in strong magnetic
fields, including their ramifications in astrophysics and
chaos, up to 1994 can be found in Ref. �1�.

A host of researchers, using a variety of methods, has
since contributed to the field to make progress also for
heavier atoms in magnetic fields. Among the methods were
rigorous mathematical estimates �2–5�, sparse grid combina-
tion techniques �6,7�, density-functional calculations �8–13�,
finite-element methods �14–18�, two-dimensional-discrete-
variable methods on Laguerre meshes �19–21� or in combi-
nation with finite elements �22,23�. Different Hartree-Fock
�HF� approaches were pursued: diagonalization in two-
particle bases of Gaussian-type orbitals �24,25�, HF calcula-
tions on finite-difference meshes �26–34�, in adiabatic ap-
proximation with z-Slater-type orbitals �35–37�, and finally
HF calculations with r-Slater-type orbitals �38�.

The discovery of the thermal emission spectra of isolated
neutron stars with temperatures of a few 105 K, made pos-
sible by the launch of two x-ray satellites at the end of the
1990s, the Chandra X-Ray Observatory by NASA and the

XMM-Newton Observatory by ESA, and the subsequent dis-
covery of features in the x-ray spectra of the neutron star 1E
1207 �39� and three other isolated neutron stars �40–42� gave
new impetus to studies of medium-Z elements in strong mag-
netic fields �43–45� since the observed features could be due
to atomic transitions in elements that are fusion products of
the progenitor star, and thus constituents of the thin atmo-
spheric layer �with scale height �0.1–10 cm and density
�0.1–100 g/cm3 �46�� that covers the stellar surface. The
elemental compositions of the atmospheres are presently not
well known, and any element between H and Fe is feasible
�44�. However, to calculate synthetic spectra for model at-
mospheres, and thus to be in a position to draw reliable con-
clusions from observed spectra to the elemental composition
of the atmosphere and the distribution of elements on differ-
ent ionization stages, accurate atomic data for these elements
at very strong magnetic fields are indispensible.

In this paper we will apply a method to the problem of
heavy atoms and ions in neutron star magnetic fields which,
in principle, yields the exact ground state energies of inter-
acting many-electron systems, namely, the diffusion quantum
Monte Carlo method �DQMC�. This method has been suc-
cessfully employed in calculations of electronic ground state
properties in solid state physics, but also in atomic and mo-
lecular physics. In particular, Ceperley and co-workers, the
pioneers of the application of the DQMC method �47,48�, in
the 1990s also calculated energies of He in strong magnetic
fields up to 105 T, where the Coulomb binding still domi-
nates and an approach with guiding wave functions in spheri-
cal symmetry is viable.

It is the purpose of this paper to extend the DQMC
method to neutron star magnetic field strengths B�107 T,
where guiding wave functions must be used that account for
the cylindrical symmetry imposed by the growing magnetic
field dominance. To demonstrate the strength of the DQMC
procedure we will apply it to the calculation of the ground
state energies of many-electron atoms in strong fields with
nuclear charges up to iron, Z=26, and compare with litera-
ture results wherever this is possible. We will also show that
the application of the method to ions, which are of astro-
physical interest, is straightforward.

The paper is organized as follows. Section II recapitulates
the essential ingredients of the diffusion quantum Monte*wunner@itp1.uni-stuttgart.de
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Carlo method. The method is extended to the case of atoms
at neutron star magnetic field strengths in Sec. III. There we
propose to use adiabatic approximation Slater determinants,
augmented by a Jastrow factor appropriate in magnetic
fields, as guiding wave functions, and describe a way how to
compute these efficiently. Finally, in Sec. IV, the method is
demonstrated by applying it to the calculation of the ground
state energies of neutral atoms and the ground state energies
of iron ions in all ionization stages from heliumlike to neu-
tral at neutron star magnetic field strengths.

II. DIFFUSION QUANTUM MONTE CARLO
METHOD: ESSENTIALS

To render our presentation self-contained we briefly reca-
pitulate the essential features of the DQMC method which
will be necessary to understanding what follows. A detailed
foundation of the method can be found in �47�.

The basic idea is to identify the ground state wave func-

tion �0�R� , t� �R� = �r�1 , . . . ,r�n�� of an N-body Hamiltonian

Ĥ with a particle density whose correct distribution is found
by following the random walk of many test particles �“walk-
ers”� in imaginary time in 3N-dimensional configuration
space. The fact is exploited that in imaginary time

evolution, �= it, any given initial distribution ��R� ,��
=�cn	n�R� �e−�En−E0��, with 	n�R� � the stationary eigenfunc-

tions of Ĥ, will converge to the ground state 	0 for �→
, if
E0 is adjusted to be the true ground state energy. As is well
known, in imaginary time the time-dependent Schrödinger

equation turns into a diffusion equation for ��R� ,��, in which
the total potential energy multiplied by the wave function
takes the role of a source term. The Coulomb interactions
between the charged particles cause large fluctuations at
short ranges in simulations of the diffusion equation, which,
however, can be greatly reduced by the technique of impor-
tance sampling.

The idea is to work with a probability distribution other

than ��R� ,�� to obtain the same averages. To this end, the
wave function is multiplied by a known trial function �G

�guiding wave function�, f�R� ,�����R� ,���G�R� �, which
turns the Schrödinger equation in imaginary time for � into

a drift-diffusion equation for the density distribution f�R� ,��,

�1�

In Eq. �1� the branching term is given by the “local excess

energy” EL�R� �−ET, where the “local energy” is defined by

EL�R� � = Ĥ�G�R� �/�G�R� � , �2�

and ET is a trial energy offset which is adjusted during the
simulation and eventually should converge to the correct
ground state energy. The drift term contains the “quantum
force” vector which depends on the guiding wave function,

FQ
� �R� � � ��G�R� �/�G�R� � . �3�

In a quantum Monte Carlo simulation, the drift-diffusion
equation �1� describes both the propagation and the branch-
ing �i.e., creation or annihilation� of walkers.

To obtain the solution of �1�, the equation is brought into
integral form

f�R� �,� + ��� =� dR� G̃�R� �,R� ;���f�R� ,�� , �4�

with the propagator

G̃�R� �,R� ;��� = 	R� �
e−Ĥ��
R� � . �5�

Since the kinetic and potential energy operators do not com-
mute, a factorization of the time evolution operator �Trotter-
Suzuki decomposition� is obtained only for small time steps,

G̃�R� �,R� ;��� = 	R� �
e−T̂��e−V̂��
R� � + O���2� , �6�

where

T̂ = − 1
2�� 2 + �� · F� �R� � , �7�

V̂ = �EL�R� � − ET� . �8�

Thus the propagator can be written in this “short-time ap-
proximation” as

G̃�R� �,R� ;��� � e−���EL�R���−ET�	R� �
e−��T̂
R� �

= G̃B�R� �,R� ;���G̃D�R� �,R� ;��� , �9�

where the branching and diffusion �drift� Green’s functions
are given by

G̃B�R� �,R� ;��� = e−���EL�R���−ET�, �10�

G̃D�R� �,R� ;��� =
1

�2����3N/2e−�R�� − R� − ��F� �R� ��2/2��, �11�

respectively. Whether a Monte Carlo move from R� to R� � in
the time step �� is accepted or not is decided by the Me-
tropolis algorithm �49�,

Paccept�R� ,R� �;��� = min1,

�G�R� ��
2G̃D�R� ,R� �;���


�G�R� �
2G̃D�R� �,R� ;���
� .

�12�

Since we have the condition ���1 on the one hand and �
→
 on the other hand, it is evident that many time steps
must be carried out in a simulation, which renders the simu-
lation numerically expensive. The ground state energy in dy-
namical equilibrium is finally given by the arithmetic mean
value of the local energies EL evaluated at the positions of
the walkers,

E0 = 	EL� � lim
�→


� f�R� ,���ĤG�R� �/G�R� ��dR�

� f�R� ,��dR�
. �13�
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Because of its interpretation as a density distribution,

f�R� ,��=��R� ,���G�R� � must always be real and non-

negative. For ��R� ,�� and �G�R� � both real this implies that
the nodes of the guiding wave function determine the nodes
of the ground state, and both functions must change sign
when crossing a nodal surface. Walkers which would lead to
a change of sign in the density distribution are rejected. This
is the “fixed-node” approximation �cf. �47,50��.

With the addition of a magnetic field the ground state will,
in general, be complex valued. For complex-valued states the
analogous method is the “fixed-phase” quantum Monte Carlo
technique �FPDQMC� �51�. It assumes a trial phase of the
complex many-body wave function, and exactly solves the
resulting equation for its modulus using random walks. More
specifically, both the state and the guiding wave function are
decomposed into modulus and phase factor, and by defining

f�R� ,��=�*�R� ,���G�R� � the requirement that f be non-
negative is guaranteed by assuming the phases of state and
guiding wave function to coincide. Dropping the imaginary
part of the quantum force as part of the fixed-phase approxi-
mation, the quantum force is given by the real part of the
logarithmic derivative of the guiding wave function

F� �R� � =
�� 
�G�R� �



�G�R� �

= Re��� �G�R� �

�G�R� �
� . �14�

By contrast, the local energy becomes complex valued,
which implies that in the branching propagator,

�15�

the phase information ��R� � ,��� can be split off, and the
simulation can still be performed in real space.

A final generalization is the “released-phase” method
�52�: Every walker collects a total phase information of
��s�=�i=1

s ��i� during its random walk until step s, which
contributes with its weight ��s� to the average of the local
energy over all walkers. All final results in this paper have
been obtained using the released-phase diffusion quantum
Monte Carlo method �RPDQMC�.

In Fig. 1 the structured flow of a RPDQMC simulation is
shown. The essential steps are the following:

�1� initialize walkers distributed according to the guiding

wave function �G�R� �, determined in a forerunner variational
MC which also yields the initial value for the trial energy ET;

�2� move every walker R� �=R� +�� +��F� Q�R� �, where �� is a
Gaussian random vector with mean zero and standard devia-

tion ���, and F� Q�R� � is the local quantum force;
�3� accept move if Metropolis acceptance probability

Paccept�R� ,R� � ;��� is greater than some random number X
� �0,1�;

�4� calculate the local energy EL�R� ��;

�5� release phase ��R� � ,���, determine accumulated phase

��s�, execute branching according to the value of PB�R� ��,
delete, keep, or copy walkers;

�6� average over local energies of all walkers in step s;
�7� loop over s until s=smax;
�8� average over s to obtain the block energy EB�b�;
�9� update trial energy ET;
�10� loop over blocks b until b=bmax;
�11� average over blocks b to obtain the average block

energy, and thus the final result for the ground state energy of
the complete simulation.

FIG. 1. Nassi-Shneiderman diagram of the released-phase
DQMC method. The method is initialized by a variational quantum
Monte Carlo simulation for the guiding wave function. The index b
counts the number of calculations �“blocks”�, in each block s steps
are carried out, j is the walker index. In our simulations the total
number of blocks was 700, the number of steps 200, and 500 walk-
ers were used. The averaging over the block energies only starts at
block bs, where the walkers have reached dynamical equilibrium.
The m=1 flag takes care of the rare cases where because of very
low acceptance probabilities a walker becomes locked in some part
of configuration space. Setting PB=0.9 offers the possibility of ei-
ther deleting or keeping this walker.
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III. DQMC FOR NEUTRON STAR MAGNETIC
FIELD STRENGTHS

A. Choice of the guiding wave functions

The feature of our application of the diffusion quantum
Monte Carlo method is the use of adiabatic approximation
wave functions as guiding wave functions. That is, the guid-
ing wave function of the N-electron atoms is taken to be a
Slater determinant of single-particle orbitals i which are
products of Landau states �n,m and longitudinal wave func-
tions Pn,m,�

i�r�� = �nm��,��Pnm��z� . �16�

Here n denotes the Landau level, m is the magnetic quantum
number, and � is the number of nodes of the longitudinal
wave function. Since at neutron star magnetic field strengths
the single-particle Coulomb excitation energies are much
smaller than the spacing of the Landau levels, the cyclotron
energy ��B ��1 keV for B�107 T�, it is sufficient to restrict
oneself to the lowest Landau level n=0. In this level, all
electrons have spin sz=−1/2, and the spin quantum number
can be omitted in what follows. While the Landau states are
given by well-known analytical functions, the longitudinal
wave functions must be determined numerically in a self-
consistent way.

The intuitive meaning of the adiabatic approximation, in-
troduced as early as 1937 by Schiff and Snyder �53�, is that
the magnetic field is strong enough that the “gyration” of the
electron in the plane perpendicular to the magnetic field in
quantized Landau orbits is “fast” compared with the oscillat-
ing motion of the electron in the direction of the field, which
is caused by the Coulomb attraction of the positively charged
nucleus or core. For this motion the electron effectively
“sees” only the Coulomb attraction averaged over the Lan-
dau state.

Defining the reference magnetic field BZ where for a
nuclear charge Z the switchover from Coulomb to magnetic
field dominance occurs by BZ=Z2B0�Z24.701�105 T, and
introducing the dimensionless magnetic field parameter �Z
=B /BZ, one can write the condition for the adiabatic approxi-
mation to hold quantitatively as �Z�1. For �Z=1 the Lar-
mor radius aL=�2� /eB becomes equal to the effective Bohr
radius aZ=a0 /Z for nuclear charge Z, and the cyclotron en-
ergy is 4 times the effective Rydberg energy EZ=Z2ERyd �a0
and ERyd are the Bohr radius and Rydberg energy of the
hydrogen atom, respectively�.

A stumbling block in the construction of the Slater deter-
minant of the N-electron atom in an intense magnetic field is
that no clear shell structure exists as in the field-free case. An
inspection of the energy level spectrum of the single-electron
problem shows �see, e.g., Fig. 9.1 in Ruder et al. �1�� that the
states are ordered in tightly bound states, whose energies
monotonously increase with decreasing magnetic quantum
number m=0,−1,−2, . . ., and hydrogenlike states with an en-
ergy spectrum roughly corresponding to that of s states of the
field-free hydrogen atom. The natural choice is to place the
electrons successively into the tightly bound magnetic sub-
levels until degeneracy with hydrogenlike states occurs, and

hydrogenlike states with low absolute values of the magnetic
quantum number must be populated.

Hartree-Fock calculations for many-electron atoms in
adiabatic approximation were first performed by Neuhauser
et al. �35� and later by Miller and Neuhauser �36�. Our ap-
proach �54� differs from theirs in that we employ more ad-
vanced and efficient numerical techniques, viz. finite ele-
ments and B-spline interpolation �55,56�. More specifically,
the interval �0,zmax� on the z axis is divided into n finite
elements Ij = �zj−1 ,zj� with quadratically widening element
borders �zk=k2zmax/n2, k=0,1 , . . . ,n�, and the longitudinal
part of each single-particle orbital i�r����i�� ,��Pi�z� is ex-
panded in terms of B splines, Pi�z�=�l�l

�i�Bl�z�. The advan-
tage of using B splines, as opposed to Lagrange or Hermite
interpolation, lies in their global definition on the interval
�0,zmax�. The expansion coefficients �l

�i� are determined by
converting the energy extremum principle into an equivalent
one for the coefficients, and numerically solving the resulting
system of inhomogeneous linear equations

�
j,l

Akl
�j��l

�i� = − �
j

bk
�j�. �17�

The matrix Akl
�j� and the vector bk

�j� for single-particle orbital
i are given by

Akl
�j� = �

Ij

dzBk�z�ÂBl�z� , �18�

bk
�j� = �

Ij

dzBk�z�b�z� , �19�

where the integration extends over the jth finite element Ij,
and

Â =
�2

�z2 − Vi
EF�z� + �i − �

j=1

j�i

N �
−





dz�Pj
2�z��Wij

DI�z,z�� ,

�20�

b�z� = �
j=1

i�j

N

Pj�z��
−





dz�Pj�z��Pi�z��Wij
EX�z,z�� . �21�

In Eq. �20�, Vi
EF�z� is the expectation value of the nuclear

potential with respect to the Landau orbital �i and �i is a
Lagrange parameter, and in �21� Wij

DI�z ,z�� and Wij
EX�z ,z��

denote the direct and exchange potential terms of the
electron-electron interaction with respect to the Landau or-
bitals �i and � j. Since the potentials depend on the longitu-
dinal wave functions, and thus on the coefficients, the solu-
tion must be found iteratively in a self-consistent way. The
iteration is initialized by distributing the electrons on mag-
netic sublevels according to the level scheme of the hydro-
gen atom in intense magnetic fields and by appropriate core
charge scaling of the z-dependent wave functions. In our
calculations, we used sixth-order B splines and typically 15
finite elements. The maximum integration radius zmax was
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chosen such that all longitudinal wave functions have de-
cayed exponentially �zmax�2–5 atomic units�. A more de-
tailed description of the method along with results for ener-
gies and oscillator strengths in adiabatic approximation,
calculated with it, will be presented elsewhere �57�.

In the DQMC simulation, the evaluation of the quantum
force requires the derivative of the adiabatic approximation
guiding wave function. This can be accomplished in a
straightforward way. The derivative of a Slater determinant
with respect to a particle coordinate is again a Slater deter-
minant, which in one column includes derivatives of the
single-particle orbitals. The derivatives of the Landau func-
tions with respect to the � and � coordinates can be calcu-
lated analytically, and the derivatives of the B-spline basis
functions with respect to z are particularly simple because of
their form and their polynomial nature. This clearly is a big
advantage of our ansatz.

B. Jastrow factors

The pure Slater-determinant form of the guiding wave
function �G

ad so far does not include correlation effects
among the electrons and with the nucleus. To incorporate
such effects it is common to introduce a Jastrow factor, i.e.,
to define a new guiding wave function �G=�JF�G

ad

=e−U�
r�
��G
ad, where the Jastrow factor �JF is to modify the

guiding wave function at small distances, but to converge to
a constant value at large distances. For the electron-electron
�EE� and electron-nucleus �EN� correlations U=uEE+uEN we
adopt the forms

uEE = �
i,j=1

i�j

N
aEE

JF rij

1 + bEE
JF rij

, rij = 
r�i − r� j
 , �22�

uEN = �
i=1

N
aEN

JF ri

1 + bEN
JF ri

, ri = 
r�i
 . �23�

For a specific choice of aJF the Jastrow factor �JF removes
the Coulomb singularity �“cusp condition” for vanishing
electron-nucleus or electron-electron distance �58��. The in-
verse length parameters bEE

JF and bEN
JF can be used to optimize

the guiding wave function. For simplicity, here we choose
both parameters equal, bEE

JF =bEN
JF �bJF. Our Jastrow factor for

an N-electron atom in a strong magnetic field thus reads

�JF = exp�1

4 �
i,j=1

i�j

N
rij

1 + bJFrij
− Z�

i=1

N
ri

1 + bJFri� . �24�

Figure 2 shows the expectation value of the energy of the
ground state EVQMC of neon in a magnetic field of B
=108 T with respect to �G=�JF�G

ad as a function of the
Jastrow parameter bJF. The energy value is evaluated by per-
forming a QMC simulation with 
�G
2 as distribution func-
tion. The energy value in adiabatic approximation �upper
horizontal line at −10.4 keV� and the final result of the RP-
DQMC simulation �lower horizontal line� are shown for
comparison, as is the standard deviation � of the local en-

ergy. It is evident that there exists an optimum value of bJF

�14.58, which already lowers the adiabatic approximation
energy by approximately two-thirds of its distance to the
released-phase value. It can also be seen that close to the
optimum value the standard deviation also becomes mini-
mum. We note that the optimum value of bJF lies close to ��.
This is not unexpected since the characteristic inverse length
in a magnetic field is the inverse of the Larmor radius,
which, in atomic units, is 1 / �aL /ao�=��. Therefore in all
calculations we fixed bJF=��. It follows that the Jastrow
factor effectively modifies the adiabatic approximation guid-
ing wave function only at distances smaller than the Larmor
radius.

The inclusion of the Jastrow factor leads, via the product
rule, to additional terms in the derivatives of the guiding
wave function, and thus in the quantum force. These, how-
ever, can again be treated analytically. We note that the Ja-
strow factor does not so much influence the final RPDQMC
energy values but rather reduces the fluctuations of the block
energies and leads to acceptance probabilities of greater than
99%, which are signatures of good QMC simulations.

IV. RESULTS AND DISCUSSION

To speed up the results, we parallelized the DQMC simu-
lation code. The parallelization strategy, which exploited the
message passing interface commands reduce and broadcast,
was �a� distribute walkers on the available nodes, which in-
dependently run the DQMC procedure for the number of
steps given, �b� after each block, calculate the block average
values collecting the information from all nodes via reduce,
adjust the trial energy ET, broadcast it to all nodes, �c� for
load balancing, after branching redistribute the walkers on
the nodes via broadcast.

Our calculations were performed on the cacau cluster of
the High Performance Computing Center Stuttgart �HLRS�,
where we used 25 double-processor nodes �3.2 GHz,
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FIG. 2. �Color online� Ground state energy EVQMC and the stan-
dard deviation � of the local energy in dependence of the Jastrow
parameter bJF for neon �Z=10� and B=108 T. E�bJF→ 
 � �upper
horizontal line� corresponds to the case where no Jastrow factor is
present, i.e., to the energy value in adiabatic approximation.
ERPDQMC �lower horizontal line� is the final result of the released-
phase simulation.

QUANTUM MONTE CARLO STUDIES OF THE GROUND… PHYSICAL REVIEW A 76, 032501 �2007�

032501-5



1 GByte RAM per node�. The advantage of parallelization is
evident from the fact that, e.g., the run time of the calculation
of the ground state of iron �26 electrons� at B=108 T could
be reduced from 223 hours on a single-processor machine to
4.5 hours. This highlights the importance of the availability
of parallel high performance computers for this type of simu-
lation.

For the ground state of neon at B=107 T, Fig. 3 shows the
typical flow of a diffusion quantum Monte Carlo simulation.
The figure depicts the energy offset ET, the block energy EB,

and the averaged block energy 	EB� as a function of the
number of blocks performed. For comparison, the energy
value in the adiabatic approximation determined with our
own Hartree-Fock finite-element calculation �HFFEM� and
the hitherto best energy value obtained by a two-dimensional
Hartree-Fock method �2DHF� �29� are shown as horizontal
lines. The complete simulation goes through three stages.
During the first 100 blocks, a variational quantum Monte
Carlo calculation is performed. Since the adiabatic approxi-
mation guiding wave function is augmented by the Jastrow
factor, the VQMC calculation already lowers the energy in
comparison with the initial adiabatic approximation result.
This stage is followed, in the next 300 blocks, by a fixed-
phase diffusion quantum Monte Carlo simulation. It is seen
that the onset of the simulation leads to a considerable drop
in the energy. Finally, in the last 300 blocks a released-phase

TABLE I. Energy values in keV for the ground states from helium to neon at B=107 T. �RPDQMC,
released-phase; FPDQMC, fixed-phase; VQMC, variational quantum Monte Carlo simulation; HFFEM,
Hartree-Fock finite-element method in adiabatic approximation; 2DHF, two-dimensional Hartree-Fock �29�;
MCPH3, multiconfigurational perturbative hybrid Hartree-Hartree-Fock �43�. Numbers in parentheses at the
HFFEM results designate the number of electrons occupying an excited state. Parameters of the QMC
simulations, 500 walkers; time step ��=10−4 a.u.�

Z RPDQMC FPDQMC VQMC HFFEM 2DHF MCPH3

2 −0.2649 −0.2649 −0.2617 −0.2556 −0.26387 −0.2613

3 −0.5421 −0.5422 −0.5329 −0.5167 −0.54042 −0.5337

4 −0.9029 −0.9020 −0.8845 −0.8474 −0.89833 −0.8897

5 −1.338 −1.338 −1.305 −1.239 −1.33229 −1.327

6 −1.847 −1.849 −1.792 −1.687 −1.83895 −1.854

7 −2.432 −2.429 −2.349 −2.184 −2.41607

8 −3.100 −3.093 −2.980 −2.752�1� −3.08253�1�
9 −3.846 −3.841 −3.686 −3.373�1� −3.82966�1�
10 −4.675 −4.668 −4.455 −4.041�1� −4.65087�1�
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FIG. 3. �Color online� Behavior of the block energy EB �ragged
curve� and the averaged block energy 	EB� �smooth curve� in the
DQMC simulation for the ground state energy of neon �Z=10� at
B=107 T as a function of the number of blocks. The simulation is
divided in three stages, indicated by the black vertical lines: a
VQMC, a FPDQMC, and a RPDQMC simulation. The value at the
end of the simulation is E0=−4.675 keV. The dashed vertical lines
indicate the blocks where dynamical equilibrium of the walkers is
reached. In each block, 200 time steps ��=10−4 a.u. were per-
formed. �HFFEM �top horizontal line�, energy value in adiabatic
approximation; 2DHF �bottom horizontal line�, energy value of
Ivanov and Schmelcher �29�.�
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FIG. 4. �Color online� Same as Fig. 3, but for the ground state
energy of iron �Z=26� at B=108 T. The value at the end of the
simulation is E0=−59.366 keV. Here in each block 200 time steps
��=2�10−5 a.u. were performed. �HFFEM �top horizontal line�,
energy value in adiabatic approximation; DF �second horizontal line
from top�, density-functional result of Jones �9�.�
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TABLE II. Energy values in keV for the ground states from helium to silicon at B=5�107 T. �Designa-
tions and parameters as in Table I.�

Z RPDQMC FPDQMC VQMC HFFEM 2DHF MCPH3

2 −0.4626 −0.4629 −0.4592 −0.4551 −0.46063 −0.4567

3 −0.9661 −0.9653 −0.9575 −0.9459 −0.96180 −0.9526

4 −1.622 −1.621 −1.606 −1.582 −1.61624 −1.600

5 −2.421 −2.418 −2.393 −2.349 −2.41101 −2.390

6 −3.349 −3.345 −3.306 −3.236 −3.33639 −3.308

7 −4.402 −4.398 −4.344 −4.234 −4.38483 −4.353

8 −5.573 −5.564 −5.491 −5.336 −5.55032 −5.517

9 −6.857 −6.849 −6.749 −6.535 −6.82794 −6.803

10 −8.250 −8.242 −8.100 −7.826 −8.21365 −8.198

11 −9.752 −9.740 −9.572 −9.205 −9.718

12 −11.400 −11.392 −11.116 −10.729 �1� −11.410 �1�
13 −13.163 −13.148 −12.877 −12.331 �1� −13.251 �1�
14 −15.031 −15.013 −14.672 −14.020 �2� −15.246 �2�

TABLE III. Energy values in keV for the ground states from helium to iron at B=108 T. Parameters of the
QMC simulations, 500 walkers; time steps ���Z=2, . . . ,10�=10−4 a.u., ���Z=11, . . . ,19�=5�10−5 a.u.,
���Z=20, . . . ,26�=2�10−5 a.u. �DF, density-functional results�.

Z RPDQMC FPDQMC VQMC HFFEM 2DHF MCPH3 DF

2 −0.5827 −0.5827 −0.5791 −0.5754 −0.57999 −0.5766 −0.6035a

3 −1.230 −1.229 −1.220 −1.211 −1.22443 −1.214

4 −2.081 −2.080 −2.065 −2.044 −2.07309 −2.056

5 −3.122 −3.119 −3.095 −3.057 −3.10924 −3.085

6 −4.338 −4.331 −4.294 −4.236 −4.31991 −4.288 −4.341a

7 −5.716 −5.712 −5.660 −5.568 −5.69465 −5.657

8 −7.252 −7.246 −7.173 −7.045 −7.22492 −7.176

9 −8.938 −8.930 −8.834 −8.658 −8.90360 −8.845

10 −10.766 −10.753 −10.630 −10.400 −10.72452 −10.664 −10.70b

11 −12.725 −12.716 −12.569 −12.266 −12.625

12 −14.827 −14.817 −14.618 −14.249 −14.745

13 −17.061 −17.043 −16.813 −16.352 �1� −16.973 �1�
14 −19.480 −19.461 −19.185 −18.619 �1� −19.408 �1� −19.09b

15 −22.022 −22.009 −21.665 −21.002 �1� −21.987 �1�
16 −24.700 −24.668 −24.275 −23.482 �2� −24.718 �2�
17 −27.541 −27.523 −27.044 −26.130 �2� −27.618 �2�
18 −30.529 −30.509 −29.950 −28.890 �2� −30.766 �2�
19 −33.650 −33.605 −32.999 −31.756 �2� −34.036 �2�
20 −36.891 −36.881 −36.145 −34.750 �3� −37.500 �3� −35.48b

21 −40.296 −40.274 −39.458 −37.865 �3�
22 −43.867 −43.821 −42.900 −41.083 �3�
23 −47.526 −47.490 −46.458 −44.426 �4�
24 −51.360 −51.271 −50.102 −47.877 �4�
25 −55.279 −55.224 −53.915 −51.430 �5�
26 −59.366 −59.311 −57.913 −55.108 �5� −56.01b

aMedin and Lai �13�.
bJones �9�.
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diffusion quantum Monte Carlo simulation is carried out,
which still slightly lowers the averaged block energy, by
roughly 0.1%. The relatively small difference between the
fixed-phase and the released-phase results indicates that the
phase of the adiabatic approximation wave function already
well reproduces the phase of the ground state wave function.
The small fluctuations of the individual block energies EB
evident in Fig. 3 are a typical feature of diffusion quantum
Monte Carlo simulations. However, it is also seen that the
averaged block energies 	EB� quickly converge to constant
values in all three stages of the simulation. Our final RP-
DQMC result for the averaged block energy is E0=
−4.675 keV and lies slightly below the 2DHF value. The
mean square deviation of the individual block energies from
the average, which accounts for their fluctuations, at the end
of the calculation is found to be �= ±0.024 keV, and thus
encompasses the 2DHF value.

It should be noted, however, that the statistical error bar
measures only the uncertainty in the measured quantity. This
statistical uncertainty �standard deviation� is inversely pro-
portional to the square of the number of independent aver-
ages, and thus may be reduced by making more or larger
computer runs. Previous applications of the DQMC scheme
�47,50� have shown that the absolute errors can in fact be
much smaller.

For the much heavier element iron �Z=26� and the higher
field strength of B=108 T the behavior of the simulation as a
function of the number of blocks performed is shown in Fig.
4. The lowest energy value available in the literature so far
was obtained in a density-functional calculation �9� and is
shown for comparison by the horizontal line marked by DF.
The behavior in the three stages, variational, fixed phase,
released phase, is very similar to that observed in Fig. 3. Our
final RPDQMC result for the energy is E0=−59.366 keV and

TABLE IV. Energy values in keV for the ground states from helium to iron at B=5�108 T. Parameters of the QMC simulations: 500
walkers; time steps ���Z=2, . . . ,22�=10−5 a.u., ���Z=23, . . . ,26�=5�10−6 a.u.

Z RPDQMC FPDQMC VQMC HFFEM 2DHF MCPH3 DF

2 −0.9664 −0.9672 −0.9620 0.9589 −0.96191 −0.9574 −1.04a

−1.05b

3 −2.103 −2.101 −2.088 −2.080 −2.08931 −2.078

4 −3.630 −3.626 −3.607 −3.591 −3.61033 −3.586

5 −5.525 −5.524 −5.491 −5.465 −5.49950 −5.476

6 −7.766 −7.764 −7.727 −7.679 −7.73528 −7.695 −8.03a

−8.04b

7 −10.343 −10.336 −10.279 −10.214 −10.29919 −10.231

8 −13.224 −13.221 −13.144 −13.055 −13.17543 −13.099

9 −16.412 −16.407 −16.314 −16.185 −16.34997 −16.264

10 −19.881 −19.873 −19.738 −19.594 −19.81072 −19.702 −20.24a

−20.44b

11 −23.635 −23.614 −23.489 −23.268 −23.406

12 −27.655 −27.629 −27.446 −27.199 −27.436

13 −31.931 −31.888 −31.696 −31.376 −31.675

14 −36.442 −36.421 −36.192 −35.793 −36.154 −36.76a

15 −41.203 −41.179 −40.898 −40.438 −40.915

16 −46.214 −46.173 −45.852 −45.308 −45.881

17 −51.445 −51.407 −51.030 −50.395 −51.067

18 −56.894 −56.856 −56.425 −55.693 −56.530

19 −62.584 −62.532 −62.044 −61.196 −62.181

20 −68.447 −68.414 −67.934 −66.901 −68.031 −68.37a

21 −74.669 −74.605 −73.989 −72.899�1� −74.184�1�
22 −81.071 −81.039 −80.358 −79.112�1� −80.602�1�
23 −87.633 −87.652 −86.876 −85.530�1� −87.263�1�
24 −94.561 −94.494 −93.667 −92.148�1� −94.259�1�
25 −101.615 −101.549 −100.590 −98.964�1� −101.25 �1�
26 −109.079 −108.966 −107.913 −106.134�2� −108.64�2� −108.18�2�a

−107.20�2�c

aJones �9�.
bBraun �12�.
cMedin and Lai �13�.
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lies well below the DF value. The standard deviation of the
block energies at the end of the simulation in this case is �
= ±0.132 keV.

In Tables I–IV, the results of our diffusion Monte Carlo
simulations for the ground state energies of medium-Z atoms
at different magnetic field strengths are summarized. Each
table contains in the first three columns the results of the
three stages of the simulation �released phase, fixed phase,
variational� and in the fourth column the energy values in the
adiabatic approximation calculated with our own Hartree-
Fock finite-element method. Literature values obtained by
Ivanov and Schmelcher �29� �2DHF�, by Mori and Hailey
�43� �MCPH3, multiconfigurational perturbative hybrid
Hartree-Hartree-Fock�, and the results of density-functional
calculations by Jones �9�, Braun �12�, and Medin and Lai
�13� �DF� are given in the remaining columns. The numbers
in parentheses attached to the HFFEM, 2DHF, MCPH3, and
DF results designate the number of electrons occupying an
excited hydrogenlike single-particle longitudinal state.

Table I shows the results for the ground state energies for
the elements from helium to neon at B=107 T, Table II
shows the results for the elements from helium to silicon at
B=5�107 T, and Tables III and IV list the results for all
elements from helium to iron at the magnetic field strengths
B=108 T, B=5�108 T, respectively. For the maximum
nuclear charge numbers in each table the �Z values still are
of the order of 1, or slightly less ��Z=10=0.21 in Table I,
�Z=14=0.54 in Table II, �Z=26=0.31 in Table III, �Z=26
=1.57 in Table IV�. Note that even though at these values the
adiabatic approximation becomes poor, as is evident from the
HFFEM energies given in the tables, the adiabatic approxi-
mation wave function itself still can serve as a useful guiding
wave function, since the final distribution of walkers has
distinctly moved away from it.

The tables reveal that already the fixed-phase results lie
slightly below the values that were obtained using the 2DHF
method. The comparison with the results of the MCPH3

method shows that our RPDQMC energy values generally lie
below those results, but there are also exceptions where our
results lie above the MCPH3 energies. This may be due to the
fact that the hybrid method is not self-consistent, since, first,
it evaluates the exchange energy in first-order perturbation
theory in a basis of Hartree states, and, second, it does not
include the back-reaction of the excited Landau states whose
admixtures are taken into account perturbatively on the ef-
fective interaction potentials. Therefore the method need not
necessarily produce an upper bound on the energy.

The comparison with the results of the DF calculations
shows that these yield lower ground state energies at small
nuclear charge numbers than our RPDQMC results, while for
large Z the reverse is the case. It must be remembered, how-
ever, that there are various proposals as to which form of the
exchange energy functional should be chosen in the presence
of a strong magnetic field. The DF results listed in Tables III
and IV differ in the choice of the exchange functional. Given
this restriction, it cannot be ensured that the DF calculations
in all cases produce an upper bound on the ground state
energy in magnetic fields as do the ab initio methods used in
this paper and by Ivanov and Schmelcher �29�.

The method presented in this paper can easily be extended
to the calculation of the ground state energies of ions in

neutron star magnetic fields. The prerequisite for initializing
the DQMC procedure is again determining the adiabatic ap-
proximation guiding wave function for the respective ion.
Thus the main task is to find appropriate initial longitudinal
wave functions for performing the HFFEM calculation.
Sample results for the ground state energies of iron ions in
all ionization stages from heliumlike to neutral for a mag-
netic field strength of 5�108 Tesla are given in Table V. In
this case, the simulations were carried out on a PC, and only
10 blocks were used for the VQMC and 100 blocks each for
the fixed-phase and released-phase calculation, respectively.
The improvement of the adiabatic approximation energy val-
ues by the DQMC simulations is clearly evident from Table
V. In one instance �n=23� the fixed-phase result is seen to lie
slightly below the released-phase result. This is a conse-
quence of the lower block numbers used and indicates that
the numbers given in Table V are accurate to within four
significant figures. Clearly, this accuracy can again be im-
proved by more extended calculations. It must be noted,
however, that for charged many-particle systems in magnetic
fields the generalized momentum is no longer conserved �cf.

TABLE V. Ground state energies in keV for iron in all ioniza-
tion stages from heliumlike to neutral at B=5�108 T. Numbers in
parentheses at the HFFEM results: number of electrons occupying
an excited state. Parameters of the QMC simulations, 500 walkers;
time step ��=8�10−6 a.u., only 210 blocks were used.

Number e− HFFEM RPDQMC FPDQMC VQMC

2 −32.163 −34.503 −34.495 −33.781

3 −41.738 −44.267 −44.223 −43.453

4 −49.668 −52.315 −52.225 −51.634

5 −56.460 −59.141 −59.076 −58.319

6 −62.393 −65.079 −65.003 −64.197

7 −67.636 −70.362 −70.304 −69.620

8 −72.306 −75.047 −74.984 −74.097

9 −76.486 −79.250 −79.195 −78.488

10 −80.239 −82.992 −82.944 −82.049

11 −83.614 −86.375 −86.338 −85.552

12 −86.782�1� −89.550 −89.484 −88.627

13 −89.633�1� −92.401 −92.331 −91.341

14 −92.182�1� −94.979 −94.845 −94.029

15 −94.454�1� −97.238 −97.201 −96.331

16 −96.472�1� −99.260 −99.201 −98.125

17 −98.254�1� −101.06 −100.92 −100.07

18 −99.817�1� −102.64 −102.51 −101.56

19 −101.17�1� −104.00 −103.89 −102.82

20 −102.36�2� −105.12 −105.05 −103.98

21 −103.39�2� −106.19 −106.07 −105.16

22 −104.24�2� −107.08 −107.00 −105.96

23 −104.93�2� −107.70 −107.73 −106.56

24 −105.47�2� −108.26 −108.23 −106.96

25 −105.87�2� −108.70 −108.66 −107.37

26 −106.13�2� −109.08 −108.97 −107.91
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�1��, and energy corrections arise from the gyration of the ion
as a whole in the magnetic field �cf. �59��. A comprehensive
compilation of the ground state energies of different ions at
neutron star magnetic field strengths will be the subject of a
future presentation.

The RPDQMC energy values listed in Tables I–V repre-
sent the most comprehensive and accurate compilation for
the ground state energies of medium-Z atoms up to iron in
neutron star magnetic field strengths calculated by an ab ini-
tio method to date.

V. CONCLUSIONS

We have extended the released-phase diffusion Monte
Carlo method to neutron star magnetic field strengths by us-
ing adiabatic approximation wave functions as guiding wave
functions. We have thus been able to determine the ground
state energies of neutral atoms from helium to iron in the
range 107 to 5�108 T. No previous application of the
released-phase method to atoms in strong magnetic fields has
succeeded in coping with such large electron numbers. We
have also shown that the method can be equally applied to
the calculation of the ground state energies of ions at such
magnetic field strengths. We have not considered relativistic
effects, which are expected to be on the order of �Z��2, and

the effects of the finite nucleus mass. These effects are small
compared with the observational uncertainties of spectral
features and the smearing of spectral lines by the variation of
the magnetic field across the neutron star’s atmosphere.
However, for matching observed thermal spectra from iso-
lated neutron stars, wavelength information, and thus ener-
gies of excited states, are requisite. Jones et al. �52� have
shown a way how to calculate excited states of small atoms
in strong magnetic fields using the correlation function
Monte Carlo method �48�. It will be an intriguing task to
transfer their method to the DQMC simulations presented in
this paper, and to calculate excited states of large atoms in
intense fields.

ACKNOWLEDGMENTS

The authors thank Erik Koch for helpful discussions at an
early stage of these investigations and Matthias Klews for
providing his version of the HFFEM code. The authors also
thank Alen Prskalo for running the HFFEM and DQMC
codes for iron ions. This work was supported by Deutsche
Forschungsgemeinschaft within the SFB 382 “Methods and
algorithms for simulating physical processes on high-
performance computers” at the Universities of Tübingen and
Stuttgart.

�1� H. Ruder, G. Wunner, H. Herold, and F. Geyer, Atoms in
Strong Magnetic Fields �Springer, Heidelberg, 1994�.

�2� E. H. Lieb, J. P. Solovej, and J. Yngvason, Phys. Rev. Lett. 69,
749 �1992�.

�3� E. H. Lieb, J. P. Solovej, and J. Yngvason, Commun. Pure
Appl. Math. 47, 513 �1994�.

�4� E. H. Lieb, J. P. Solovej, and J. Yngvason, Commun. Math.
Phys. 16, 77 �1994�.

�5� E. H. Lieb, J. P. Solovej, and J. Yngvason, in The Stability of
Matter: From Atoms to Stars, Selecta of E. H. Lieb, edited by
W. Thirring �Springer, Heidelberg, 1997�, pp. 145–167.

�6� S. Hilgenfeldt, S. Balder, and C. Zenger, Technische Univer-
sität München, Technical Report No. SFB 342/05/95, 1995
�unpublished�.

�7� J. Garcke and M. Griebel, J. Comput. Phys. 165, 694 �2000�.
�8� L. Fritsche, Phys. Rev. B 33, 3976 �1986�.
�9� P. B. Jones, Mon. Not. R. Astron. Soc. 216, 503 �1985�.

�10� D. Kössl, R. G. Wolff, E. Müller, and W. Hillebrandt, Astron.
Astrophys. 205, 347 �1988�.

�11� B. M. Relovsky and H. Ruder, Phys. Rev. A 53, 4068 �1996�.
�12� M. Braun, Phys. Rev. A 65, 033415 �2002�.
�13� Z. Medin and D. Lai, Phys. Rev. A 74, 062507 �2006�.
�14� J. Ackermann, B. Erdmann, and R. Roitzsch, J. Chem. Phys.

101, 7643 �1994�.
�15� J. Ackermann and J. Shertzer, Phys. Rev. A 54, 365 �1996�.
�16� M. Braun, W. Schweizer, and H. Elster, Phys. Rev. A 57, 3739

�1998�.
�17� L. R. Ram-Mohanans, S. Saigal, D. Dossa, and J. Shertzer,

Comput. Phys. 4, 50 �1990�.
�18� J. Shertzer and F. S. Levin, Phys. Rev. A 43, 2531 �1991�.

�19� J. C. Light, I. P. Hamilton, and J. V. Lill, J. Chem. Phys. 82,
1400 �1985�.

�20� D. Baye and P.-H. Heenen, J. Phys. A 19, 2041 �1986�.
�21� D. Baye and M. Vincke, J. Phys. B 24, 3531 �1991�.
�22� V. S. Melezhik, Phys. Rev. A 48, 4528 �1993�.
�23� W. Schweizer and P. Faßbinder, Comput. Phys. 11, 641

�1997�.
�24� W. Becken, P. Schmelcher, and F. K. Diakonos, J. Phys. B 32,

1557 �1999�.
�25� S. Jordan, P. Schmelcher, W. Becken, and W. Schweizer, As-

tron. Astrophys. 335, L33 �1998�.
�26� M. V. Ivanov, J. Phys. B 27, 4513 �1998�.
�27� M. V. Ivanov and P. Schmelcher, Phys. Rev. A 57, 3793

�1998�.
�28� M. V. Ivanov and P. Schmelcher, Phys. Rev. A 60, 3558

�1999�.
�29� M. V. Ivanov and P. Schmelcher, Phys. Rev. A 61, 022505

�2000�.
�30� M. V. Ivanov and P. Schmelcher, J. Phys. B 34, 2031 �2001�.
�31� O. A. Al-Hujaj and P. Schmelcher, Phys. Rev. A 67, 023403

�2003�.
�32� O. A. Al-Hujaj and P. Schmelcher, Phys. Rev. A 68, 053403

�2003�.
�33� O. A. Al-Hujaj and P. Schmelcher, Phys. Rev. A 70, 033411

�2004�.
�34� O. A. Al-Hujaj and P. Schmelcher, Phys. Rev. A 70, 023411

�2004�.
�35� D. Neuhauser, K. Langanke, and S. E. Koonin, Phys. Rev. A

33, 2084 �1986�.
�36� M. C. Miller and D. Neuhauser, Mon. Not. R. Astron. Soc.

BÜCHELER et al. PHYSICAL REVIEW A 76, 032501 �2007�

032501-10



253, 107 �1991�.
�37� M. Rajagopal, R. W. Romani, and M. C. Miller, Astrophys. J.

479, 347 �1997�.
�38� M. D. Jones, G. Ortiz, and D. M. Ceperley, Phys. Rev. A 54,

219 �1996�.
�39� S. Mereghetti, A. de Luca, P. A. Caraveo, W. Becker, R. Mig-

nami, and G. F. Bignami, Astrophys. J. 581, 1280 �2002�.
�40� F. Haberl, A. D. Schwope, V. Habaryan, G. Hasinger, and C.

Motch, Astron. Astrophys. 403, L19 �2003�.
�41� F. Haberl, V. E. Zavlin, J. Trümper, and V. Burwitz, Astron.

Astrophys. 419, 1077 �2004�.
�42� M. H. van Kerkwijk, D. L. Kaplan, D. L. Durant, S. R.

Kulkarni, and F. Paerels, Astrophys. J. 608, 432 �2004�.
�43� K. Mori and C. J. Hailey, Astrophys. J. 564, 914 �2002�.
�44� K. Mori, J. C. Chonko, and C. J. Hailey, Astrophys. J. 631,

1082 �2005�.
�45� K. Mori and C. J. Hailey, Astrophys. J. 648, 1139 �2006�.
�46� W. C. G. Ho, D. Lai, A. Y. Potekhin, and G. Chabrier, Adv.

Space Res. 33, 537 �2004�.
�47� P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester,

Jr., J. Chem. Phys. 77, 5593 �1982�.

�48� D. M. Ceperley and B. Bernu, J. Chem. Phys. 89, 6316 �1988�.
�49� N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.

Teller, and E. Teller, J. Chem. Phys. 21, 1087 �1953�.
�50� B. L. Hammond, W. A. Lester, Jr., and P. J. Reynolds, Monte

Carlo Methods in Ab Initio Quantum Chemistry �World Scien-
tific, Singapore, 1994�.

�51� G. Ortiz, D. M. Ceperley, and R. M. Martin, Phys. Rev. Lett.
71, 2777 �1993�.

�52� M. D. Jones, G. Ortiz, and D. M. Ceperley, Phys. Rev. E 55,
6202 �1997�.

�53� L. I. Schiff and H. Snyder, Phys. Rev. 55, 59 �1937�.
�54� M. Klews, Ph.D. thesis, University of Tübingen, 2003, http://

tobias-lib.ub.uni-tuebingen.de/volltexte/ 2003/1022/
�55� C. de Boor, SIAM �Soc. Ind. Appl. Math.� J. Numer. Anal. 14,

441 �1977�.
�56� C. de Boor, A Practical Guide to Splines �Springer, Heidel-

berg, 1978�.
�57� D. Engel, M. Klews, and G. Wunner �unpublished�.
�58� T. Kato, Commun. Pure Appl. Math. 10, 151 �1957�.
�59� V. G. Bezchastnov, G. G. Pavlov, and J. Ventura, Phys. Rev. A

58, 180 �1998�.

QUANTUM MONTE CARLO STUDIES OF THE GROUND… PHYSICAL REVIEW A 76, 032501 �2007�

032501-11


