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On the premises that total correlations in a bipartite quantum state are measured by the quantum mutual
information, and that separation of total correlations into quantum and classical parts satisfies an intuitive
dominance relation, we examine to what extent various entropic entanglement measures, such as the distillable
entanglement, the relative entropy entanglement, the squashed entanglement, the entanglement cost, and the
entanglement of formation, can be regarded as consistent measures of quantum correlations. We illustrate that
the entanglement of formation often overestimates quantum correlations and thus is too big to be a genuine
measure of quantum correlations. This indicates that the entanglement of formation does not quantify the
quantum correlations intrinsic to a quantum state, but rather characterizes the pure entanglement needed to
build the quantum state via local operations and classical communication. Furthermore, it has the consequence
that, if the additive conjecture for the entanglement of formation is true (as is widely believed), then the
entanglement cost, which is an operationally defined measure of entanglement with significant physical mean-
ing, cannot be a consistent measure of quantum correlations in the sense that it may exceed total correlations.
Alternatively, if the entanglement cost is dominated by total correlations, as our intuition suggests, then we can
immediately disprove the additive conjecture. Both scenarios have their counterintuitive and appealing aspects,
and a natural challenge arising in this context is to prove or disprove that the entanglement cost is dominated

by the quantum mutual information.
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I. INTRODUCTION

Consider a bipartite quantum state p consisting of parts a
and b, with marginal states p“=tr,p (partial trace over part b)
and p’=tr,p. A central and fundamental issue in quantum-
information theory is to classify and quantify correlations in
p. For the classification issue, one usually distinguishes be-
tween total, quantum, and classical correlations.

For the quantification issue, there are a variety of well-
motivated correlation measures, which may be divided into
three basic categories. The first tries to quantify fotal corre-
lations which consist of both classical and quantum parts. A
prominent example with fundamental informational meaning
is the quantum mutual information [1-5]

1(p) =S(p*) + S(p") - S(p),

where S(p)=—trp log p denotes the von Neumann entropy of
p. We will take the logarithm to the base 2 throughout.

The second tries to capture quantum correlations (en-
tanglement) in p, and has been widely pursued in the last
decade due to the emergence of quantum-information theory
[6]. A prototypical entanglement measure, also historically
the first and most widely studied, is the entanglement of
formation [7-9]

E(p) = inf 2 \S(trep)-

Here the infimum is over all pure-state ensemble realizations
{)\i,pl’} of P that iS, p=2i)\ipi with Eiki= 1 N )\iZO.
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The third tries to characterize classical correlations
inherent in p, and may be considered as complementary to
quantum correlations [10-13].

In spite of considerable progress made by several authors
[10-13], it is quite difficult (if not impossible) to separate
total correlations into classical and quantum parts in a unique
fashion. However, it is still possible to gain some general
insights into their relationships. Consider, for example, a Bell
state in a two-qubit system

1
(W) = —=(|00) + [11)).
\1’2

Clearly, I(|W*){(W*|)=2; thus total correlations in |¥*), as
quantified by the quantum mutual information, are two bits.
On the other hand, it is universally accepted that this maxi-
mally entangled state contains one unit of quantum correla-
tions, i.e., 1 bit of entanglement [7-9,14]. In this context, we
will have a paradox if we think that |¥*) contains only
purely quantum correlations, without any classical ones. Due
to the remarkable contributions of Refs. [12,15-18], we now
have several compelling arguments demonstrating that [¥™)
contains /(|U*)(W*|)=2 bits of information.

(1) Suppose that [¥*) is shared by Alice and Bob; then by
superdense coding [15], Alice can communicate 2 bits of
information to Bob by manipulating her part of the quantum
state and then sending it to Bob.

(2) Apart from the 1 bit of quantum correlation, the addi-
tional bit of information has been argued to be related to the
negative conditional entropy [16,17].

(3) Groisman et al. showed that |¥*) also contains 1 bit of
classical information [12]. Indeed, suppose that Alice and
Bob want to erase quantum correlations in [¥*). A simple
operational procedure is for Alice to flip an unbiased coin. If
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the head comes up, she does nothing and the state |¥'*) is left
unchanged; if the tail occurs, she applies the Pauli spin op-
erator o, to her part of the state, and |W*) is changed to
[¥~)=(1/+2)(|00)—|11)). This protocol consumes 1 bit of
entropy and renders |¥*) as the mixture

1 1
p= 3 O+ U]

which is disentangled because it can be rewritten as a
mixture of two product states,

p=310X0] ® 0X0] + 31| @ 11l

Clearly, p is still classically correlated and contains 1 bit of
classical correlation [19].

(4) Horodecki er al. provided an alternative argument
showing that |¥'*) contains 1 bit of classical correlation and
1 bit of quantum correlation, which are complementary to
each other [18].

The above arguments can be straightforwardly general-
ized to any pure bipartite state | ¥); the conclusion is that |¥)
contains I(|W){(W[)=25(tr,|W){¥|) bits of total correlations,
which can be divided as E(|W)W|)=S(tr,|T)}P|) bits of
quantum correlations and I(|W)W|)-E(|PXP|)=S(tr,|¥)
X (W) bits of classical correlations. Consequently, any pure
state contains equal amounts of quantum and classical corre-
lations, which is just the reduced von Neumann entropy.

But how about mixed states? Since any mixed state has
pure-state ensemble realizations, and mixing usually de-
creases quantum correlations, it seems plausible to assume
that, for mixed states, the magnitude of quantum correlations
should be dominated by that of classical correlations. This is
further supported by the observation that a general state may
contain classical correlations without any quantum ones
(e.g., a separable state), but not vice versa [10,12,20].

Now suppose that total correlations of a mixed state p, as
measured by the quantum mutual information I(p), have the
following decomposition:

I(p) = C(p) + Q(p) (1)

where C(p) represents classical correlations while Q(p) rep-
resents quantum ones. Based on the above reasoning and
inspired by the suggestions of several authors [10,12,13], it
seems natural and desirable to postulate that C(p)=Q(p),
which will be further elaborated in Sec. III. Consequently,
taking into account Eq. (1), we are led to

0(p) = 51(p). @

In this paper, we will just accept the above intuitive postulate
as an assumption of our reasoning, and will investigate the
implications and consequences of it when we take Q(p) as
various entanglement measures introduced in quantum-
information theory [7-9,14,21-23]. In this respect, we distin-
guish entanglement measures quantifying correlations of a
quantum state from within, such as the distillable entangle-
ment, from those that quantify correlations from outside,
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such as the entanglement cost and the entanglement of for-
mation. While it is reasonable to expect that the distillable
entanglement should be a good candidate for Q(p), it is not a
priori clear whether the entanglement cost and the entangle-
ment of formation are suitable. More specifically, we will
examine to what extent the entanglement of formation and
the entanglement cost can be interpreted as measures of
quantum correlations in a mixed state. We will show that
neither can be used as an inherent quantum correlation mea-
sure (they may be used as upper bounds or envelopes of
quantum correlations) in the sense that, if we take Q(p)
=E(p) or the entanglement cost E(p) in Eq. (1), then it will
often violate inequality (2), thus contradicting our intuitive
requirement.
Furthermore, it may even happen that

E(p) > I(p) 3)

for certain p, that is, quantum correlations, as measured by
the entanglement of formation, may exceed total correla-
tions, as measured by the quantum mutual information. Thus
the entanglement of formation is too big to be a genuine
measure of quantum correlations. A dramatic consequence of
inequality (3) is that, if the additive conjecture for entangle-
ment of formation is true (as is widely believed) [24], then
the entanglement cost coincides with the entanglement of
formation [25], and thus cannot be regarded as a consistent
measure of quantum correlations either, in spite of its opera-
tional meaning and informational significance. Alternatively,
if the entanglement cost is a consistent measure of quantum
correlations in the sense that it is dominated by total corre-
lations (as our intuition requires), then the additive conjec-
ture is immediately disproved.

It is known that the distillable entanglement and the
squashed entanglement satisfy inequality (2) when substi-
tuted into it for Q(p) [23].

The rest of this paper is arranged as follows. In Sec. II, we
review a variety of arguments justifying the quantum mutual
information as a measure of total correlations since this is
our basic point of departure. We then illustrate the counter-
intuitive relationships between the quantum mutual informa-
tion and the entanglement of formation via several paradig-
matic examples such as the isotropic states and the Werner
states in Sec. III. We also indicate a reason for this “paradox”
and point out a weak point of the entanglement of formation
in quantifying quantum correlations. In Sec. IV, we compare
the quantum mutual information with other entropic en-
tanglement measures such as the distillable entanglement,
the relative entropy entanglement, the squashed entangle-
ment, and the entanglement cost. Finally, we conclude with
some discussions in Sec. V.

II. QUANTUM MUTUAL INFORMATION AS TOTAL
CORRELATIONS

The name “quantum mutual information™ has its origin in
Cerf and Adami [4], but this quantity dates back at least to
Stratanovich’s correlation entropy [1]. It has been implicitly
used to study information transfer in quantum measurements
by Zurek [2], and is called the “index of correlation” by
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Barnett and Phoenix in their study of correlations in quantum
states [3].

Our point of departure in this paper is to maintain the
quantum mutual information as a measure (or, more gener-
ally, as an upper bound) of total correlations. Owing to the
considerable efforts of many authors, now we have numer-
ous heuristic as well as mathematical and physical justifica-
tions for this point of view [4,5,10,12,13,17,18,26-28]. To
put our investigation in perspective, let us summarize some
of these arguments.

(1) Quantum mutual information is a straightforward gen-
eralization of the classical mutual information, and reduces
to the latter in commutative cases. The classical mutual in-
formation quantifies all correlations in a bivariate classical
state (probability distribution), and is most beautifully exhib-
ited in the Shannon noisy channel coding theorem [29,30].
Put in other words, the classical analog of quantum mutual
information is a well-established measure of all correlations,
and thus it is plausible to also regard the quantum mutual
information as a good measure of all correlations.

(2) Based on the idea in Landauer’s erasure principle that
the amount of information equals the amount of entropy re-
quired for its erasure [31], Groisman et al. presented an op-
erational justification [12]: They showed that the amount of
randomness (noise) needed to erase completely the correla-
tions in a bipartite quantum state is precisely quantified by
the quantum mutual information.

(3) Schumacher and Westmoreland gave a justification
based on a communication consideration: If a bipartite quan-
tum state is used as the key for a one-time-pad cryptographic
communication system, then the maximum amount of infor-
mation that can be sent securely is the quantum mutual in-
formation [28].

On the premise that the quantum mutual information is
regarded as a measure of total correlations, we can investi-
gate to what extent the various entanglement measures intro-
duced in the last decade, such as the distillable entanglement,
the relative entropy entanglement, the squashed entangle-
ment, the entanglement cost, and the entanglement of forma-
tion, etc., can be used to quantify quantum correlations.
Clearly, a simple requirement is that if an entanglement mea-
sure well quantifies quantum correlations (which constitute a
part of the total correlations), then it should not exceed the
total correlations. We will see that the distillable entangle-
ment, the relative entropy entanglement, and the squashed
entanglement meet this requirement. However, we will show
that the entanglement of formation does not meet this simple
requirement, and thus demonstrate that the entanglement of
formation cannot be regarded as a good measure of quantum
correlations. If, moreover, the additive conjecture for the en-
tanglement of formation turns out to be true, then the en-
tanglement cost cannot be regarded as a consistent measure
of quantum correlations either.

III. TOTAL CORRELATIONS VS ENTANGLEMENT
OF FORMATION

Though we still do not have universally accepted mea-
sures of quantum correlations and classical correlations, it
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seems reasonable to make the following heuristic and intui-
tive assumption concerning their relationship.

(A) For any quantum state, its classical correlations
should not be less than its quantum correlations.

Some plausible arguments supporting (A) are as follows.

(1) For any pure state, as discussed in Sec. I, both its
quantum correlations and classical correlations are equal to
the reduced von Neumann entropy. Thus assumption A is
trivially satisfied in this case.

(2) For any mixed state, since it can be represented as
classical mixing (i.e., convex combination, incoherent super-
position) of pure states, and classical mixing often increases
classical correlations and decreases quantum ones, it is intui-
tive, based on (1), to assume that classical correlations in a
mixed state are not less than quantum correlations. More
specifically, because for pure states total correlations are
equally divided between quantum and classical parts (both
are equal to the reduced von Neumann entropy), while when
a pure state is becoming more and more mixed, its quantum-
ness degrades and its classicality increases, assumption A
seems a natural guess.

(3) One often observes that a bipartite state can have clas-
sical correlations without any quantum ones, but not vice
versa. For instance, any separable state trivially satisfies as-
sumption A, since its quantum correlations are zero, while in
general it possesses classical correlations.

(4) Tt is known that, if we measure quantum correlations
by the distillable entanglement or the squashed entangle-
ment, then assumption A holds [11,23], and, for the relative
entropy entanglement, it is an open problem whether as-
sumption A holds. The entanglement of formation violates
assumption A, but, as we will show, the entanglement of
formation cannot be a consistent measure for quantum cor-
relations since it can even exceed the total correlations itself.
Moreover, the entanglement of formation is not monoga-
mous [20], which is another weak point in using it as an
entanglement measure.

(5) Assumption A is conjectured by Henderson and Vedral
[10].

(6) Groisman ef al. have suggested that assumption A is
intuitive, and actually have also put it forward as a conjec-
ture [12].

Now we specify to concrete measures of correlations.
Since both the quantum mutual information and the en-
tanglement of formation are designed for the task of quanti-
fying correlations in a quantum state, and both are based on
the same notion of the von Neumann entropy, we are natu-
rally led to investigate the relationships between them in the
context of assumption A, and to examine to what extent vari-
ous existing measures of entanglement may serve as good
quantities for quantum correlations.

If we wish to use the entanglement of formation as a
measure of quantum correlations while in the meantime tak-
ing the quantum mutual information as a measure of total
correlations, then it is natural to define

C(p)=1I(p) — E(p)

as a measure of classical correlations. Consequently, assump-
tion A has the form C(p) = E(p), and therefore we are led to
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Ep) = 51(p). )

Even if it is maintained that, for a general mixed state, the
total correlations cannot be neatly divided into quantum and
classical parts due to their intertwining, as long as the quan-
tum mutual information is accepted as an upper bound for
total correlations (i.e., classical correlations+quantum corre-
lations=quantum mutual information, which is actually sat-
isfied by all the examples in Ref. [10]), the result is still the
inequality (4).

Unfortunately, the above inequality is often violated as the
following examples illustrate. This is a peculiar feature of the
entanglement of formation if we interpret it as a measure of
quantum correlations and accept the assumption A.

Example 1 (isotropic states). Let a system be described by
C?® C? and let p, be an isotropic state [32,33]

1-x d X =

=—l+
Px 21

x€[0,1].

Here [¥)=(1/ \d)E 1|ll> with {|1>} constituting an orthonor-
mal basis for C% It is known that if d=3 and
x€[4(d-1)/d?,1], then

d
2log(d— 1) +log d.

E(p)=(x=1)-°

The above result was first established in Ref. [32] and later
confirmed in Ref. [34].

To evaluate the quantum mutual information I(p,), we
note that the reduced states are p?=p”=(1/d)1, and the spec-
tra of p, consist of (1-x)/(d*-1) with multiplicity @>~1 and
x with multiplicity 1. Consequently, the quantum mutual in-
formation of p, is

I(p,) =S(p%) +S(p?) - S(px)

l 1= 1
+
og——— — 0g x

=2logd-(l —x)log(dz— 1) - H(x).

—210gd+(d2—1)

Here H(x)=-xlog x—(1-x)log(1-x) is the binary entropy
function. Now it is straightforward to evaluate that, for any
x€(0,1) [noting that 4(d—1)/d*—0 when d— ], it holds
that

1 1
iij{}O(E(Px) - EI(PX)> = EH(X) > 0.

Consequently, for any fixed x& (0, 1), when d is sufficiently
large, the entanglement of formation E(p,) will be larger
than half of the quantum mutual information I(p,), and thus
violates inequality (4).
Example 2 (Werner states). Let w, be the Werner state
[19,33]
d—x dx—1

= 1+
YR la TP od

F, x€[-1,1],

acting on C?® C?. Here F=X{_|ij)(ji| is the flip operator
with {|ij)} an orthonormal basis of product states for the
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composite system. For x&[-1,0],
formation of w, is [9,33]

the entanglement of

E(w,) =H<%(1 -1 —xz)).

To evaluate the quantum mutual information /(w,), note that
wi:wf:(l/d)l, and the spectra of w, consist of (1-x)/(d?
—d) with multiplicity (d*>~d)/2, and (1+x)/(d*+d) with
multiplicity (@>+d)/2. Therefore, the quantum mutual infor-
mation is

I(w,) = S(w) + S(wWY) = S(w,)

91 d+1_1 1x+1+x1 1+x
ToRAT T TR T Ty B

+x
log(d+1)+1

-X 1
log(d-1) -
5 og(d-1)

).

Put f,(x)=31(w,)—E(w,); then

1 (1-x 1 —
) (T)‘H<5“‘“‘x2>>-

We depict the graphs of f,(x) when x&(-1,0) for d
=2,3,4,16 in Fig. 1. We see that, for d=2, E(w,) already
exceeds %I(wx) for certain x, and with increasing dimension
d, E(w,) exceeds %I(wx) for more and more x. In particular,
for any x, E(w,) will ultimately exceed %I(wx) when d is
sufficiently large because f..(x) <0 for x&(~1,0).

We have shown by two simple examples that the en-
tanglement of formation may exceed half of the quantum
mutual information. This is quite counterintuitive if we re-
gard the entanglement of formation as a measure of quantum
correlations. Furthermore, Hayden discovered a more strik-
ing phenomenon regarding the relation between the quantum
mutual information and the entanglement of formation [35]:
The latter may even exceed the former itself. However, he
exhibited this only with an abstract construction in an
asymptotic regime, that is, he indicated the existence of a
subspace of a large composite quantum system such that a
mixed state supported on this subspace has a smaller quan-
tum mutual information than the entanglement of formation.
Here we consolidate his remarkable observation through the
following explicit example.

Example 3. Consider the Werner state in example 2, and
put g (x)=I(w,)—E(w,). Simple manipulation shows that

1
=logd-

Jool): = Jim falx) =

go(x): =1lim gy(x) =1 —H(¥> —H(l(l -1 - ))
d—» 2 2
We depict the graphs of g (x)=I(w,)—E(w,) for d=6,16,%
in Fig. 2. We see that the entanglement of formation may
exceed the quantum mutual information when d =6 (numeri-
cal calculation shows this does not occur for d=15), and, for
any fixed x&(~1,0), the entanglement of formation E(w,)
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FIG. 1. Graphs of fu(x)
=(1/2)I(w,)-E(w,) versus x
€[-1,0] for d=2,3,4,16. We
see that the entanglement of for-
mation E(w,) exceeds half of the
quantum  mutual information
(1/2)I(w,) for some x, and with
increase of the dimension d, this
happens for an increasing interval
of x.

will exceed the quantum mutual information /(w,) ultimately
as long as d is sufficiently large, because g..(x) <0 for any
x€(~1,0).

The lesson from the above counterintuitive behavior is
that we cannot interpret the entanglement of formation as a
measure of quantum correlations if we accept that the quan-
tum mutual information is an appropriate measure (or an
upper bound) for total correlations. Are there any intuitive
reasons for the phenomena illuminated in the above example
concerning the “wrong” dominance relation between the
quantum mutual information and the entanglement of forma-
tion? We maintain that total correlations are well quantified
by the quantum mutual information. Then the peculiarity re-
sides in the very definition of the entanglement of

0.3

formation, which allows only pure-state decompositions. Af-
ter all, the counterintuitive behavior disappears if, in defining
the entanglement of formation, we replace the reduced von
Neumann entropy by either half of the quantum mutual in-
formation or the maximal classical mutual information in-
duced by local measurements, and take the infimum over all
ensemble realizations (including mixed ones rather than re-
stricting to pure ones) of the state.

In summary, the entanglement of formation is a good
measure of quantum correlations only for pure states, and in
this case it is precisely the reduced von Neumann entropy.
For mixed states, the entanglement of formation often over-
estimates quantum correlations and thus can only be inter-
preted as an upper bound for quantum correlations.

FIG. 2. Graphs of gux)
=I(w,)—E(w,) for d=6,16,0. We
see that the entanglement of for-
mation E(w,) exceeds the quan-
tum mutual information I/(w,) for
some x, and with increase of the
dimension d, this happens for an
increasing interval of x.
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IV. TOTAL CORRELATIONS VS OTHER ENTROPIC
ENTANGLEMENT MEASURES

Apart from the entanglement of formation, there are sev-
eral other entanglement measures, such as the distillable en-
tanglement E,, the entanglement cost E,, the relative entropy
entanglement E, [8,21,22], and the squashed entanglement
E, [23], which are all information-theoretically motivated
and coincide with the reduced von Neumann entropy on pure
states. We call these entropic entanglement measures, to em-
phasize their difference from other geometric measures of
entanglement such as the negativity and the entanglement of
robustness [36,37].

Since the quantum mutual information is an entropic mea-
sure of total correlations, and if the above entanglement mea-
sures can be regarded as quantifying quantum correlations,
they should not exceed half of the quantum mutual informa-
tion, or at least should not exceed the quantum mutual infor-
mation itself.

Let us first recall the precise meaning of the various en-
tanglement measures, to highlight whether the involved
quantity is quantifying entanglement in a quantum state from
within or from outside. For the latter, we have to be careful
in interpreting it as a measure of quantum correlations inher-
ent in a mixed state.

(1) Distillable entanglement E,(p) [7,8]. The distillable
entanglement quantifies how many maximally entangled Bell
states |U'*) can be extracted from a bipartite state p by local
operations and classical communication (LOCC); thus it is
an entanglement measure characterizing entanglement from
within. To state the precise mathematical definition, for any
fixed €>0, let

m
D, .= {—: there exists a LOCC A such that |[A(p®")
n

= ()T =i < 6},

where |-l may either be the trace distance or the Bures dis-
tance or any other equivalent distance. Now the entangle-
ment distillation is defined as

m m
E (p)= lim sup {—:— € DE}.
e—0, n—o| 1B N

(2) Entanglement cost E.(p) [7,8]. The entanglement cost
quantifies how many maximally entangled Bell states are
used to create p by means of LOCC; thus it is an entangle-
ment measure characterizing quantum correlations in a state
from outside, a kind of envelope. This is dual to the entangle-
ment of distillation, and can be mathematically expressed as

e—0, n—xe | N

. m m
E.(p) = lim sup {—:— € CE},
n
where

m
C.= {—: there exists an LOCC A such that || p®"
n

_A(|\I,+><\I,+|®m)” < 6}.
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(3) Entanglement of formation E(p) [7-9]. This is already
defined in the Introduction, and may be considered as a
somewhat restricted variant of the entanglement cost. Its
regularized version coincides with the entanglement cost
[25].

(4) Relative entropy entanglement E,(p) [21]. This is ac-
tually a kind of (pseudo)distance measure, but it is so inti-
mately related to the von Neumann entropy that we would
rather classify it as an entropic entanglement measure. It is
defined as

E,(p) = inf D(p|o)

where the infimum is over the set consisting of all separable
bipartite states o, and D(p||o)=trp(log p—log o) is the quan-
tum relative entropy.

(5) Squashed entanglement [23]. The squashed entangle-
ment is motivated by classical cryptography, and is defined
as

. 1
Ev(p) = lnf{ EI( pahe|pe):trepabe = pah} >
where

I( pahe|pe) = S( pae|pe) + S( pbe|pe) - S( pahe|pe)

is the conditional quantum mutual information, while
S( paelpe) =S(pae) —S(p,), etc., are conditional quantum entro-
pies.

From Refs. [11,21,23], we have the following observa-
tions.

(1) Efp)=31(p).

(2) E((p)=51(p).

(3) E(p)=I(p).

For the relative entropy entanglement, though it is trivial
that E,(p) <I(p) because I(p)=D(p||p*® p’) (quantum rela-
tive entropy), we do not know whether E,(p) = %I(p).

For the entanglement cost, we will show that the relation
E.(p)=2I(p) cannot be true in general in examples 4 and 5.
However, we do not know whether it is dominated by the
quantum mutual information or not, that is, whether E.(p)
=I(p). But from the very operational definition of the en-
tanglement cost, it seems quite natural and intuitive to con-
jecture that the entanglement cost should be dominated by
the quantum mutual information. If this conjecture turns out
to be true, then we can immediately disprove the additive
conjecture for the entanglement of formation [24], since this
latter conjecture implies that the entanglement of formation
and the entanglement cost are identical [25], but we know
from example 3 that the entanglement of formation may ex-
ceed the quantum mutual information for certain states.

Example 4. Consider a mixture of two Bell states,
=(1/42)(|00y£|11)), in a two-qubit system,

)

P =X WY+ (1 - ) [P NP

, xe[0,1/2],

for which we have [38]
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1.8

1.6

1.4r-

12r-

Information Measures

FIG. 3. Graphs of I(p,),
E.p,), and (1/2)I(p,) versus
x€[0,1/2] for the state p, in ex-
ample 4. We observe that E.(p,)
> (1/2)I(p,) for x€(0,0.0521).

0.05 0.1

0.15 0.2

E.(p,) = H(% +Vx(1 = x)).

The quantum mutual information can be easily evaluated as
1(p,) =2 - H(x).

We depict the graphs of I(p,), E.(p,), and (1/2)I(p,) in Fig.
3, and see that E (p,)>31(p,) for x€(0,0.0521).

Example 5. Consider a qubit-qutrit system described by
C?® C3. Let V be the subspace spanned by

1 —
lvy) = VT§(|Oa>|2b> —V2[1,)[0)),

-1 -
lvy) = ,—§(|1u>l2b> =\2(0)[1,)),
\!

where {|0,),|1,)} constitute an orthonormal basis for C> and
{105).[15).12,)} for C3. Let

pe=x[v v+ (1 =x)|vo)(va]. x€0,1].

Then by the result of Ref. [38] (example 3 there), the
entanglement cost is given by

E.(p,) = H(1/3).
On the other hand, the reduced states are

2—x 1+x

(l_

Px

s

1 2x 2(1-x)
pl= §|2b><2b| + ?|0b><0b| + T|1b><1b

E

and thus the quantum mutual information can be evaluated as

0.45
-x 2-x 1+x 1+x 1 1 2x  2x
I(p,) =- log 3 T 3 log 3 —glogg—?log?
2(1-x). 2(1-x)
- 1 -H
3 log—— (x)
21og 3 2 - 22X 1002 — 1) - T 0u(1 4 )
=2log3--- 0g(2-x)——lo
g 3 3 g X 3 g X
X 1-x
+ glogx + log(1 —x).

The graphs of I(p,), E.(p,), and %I(px) are depicted in Fig. 4.
We see that E (p,) > %I(px) for x€(0,1).

V. DISCUSSION

We have investigated the relationships between the quan-
tum mutual information and various entanglement measures
by maintaining that total correlations are well quantified by
the quantum mutual information. While we see that the dis-
tillable entanglement and the squashed entanglement are
good measures of quantum correlations, we also observe
that, for mixed states, the entanglement of formation often
exceeds half of the quantum mutual information, and for the
Werner states, the entanglement of formation may even ex-
ceed the quantum mutual information itself. This has the
consequence that we cannot interpret the entanglement of
formation as a good measure of quantum correlations and in
the meantime regard the quantum mutual information as
measuring fotal correlations. The origin of this counterintui-
tive behavior seems to be related to the pure-state decompo-
sitions in the very definition of the entanglement of forma-
tion. Moreover, if the additive conjecture is true, then it will
imply that the entanglement cost may also exceed total cor-
relations and thus cannot be regarded as a genuine quantum
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Information Measures
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FIG. 4. Graphs of I(p,),
E.p,), and (1/2)I(p,) versus
x€[0,1] for the state p, in ex-
ample 5. We observe that E.(p,)
>(1/2)I(p,) for x€(0,1).

0.1 0.2 0.3 0.4 0.5 0.6 0.7
X

correlation measure either. On the other hand, if the en-
tanglement cost is dominated by total correlations as mea-
sured by the quantum mutual information, then the additive
conjecture is immediately disproved. Consequently, it will be
interesting to put the following two contradictory conjec-
tures together.

(1) The entanglement of formation is additive [24], and
thus coincides with the entanglement cost [25].

(2) The entanglement cost is a consistent measure of
quantum correlations in the sense that it cannot exceed total
correlations, that is, E.(p) <I(p) for any state p.

The first conjecture is appealing in that it is widely be-
lieved to be true (and indeed verified for some particular
cases), and is proved to be equivalent to several other cel-
ebrated conjectures concerning channel capacity [24]. Tt is
counterintuitive in that it will imply that the entanglement
cost, a physically motivated operational entanglement mea-
sure, cannot be a consistent measure of quantum correlations
if we accept the well-established quantum mutual informa-
tion as a measure of total correlations. The second conjec-
ture, being contradictory to the first one, is appealing or
counterintuitive just for the opposite reasons. Thus an impor-
tant issue in this context is to explore the relationships be-
tween the quantum mutual information and the entanglement
cost.

0.8

0.9

We emphasize that, in order to highlight some counterin-
tuitive features of the entanglement of formation, we have
used the plausible assumption A, which states that classical
correlations are larger than quantum correlations. This is cer-
tainly less convincing than the assumption that total correla-
tions are larger than quantum correlations. We have provided
only some heuristic arguments supporting it. To make sense
of this assumption, we clearly have to specify the measures
for quantum correlations and classical correlations. Thus, to
what extent the assumption is plausible depends on the con-
text. In any case, it may be interesting to use this assumption
as a criterion to classify various entanglement measures. Fur-
thermore, we may turn the argument around, refute or con-
solidate assumption A by checking whether a certain good
entanglement measure violates it. For instance, if one insists
that the entanglement of formation is a consistent measure of
quantum correlations, then one will certainly regard assump-
tion A as paradoxical. The relationships between quantum
correlations and classical ones are extremely subtle, and we
can hardly expect a single inequality such as assumption A to
capture all their features.

This work is supported by NSFC, Grant. No. 10571166,
and by the Science Fund for Creative Research Groups.
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