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We study control of electron-nuclear spin dynamics at magnetic field strengths where the Larmor frequency
of the nucleus is comparable to the hyperfine coupling strength. The quantization axis for the nuclear spin
differs from the static B0 field direction and depends on the state of the electron spin. The quantization axis can
be switched by flipping the state of electron spin, allowing for universal control of nuclear spin states. We show
that by performing a sequence of flips �each followed by a suitable delay�, we can perform any desired rotation
of the nuclear spin, which can also be conditioned on the state of the electron spin. These operations, combined
with electron spin rotations, can be used to synthesize any unitary transformation of the coupled electron-
nuclear spin system. We discuss how these methods can be used for design of experiments for transfer of
polarization from the electron to the nuclear spins.
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I. INTRODUCTION

In this paper, we study the problem of control of coupled
electron-nuclear spin systems consisting of an electron,
coupled with one or more nuclear spins. Manipulation of
such electron-nuclear spin systems is fundamental in the
field of electron spin resonance �ESR� and electron paramag-
netic resonance �EPR� �1� with application to the study of the
structure and dynamics of paramagnetic species. Coupled
electron-nuclear spin systems have recently been explored as
model systems for quantum information processing �2–17�.
The study of control of these systems is interesting from the
perspective of quantum control as the dynamics of coupled
electron-nuclear systems has some salient differences com-
pared to coupled nuclear spin systems �18�.

The Rabi frequency of the electron �at typical microwave
power in pulsed EPR experiments� is of orders of magnitude
larger than the Rabi frequency of the nucleus �at typical rf
power�. The duration of �

2 pulses on the electron and nucleus
are in the nanosecond and microsecond regimes, respec-
tively, in EPR experiments. Local rotations of electrons,
therefore, take much less time than the nucleus. The energy
eigenstates of the nucleus �at field strengths where hyperfine
interactions and the Larmor frequency of the spins are com-
parable� depend on the state of the electron and are not
aligned with the static B0 field. This results in the well-
studied phenomenon of electron spin echo envelop modula-
tion �ESEEM� �1�. This opens the possibility of controlling
the nucleus by only manipulating the electron spin �2�. Here
we show that universal control of nuclear spin states can be
achieved by simply switching the state of the electron be-
tween its two eigenstates �by a series of � pulses and de-
lays�. The quantization axis and the precession frequency
�around this axis� of the nucleus are switched every time the
state of electron spin is flipped, making the nucleus nutate
around the new quantization axis. We will show that by per-
forming a sequence of flips of the electron �each followed by
a suitable delay�, we can perform any desired rotation of the

nuclear spin states. This rotation can also be conditioned on
the state of the electron spin. This mode of control of nuclear
spin states obtained by switching between two rotation axes
is an excellent example of so-called switched control sys-
tems in control theory �19�. Controlling nuclear spin by
switching the quantization axis is preferable than rotating
nuclear spin with rf fields as hyperfine couplings are orders
of magnitude larger than the Rabi frequency of nuclear spin
obtainable with typical radio frequency power. Therefore
much shorter experiments can be designed, which can sig-
nificantly reduce relaxation losses, mainly arising from short
transverse relaxation times of electron �see example 1, Sec.
IV�. Furthermore, since the only manipulation required in-
volves flipping the state of the electron spin, we show that it
is easy to design these experiments so that they are robust to
the Larmor frequency dispersion of the electrons. It is ex-
pected that this switched-mode control of nuclear spins will
find applications in quantum information processing and
pulsed EPR, including pulsed dynamic nuclear polarization
�DNP� experiments �1,20�.

The paper is organized as follows. In Sec. II, we describe
the Hamiltonian that governs the evolution of coupled
electron-nuclear spin-1

2 system. We show how the nuclear
spin is quantized along two different axis depending upon
the state of the electron spin. In Sec. III, we show how this
feature is exploited to transform between eigenstates of
electron-nuclear spin system by simply performing a se-
quence of � pulses on the electron �each followed by a suit-
able delay�. The number of � pulses required to perform
rotations of the nuclear spin is related to the angle between
the two quantization axes of the nuclear spin. In Sec. IV,
these methods are generalized to perform arbitrary rotations
of nuclear spin conditioned on the state of electron spin. We
present an algorithm for computing the timing of a sequence
of � pulses on the electron spin required to synthesize any
desired rotation of the nuclear spin conditioned on the state
of electron spin. In Sec. V, we generalize these methods to
produce an arbitrary unitary transformation of the electron-
nuclear spin system by again simply flipping the electron
spin. We also discuss how these methods generalize to a
single electron spin coupled to many nuclei.*navin@hrl.harvard.edu
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II. PHYSICAL MODEL

We consider as our model a spin system consisting of one
electron spin S= 1

2 and one nuclear spin I= 1
2 �see, e.g., Sec.

3.5 of �1�� in a static magnetic field B0 along the z direction.
We will later also discuss the case of one electron coupled to
many nuclear spins. Given the Pauli matrices �xª � 0

1
1
0

�, �y

ª i� 0
1

−1
0

�, and �zª � 1
0

0
−1

� and the identity matrix �0ª � 1
0

0
1

�,
the operators Sj and Ik �j ,k� �x ,y ,z�� are defined by Sj

= �� j � �0� /2 and Ik= ��0 � �k� /2 �see �18��. Let x ,y ,z de-
note standard unit vectors in the x ,y ,z directions.

The Hamiltonian H0 of the electron-nuclear spin system
�in units so that �=1� in the laboratory frame may be written
as

H0 = �sSz + �IIz + S · A · I ,

where �s represents the Larmor precession frequency of the
electron spin, �I represents Larmor precession frequency of
the nuclear spin, and A is the electron-nuclear hyperfine cou-
pling tensor. Here �s=−�eB0 and �I=−�nB0. Here �e is the
gyromagnetic ratio of the electron �negative� and �n is the
gyromagnetic ratio of the nucleus �we take it to be positive,
as for a proton�. At a magnetic field strength of B0�0.5 T,
��I�
2� =21.42 MHz and

��S�
2� =14.28 GHz. The hyperfine cou-

pling tensor A includes the electron spin-nuclear spin Fermi
contact interaction �isotropic part of A� and the electron
spin-nuclear spin dipolar interaction �anisotropic part of A�.
As our model 1e-1n physical system, we consider a single
crystal of x-ray-irradiated malonic acid �21�. In this system,
the principal values of the hyperfine coupling tensor A have
been measured to be ��1 ,�2 ,�3�=2��−60,−90,−30� MHz
�21�.

The static field B0 sets the quantization axis of electron
spin, and the coupling Hamiltonian Hc=S ·A ·I averages to

Hc = AzzSzIz + AzxSzIx + AzySzIy ,

where the parameters �Azz ,Azx ,Azy� depend on the principal
values ��1 ,�2 ,�3� of the coupling tensor A and the orienta-
tion of the crystal with respect to the magnetic field B0z. The
transverse plane axis for the nuclear spin subspace can be so
chosen so that the last two terms are combined to form

Hc = ASzIz + BSzIx,

where A=Azz and B=	Azx
2 +Azy

2 . The full Hamiltonian of the
system then takes the form

H0 = �sSz + �IIz + ASzIz + BSzIx.

In the rotating frame �rotating with the electron at fre-
quency �s�, the Hamiltonian of the electron-nuclear spin sys-
tem takes the form

H1 = �SSz + �IIz + ASzIz + BSzIx,

where �S is the resonance offset for the electron. We assume
for now that the precession frequency of the electron is well
defined and �S=0 �the case when �S�0 will be discussed
subsequently�. Let 	 and 
 denote the state of the electron
spin oriented along and opposite to the direction of the static
magnetic field B0, respectively. For an electron, the 	 con-

figuration has higher energy than the 
 configuration.
When the electron is in the 	 state, the nucleus sees a net

field

B	 = 
B0 −
A

2�n
�z −

B

2�n
x .

When the electron is in the 
 state, the nucleus sees a net
field

B
 = 
B0 +
A

2�n
�z +

B

2�n
x .

The nuclear precession frequency in the two states is given
by

�	 =	
A

2
+ �I�2

+
B2

4
, �
 =	
A

2
− �I�2

+
B2

4
, �1�

where �I is negative. We define the operators S	= � 1
2 +Sz� and

S
= � 1
2 −Sz�. Then the Hamiltonian H1 can be written as

H1 = �I�Sz
	 + Sz


�Iz +
�Sz

	 − Sz

�

2
�AIz + BIx� ,

which when rewritten looks like

H1 = Sz
	
�IIz +

�AIz + BIx�
2

� + Sz


�IIz −

�AIz + BIx�
2

� ,

which is rewritten as

H1 = S	D	 + S
D
,

D	,
 = − �nI · B	,
 �2�

Let d	 and d
 denote unit vectors along the field direc-
tions B	 and B
. The states �	+ � and �	− � represent the state
of the spin system when nuclear spin is oriented along or
against d	, respectively, and the electron is in the 	 state.
These states constitute the 	 manifold. Similarly, the states
�
+ � and �
− � represent the state of the spin system when
nuclear spin is oriented along or against the field d
, respec-
tively, and the electron is in the 
 state. These states consti-
tute the 
 manifold. Figure 1 depicts the field B	 and B
 and
the energy eigenstates of the electron-nuclear spin system
when ��I � �

A
2 .

III. CONTROLLING EIGENSTATES OF THE ELECTRON-
NUCLEAR SPIN SYSTEM

We now show that starting in an eigenstate of the spin
system, switching between the 	 and 
 states of the electron
by � pulses, we can synthesize any desired rotation of the
nuclear spin. Furthermore, since �	��
, we will show in
Sec. �4� that these rotations can be conditioned on the elec-
tronic spin state.

To fix ideas, consider the state transformation

�
 + � → �
 − � .

When the electron is flipped from the 
 to 	 state, the effec-
tive field felt by the nucleus switches from direction d
 to d	

NAVIN KHANEJA PHYSICAL REVIEW A 76, 032326 �2007�

032326-2



and the nuclear spin begins to precess around this new axis.
Following this precession for time �1, we flip the electron
back, causing the precession axis to return to d
 and then let
the precession happen for time �2 and so on. Since d	 and d


are two independent axes of rotation, switching between
them followed by precession can generate any three-
dimensional rotation of the nuclear orientation. Figure 2�a�
shows the trajectories of nuclear spin on the Bloch sphere as
it precesses around the d	 and d
 directions. These trajectory
plots can be used to construct the sequence of switchings
between the axis �and delays between switchings� d	 and d


to produce the desired rotation of nuclear the spin state. A
simple algorithm for computing such switchings is depicted
through Fig. 2�b� �which is a projection of Fig. 2�a� on the
plane of axes d	 and d
� where the initial vector d	 is trans-
formed to the target vector n. The initial and target vectors
can be indexed by the pair �r ,s�, representing their latitude
�black lines indexed from �0, 2�, based on the distance from
the north pole� and tilted longitudes �brown lines indexed �0,
2� based on the perpendicular distance from the tip of vector
d
�, respectively. Rotations around d
 and d	 change r and s,
respectively. Rotation is carried out around each axis until
the changing coordinate either reaches the respective coordi-
nate for the target vector or reaches the upper limit of how
close it can come to the target coordinate, at which point one
switches to rotation around the other axis. The process is
continued until we reach the �r ,s� coordinate of the target
vector. The very last evolution time may then be extended to
reach the out-of plane coordinate of vector n.

Figure 3 shows the transformation �
+ �→ �
− �, with a
three-period pulse sequence. This is a special case of the
transformation shown in Fig. 2�b�, where the starting vector
is oriented along d
 and the final vector n=−d
. The delays
�1, �2, and �3 are chosen so that the nuclear spin magnetiza-
tion executes the trajectory shown in Fig. 3�a�. The last �
pulse in the figure returns the electron to state 
. The times
�1, �2, and �3 can be computed from this figure.
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FIG. 1. �a� depicts the field vectors B	 and B
 when ��I��
A
2 and

A�0. �b� depicts the corresponding energy-level diagram for the
electron-nuclear spin system. Note �
��	.

τ2

τ1

Α

β

Β

α

β

d

d

αd d

n

FIG. 2. �Color� �A� shows the trajectories of nuclear spin on the
Bloch sphere, as it precesses around the d	 and d
 directions. This
trajectory plot aids in visual construction of rotation between points
on the sphere by alternation between rotations around d	 and d
.
�B� depicts one such construction �projected on the plane of axes d	

and d
� that rotates unit vector d	 to the unit direction n. The initial
rotation is around axis d
 for time �1, followed by rotation around
d	 for time �2. The times �1, �2 can be explicitly computed from the
figure based on the algorithm described above.
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FIG. 3. �Color� �A� depicts the trajectory executed by nuclear
spin magnetization, initially oriented along the direction d
, when
the pulse sequence in �B� is implemented. The transformation is the
inversion of the nuclear spin resulting in the transformation �
+ �
→ �
− �. �C� shows that the desired rotation �shown with solid ar-
row� �
+ �→ �
− � is implemented by switching the electron be-
tween 	 and 
 manifolds.
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Similar arguments can be used to transform any energy
eigenstate into another by simply flipping the electron spins
followed by appropriate delays. This then naturally leads us
to the question of the number of times the state of the elec-
tron needs to be switched to produce any desired rotation of
the nuclear spins in a given eigenstate in either 	 or 
 mani-
fold. The problem of finding the minimum number of switch-
ings for producing arbitrary rotations by switching between
two axes of rotation has been studied before. We recapitulate
the main results and motivate further extensions.

Remark 1: uniform generation. Let � denote the angle
between two rotation axes d	 and d
 as shown in Fig. 3.
Then it is a known result �22� that any three-dimensional
rotation in group SO�3� �similar result holds for group
SU�2�� can be constructed by not more than k+2 rotations
�performed around d	 or d
�, where

�

k + 1
 � �

�

k
.

Therefore, starting in either the 	 or 
 manifold, any rotation
of nuclear spin can be obtained by a pulse sequence as
shown in Fig. 3�b� with no more that k+2 evolution periods
�i. Furthermore, there exist algorithms to find the sequence
with a minimum number of switches �23� to generate any
arbitrary rotation using only rotations around d	 and d
.
Here, we present a strategy for obtaining such a sequence
�which need not be minimal in terms of the number of
switches� which is easy to construct geometrically.

Let �1−�k �k even� be the times for alternate rotations
�starting with d
� around d
 and d	, with angular frequency
�
 and �	, so chosen that the resulting rotation takes
the initial vector d	 to unit direction n as described in
Fig. 2�b�. Let U�	 ,��=exp�−i�	�d	 ·�� and U�
 ,��
=exp�−i�
�d
 ·�� be rotations in SU�2� around axes d	 and
d
. A rotation by the angle � around a unit vector n=nxx
+nyy+nzz takes the form

exp�− i�n · �� = cos
�

2
1 − i2 sin

�

2
n · � , �3�

where n ·�=nx�x+ny�y +nz�z. Then, a sequence of rotations

U�	,�k� ¯ U�
,�1�

U1

U�	,��U�
,− �1� ¯ U�	,− �k�

U1
−1 �4�

will generate a rotation around the unit vector n with an
angle �=��	. Let

t	 =
2�

�	

, t
 =
2�

�


. �5�

The rotations U�
 ,−�� and U�	 ,−�� are simply obtained by
observing that

U�
,t
 − �� = − U�
,− ��, U�	,t	 − �� = − U�	,− �� .

�6�

Since k is even, the negative signs in �4� cancel out �if k is
odd, it just produces a global phase�.

In the following section, we generalize these results and
show how to design a sequence of � pulses of electron spin
that produces a desired rotation of the nuclear spin condi-
tioned on the state of the electron spin.

IV. SYNTHESIS OF CONTROLLED OPERATIONS ON
NUCLEAR SPINS

A 	 manifold-selective controlled operation on the
nuclear spin transforms �	+ �→U�	+ � and �	− �→U�	− �,
where U�SU�2� is a unitary transformation that mixes
states �	+ � and �	− �. The 
 manifold is left unperturbed—
i.e., �
+ �→ �
+ � and �
− �→ �
− �. We show that such con-
trolled operations can again be performed by toggling the
state of the electron spin with � pulses, followed by suitable
delays. This is best seen by observing that by flipping the
state of the electron spin, we can switch between the Hamil-
tonians

H1 = �IIz + Sz�AIz + BIx� �7�

and

H2 = �IIz − Sz�AIz + BIx� , �8�

where evolution under H2 is obtained as

exp�− iH2�2� = exp�− i�Sx�exp�− iH1�2�exp�− i�Sx� .

�9�

Therefore, the pulse sequence �1-�-�2-� �where the �
pulse is on the electron� evolves H1 for time �1, followed by
H2 for time �2. A straightforward calculation shows that
when �	��
 �in Eq. �1��, the repeated commutators of −iH1
and −iH2 generate a six-dimensional algebra, spanned by
generators k=−i�Ix , Iy , Iz ,SzIz ,SzIx ,SzIy�. Then a standard re-
sult of controllability �24� states that any unitary transforma-
tion generated by these generators can be produced by sim-
ply switching between −iH1 and −iH2; i.e., any rotation of
the kind

exp�− i�aSzIp + bIq�� , �10�

where Ip and Iq are nuclear spin operators, can be synthe-
sized by switching between −iH1 and −iH2. Specifically, we
can perform a rotation exp�−iS	I��, which only rotates
nuclear spins in the electron’s 	 manifold �S	= � 1

2 +Sz�, S


= � 1
2 −Sz��.
We can write the Hamiltonians H1 and H2 in block-

diagonal form �see Eq. �2�� as

H1 = 
D	 0

0 D

�, H2 = 
D
 0

0 D	
� ,

where D	,
 denotes the generator of rotation around the axis
d	,
 with angular, frequency �	,
. The algebra k is simply all
block-diagonal 6�6 skew Hermitian matrices—i.e., matri-
ces of the form


A1 0

0 A2
� ,

where A1=−A1
† and A2=−A2

†. Note, in the special case when
A=0 in Eqs. �1�, then �	=�
 in Eqs. �1�. In this special case,
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the algebra generated by H1 and H2 is only a three-
dimensional algebra and we cannot produce arbitrary con-
trolled operations on the nuclei. This case, however, is of
only theoretical interest and will not be considered any fur-
ther.

A � pulse on the electron will switch H1 to H2 and vice-
versa. A sequence of delays and flips, �1-�-�2-¯ -�k-�,
where k is, say, even, will execute the following rotations on
the nuclear spin in 	 and 
 manifolds, respectively:

U	 = U�
,�k� ¯ U�	,�1�, U
 = U�	,�k� ¯ U�
,�1� .

Here U�	 ,��=exp�−iD	�� and U�
 ,��=exp�−iD
��. The
goal is to find the sequence of times �k, such that U
= I and
U	=Uf is the desired rotation. This constitutes a controlled
rotation on nuclear spins, conditioned on the electron state.
Similarly, finding a sequence of times �k, such that U
=U	

=Uf, constitutes a uniform rotation of the nuclear spin state.
In general, we want to find a sequence that performs
manifold-selective operations; i.e., U	 and U
 are as desired.
It is also a known result �22� that there exists a finite number
of switchings, N, such that arbitrary U	 and U
 can be con-
structed by no more than N number of switchings. Finding
methods to generate these in a minimum number of switch-
ings is an interesting problem in the present context. We
present a constructive search strategy for achieving this �our
methods need not be minimal in terms of number of switch-
ing�.

Let us perform a series of rotations on the 
 manifold
�with k even� given by

U� = U��,− �1� ¯ U��,− �k�

U1
−1

U��,�k� ¯ U��,�1�

U1

,

where U
 is implemented as

U
 = U�
,t
 − �1� ¯ U�	,t	 − �k�U�	,�k� ¯ U�
,�1� .

By definition, U
=1. We now have the independence in se-
lecting �1−�k, in such a way that the corresponding rotation
of the 	 manifold is given by

U�	,t
 − �1� ¯ U�
,t	 − �k�U�
,�k� ¯ U�	,�1� = UF.
�11�

We rewrite this relation as

1 = U�
,�k − t	� ¯ U�	,�1 − t
�UFU�	,− �1� ¯ U�
,− �k� .

�12�
Equation �12� can then be written as

1 = BU�
,�k� ¯ AU�	,�1�UFU�	,− �1�

UF
1

¯ U�
,− �k�

UF
k

,

�13�

where A=U�	 ,−t
� and B=U�
 ,−t	�.
Equation �13� can be used to determine �1−�k. In Eq.

�13�, the times �1−�k, are chosen to increase the trace of UF
k

to 2 �the only matrix in SU�2� with trace 2 is 1�. These can
be obtained iteratively in a closed form by the following

optimization procedure. Suppose �2−�k is fixed. Now, Eq.
�13� can be written as

Tr�UF
k � = Tr�C1U�	,�1�UFU�	,− �1�� , �14�

where

C1 = U�
,− �2� ¯ U�
,− �k�BU�
,�k�AU�	,�k−1� ¯ A .

The time �1 is chosen to maximize Tr�UF
k �. The quantity to

optimize then takes the form

Tr�C1U�	,�1�UFU�	,− �1��

= 2cos
�

2
cos

�c

2
− sin

�

2
sin

�c

2
nc · n��1�� , �15�

where UF=exp�−i�n ·�� and C1=exp�−i�cnc ·��. Let

n� = �n · d	�d	, n� = n − n� . �16�

Similarly define

�nc�� = �nc · d	�d	, �nc�� = nc − �nc�� . �17�

In expression �15�, �1 generates a rotation around the axis
d	 and only rotates n�, the part of n, that is perpendicular to
d	. We can rewrite Eq. �15� as

Tr�C1U�	,�1�UFU�	,− �1��

= 2cos
�

2
cos

�c

2
− sin

�

2
sin

�c

2
��nc�� · n���1�

+ n� · �nc���� . �18�

See Fig. 4. The expression in Eq. �18� is maximized when
n���1� is aligned or anti aligned �depending on the sign of

sin �
2 sin

�C

2 � with �nc��. We can write an explicit expression
for �1. Let a be a unit vector in the direction of sin �

2n� and
b be a unit vector in the direction of sin

�c

2 �nc��; then,
sin��	�1�= �b�a� ·d	. Having determined the optimal value
�1, we can now proceed to maximize �2 which is now an
optimization of a function like Tr�C2U�
 ,�2�UF

1U�
 ,−�2��
and so on. Having found a set of values �1−�k, this way, we
iterate again. Note that Tr�UF

k � is bounded above by 2. By
construction, each iteration increases the value of Tr�UF

k � and
therefore this monotonically nondecreasing process has a
limit, proving that the algorithm converges. If this limit value

ωατ1 ( )

n
c

c

n

n n

dα

FIG. 4. Depiction of the geometry of vectors n, �nc�, n�, �nc��,
and d	.

SWITCHED CONTROL OF ELECTRON NUCLEAR SPIN SYSTEMS PHYSICAL REVIEW A 76, 032326 �2007�

032326-5



is not 2, we can increase k and repeat the iteration. The
resulting set of evolution times �1−�k synthesizes a selective
rotation of the 	 manifold as in Eq. �11�. Similarly we can
synthesize a selective rotation of the 
 manifold and there-
fore any rotation of the kind given in Eq. �10�. Alternatively,
we can synthesize a desired unitary transformation U
 on the

 manifold as described in Eq. �4�, which results in some
rotation U	� of the 	 manifold �which is easily computed�.
Now performing an 	-manifold-selective rotation of
U	�U	��−1 will result in the desired rotations of the two mani-
folds.

Example 1. Using the above-described method, we explic-
itly compute the pulse sequence for implementing a con-
trolled rotation exp�−i�S	Iy�, which inverts the nuclear spins
in the 	 manifold and leaves the 
 manifold unaffected. As
our model 1e-1n physical system, we consider a single crys-

tal of x-ray-irradiated malonic acid �2,21�. The RCHR radi-
cal �R=-COOH� in malonic acid represents a prototypical

�ĊH fragment, where the unpaired electron in a 2p � or-
bital on carbon interacts with a directly bonded proton. In
this system, the principal values of the hyperfine coupling
tensor A have been measured to be ��1 ,�2 ,�3�=2��−90,
−60,−30� MHz.�21� The coupling tensor is composed of an
isotropic part with the measured value of −60 MHz and an
anisotropic part with principal values ��1

a ,�2
a ,�3

a�
=2��−30,0 ,30� MHz. Let e1 ,e2 ,e3 represent principal vec-
tors corresponding to ��1

a ,�2
a ,�3

a� respectively. If we orient
the crystal, such that the magnetic field B0z lies in the e2-e3

plane, making an angle of �
4 with both the vectors, then the

hyperfine coupling tensor A, with the y axis taken along e1,
takes the form

A
2�

= �− 60 1

isotropic

+ �− 30 0 15

0 0 0

15 0 15
�

anisotropic

� = �
− 90 0 15

0 − 60 0

15
Azx

0 − 45
Azz

� MHz.

Therefore A / �2��=−45 MHz and B / �2��=15 MHz and

at a magnetic field strength of 0.5T,
��I�
2� =21.42 MHz and

��S�
2� =14.28 GHz. This gives

�I

A =−0.4762 and B
A =−1/3. The

pulse sequence �1−�. . .�7 ,
P

where the switching times,

in units of 1 /A, are �1=1.3748, �2=6.2108, �3=6.1908, �4
=25.52, �5=30.21 and �6=19.31, �7=35.02, implements the
desired controlled rotation. The total time, in units of 1 /A, is
123.84 and corresponds to 0.438 �s. Assuming a moderately
high rf power with Rabi frequency of 100 Mhz for the
nuclear spin, the duration of a � pulse will take 5 �s. There-
fore, the proposed methodology of the paper is more than an
order of magnitude faster than using rf rotation of the
nucleus.

Also note that using the above sequence as a building
block, the pulse sequence P-�-P-� implements the rotation

exp�− i��S	 + S
�Iy� = exp�− i�Iy� .

Similarly let Q denote the switching sequence that imple-
ments exp�−i�Ix�. Then the pulse sequence P-Q-�-P-�-Q
will implement the rotation

exp�− i��S	 − S
�Iy� = exp�− i�2IzSy� .

V. UNITARY TRANSFORMATIONS OF COUPLED SPIN
SYSTEMS

We now show how any arbitrary unitary transformation of
the electron-nuclear spin system can be synthesized by a se-

quence of � pulses of the electron in combination with single
spin rotations of the electron. Any unitary transformation UF
of the electron-nuclear spin system is given by �25�

UF = UIUS exp�− i�aSxIx + bSyIy + cSzIz��VIVS,

where UI ,VI are single-spin operations on the nucleus and
US ,VS are single-spin operations on the electron. The opera-
tors IxSx, IySy, and IzSz all commute. As described in
Eq. �10�, we have shown that all rotations of the kind
exp�−i�1SzIa� and exp�−i�2Ib� can be synthesized by simply
toggling electron spins �here Ia and Ib are arbitrary nuclear
spin operators�. These rotations, along with single-spin rota-
tions exp�−i�3S��, of the electron can be used to perform
arbitrary unitary rotation on the electron-nuclear spin system.
The bilinear rotations exp�−i�SxIx� can be synthesized as

exp�− i�SxIx� = exp
− i
�

2
Sy�exp�− i�SzIx�exp
i

�

2
Sy� ,

exp�− i�SyIy� = exp
i
�

2
Sx�exp�− i�SzIy�exp
− i

�

2
Sx� ,

where exp�−i�SzIx� and exp�−i�SzIy� can be generated by a
sequence of � pulses of the electron as described in Sec. �4�.

Remark 2: refocusing resonance offsets for electron spins.
In the above-described methods, we have assumed that the
precession frequency of the electron is precisely defined and
there are no resonance offsets. The dispersion in the fre-
quency of the electron can be refocused by the following
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technique. For k even, let �1-�-�2-¯ -�k-� be a sequence
that implements the propagator Uf =exp�−i b

2 Iq�. Then the se-
quence P-P, where P=�1-�-�2-¯ -�k, will implement the
propagator exp�−ibIq� and refocus all resonance effects. Ob-
serve that the free evolution for time � corresponds to the
propagator exp�−iH1��exp�−i�Sz��. Observe that there are
an odd number of � pulses between the �1 evolution periods
in the two pulse sequence blocks denoted by P. The
evolution exp�−i�Sz�1� in the two blocks will therefore can-
cel. A similar argument applies for other free evolution
periods. The pulse sequence P implements the propagator
exp�−i b

2 Iq�, and therefore P-P implements the propagator
exp�−ibIq�.

We now consider the problem of synthesizing a general
rotation of the kind exp�−i�aSzIp��, in the presence of reso-
nance offsets. Let Iq be orthogonal to Ip. Let us consider a
switching sequence that implements exp�−i�Iq� and compen-
sates for offset effects. We have just described how to con-
struct such a sequence. Consider a switching sequence �as-
suming no resonance offset� Q=�1-�-�2-¯ -�k such that k is
even and Q-� implements exp�−i a

2SzIp�. Then the sequence
Q-R-Q-R will implement the desired propagator
exp�−iaSzIp� and compensate for offset effects on the elec-
tron. This is best seen by writing the propagator for
Q-R-Q-R. Note that in the presence of resonance offsets Q-�
prepares a propagator U=exp�−i� a

2SzIp+��Sz�� for some �.
Then Q-R-Q-R prepares the propagator

U exp�− i��Sx + Iq��U exp�− i��Sx + Iq�� ,

which is same as exp�−iaSzIp�.
Remark 3: polarization transfer from the electron to

nucleus. The above-described methods can now be used to
transfer polarization from electrons to the nucleus. We de-
scribe a sequence of unitary transformations for transferring
polarization from electron to the nucleus. Such polarization
transfer operations underly dynamic nuclear polarization
�DNP�, a magnetic resonance technique utilized to enhance
the polarization of nuclei in samples containing paramag-
netic centers to increase sensitivity of the NMR experiments
�26,27�. The coherent methods of performing such polariza-
tion transfer operation rely on manipulating nuclei using rf
pulses. As described before at typical rf powers available in
these experiments, such manipulations require a significant
amount of time compared with the transverse relaxation
times of the electron spin, leading to poor polarization trans-
fer efficiency. Here we describe a method for performing
such polarization transfer which exploits the large hyperfine
couplings and involves only performing a sequence of � and
�
2 pulses on the electrons. No rf manipulation of nuclei is
required. It is expected that these techniques will help in a
significant improvement in the polarization transfer effi-
ciency of these experiment.

The desired transformation

Sz → Iz

can be performed as follows:

Sz ——→
exp�−i

�
2

Sy�
Sx ——→

exp�−i
�
2

2SzIy�
2SyIy ——→

exp�−i
�
2

Sx�
2SzIy ——→

exp�−i
�
2

2SzIx�
Iz,

�19�

where the various unitary transformations can be performed
in a way that are robust to resonance offsets as described
before. Furthermore, all bilinear Hamiltonians above can be
synthesized by simply doing � pulses on the electron as
described before.

Remark 4: electron coupled to many nuclei. We now con-
sider the coupling Hamiltonian of a single electron 1

2 ,
coupled to many spin-1

2 , nuclei. The Hamiltonian for the spin
system takes the form �1�

H0 = �SSz + �
j=1

N

� jIIjz + Sz�
j=1

N

�AjIjz + BjIjx� .

For now, we neglect the resonance offset �S for the electron.
As before, for each electron-nuclear coupling, we can define
the unit directions �dj	 ,dj
� and the precession frequencies
�� j	 ,� j
�. Then a straightforward computation shows that if
for all j the precession frequencies � j	�� j
 and the fre-
quency pairs �� j	 ,� j
�� ��k	 ,�k
� are distinct, then all the
commutators generated by −iH1 and −iH2, where

H1 = �
j=1

N

� jIIjz + Sz�
j=1

N

�AjIjz + BjIjx�

and

H2 = �
j=1

N

� jIIjz − Sz�
j=1

N

�AjIjz + BjIjx� ,

span the space �Ijp ,SzIjq�. Therefore any rotation of the indi-
vidual nuclei is achievable by simply switching the electron
state by � pulses. These rotations combined with rotations of
the electron are sufficient to synthesize any unitary transfor-
mation of the coupled electron-nuclear spin system. Let U	j
and U
j represent the desired unitary transformation of the 	
and 
 manifolds of the jth nuclei. Let �1-�-¯ -�-�k-�
�k even� be the pulse sequence that implements such a trans-
formation. Then the switching times can be computed by
iterative maximization over �1-�k of a trace function like

�
j

tr�U	j� U�
 j,�k� ¯ U�	 j,�1��

+ tr�U
j� U�	 j,�k� ¯ U�
 j,�1�� ,

where U�	 j ,�� represents rotation of the jth nuclei around
the axis 	 j, with angular frequency �	j for time �. Gradient
algorithms for maximization of such trace functions were
presented in �28�

VI. CONCLUSION

In this article, we developed techniques for control of
coupled electron-nuclear spin systems. We showed that the
spin system at magnetic field strengths where the Larmor
frequency of the nucleus is comparable to the hyperfine cou-
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pling strength can be controlled by simply performing a se-
quence of flips �each followed by a suitable delay� of the
state of the electron spin. We showed that this mode of
switched control allows for universal control of the nuclear
spin states. This switched control of nuclear spin states is
much faster in settings where the hyperfine coupling is much
larger than the Rabi frequency of the nucleus. Combined
with single-spin rotations of the electron spin, switched-
mode control can be used to synthesize any unitary transfor-
mation of the coupled spin system. We presented algorithms
for explicitly computing the switching times. Furthermore,
we discussed how these methods can be made robust to reso-
nance offsets of the electron spin. A further method develop-

ment is required to make these methods robust to dispersion
in strength of hyperfine couplings. Application of these
methods for transferring polarization from electron to
nuclear spins was also discussed. The switched control meth-
ods presented in this work are expected to find applications
in pulsed EPR experiments and quantum information pro-
cessing systems based on coupled electron-nuclear spin dy-
namics.
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