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We show that randomly choosing the matrices in a completely positive map from the unitary group gives a
quantum expander. We consider Hermitian and non-Hermitian cases, and we provide asymptotically tight
bounds in the Hermitian case on the typical value of the second largest eigenvalue. The key idea is the use of
Schwinger-Dyson equations from lattice gauge theory to efficiently compute averages over the unitary group.
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Recently, two papers �1,2� introduced the idea of ex-
pander maps: quantum analogs of expander graphs. An ex-
pander graph �4� may be defined in several ways. One is the
property of having a large number of vertices, a small coor-
dination number for each vertex, and also having a gap in the
spectrum of the diffusion equation on the graph, so that a
particle classically diffusing on an expander graph rapidly
loses memory of where it started. In the quantum case, we
replace the random process of diffusion by a completely
positive, trace preserving map E�M�. We define a quantum
expander to be such a map from the space of N-by-N matri-
ces M to the same space with the following properties. First,
N is large, in analogy to the large number of vertices. Sec-
ond, the map has eigenvalues �1 ,�2 ,�3 , . . . ,�N2, with �1=1
and ��a��1−� for all a�1 so that the eigenvalue spectrum
has a gap. Finally, the map can be written as

E�M� = �
s=1

D

A†�s�MA�s� �1�

for some relatively small value of D, with �s=1
D A�s�A†�s�=1

so that the map is trace preserving, and with �s=1
D A†�s�A�s�

=1, so that the eigenvector corresponding to eigenvalue �1 is
�1/�N�1. Here, 1 is the N-by-N unit matrix. This requirement
of small D is in analogy to the low coordination number.

These maps were applied in �1� to construct many-body
states in one dimension with the property of having a short
correlation length �this corresponds to the gap � in the spec-
trum of eigenvalues of E�, small Hilbert space dimension on
each site �this corresponds to the small D�, and yet large
entanglement entropy �this corresponds to the large entropy
of the eigenvector of E with unit eigenvalue�. Since expander
graphs have a large number of applications in problems deal-
ing with classical statistics, such as in error-correcting codes
�5�, derandomization, and the PCP theorem �6�, to name a
few, it seems worth further exploring the quantum case.

A number of possible forms of an expander map are pos-
sible: in �2� an expander was defined as having

A�s� =
1

�D
U�s� , �2�

for some unitary matrices U�s�, and in fact this is the form of
A�s� considered in this paper. However, the more general
definition with arbitrary A�s� constrained by �s=1

D A†�s�A�s�
=1 , �s=1

D A�s�A†�s�=1 seems useful also; in fact, although we

do not consider it in this paper, it may be useful to weaken
this constraint further, and explore the properties of com-
pletely positive, trace preserving maps, with no other con-
straint on the A, requiring only that the entropy of the density
matrix, which is the eigenvector with unit eigenvalue, is
large �3�.

Our goal is to try to find families of maps with arbitrarily
large N, such that the gap � is bounded below by some
N-independent constant and such that D does not grow too
rapidly with N. The first paper �1� provided an explicit con-
struction of such a family of maps with D of order ln�N� and
provided numerical evidence for an alternate construction
with D independent of N. The second paper �2� gave yet a
different construction with D of order ln�N� but also pro-
vided a construction that had D independent of N and suc-
ceeded in proving an N-independent lower bound on the gap
� in this case.

Experience with expander graphs suggests that, while
finding deterministic constructions of them is difficult �7�,
with high probability a random graph of fixed coordination
number greater than 2 is an expander �8�. Thus, the natural
question is to investigate whether Eqs. �1� and �2� will give
an expander map if the matrices U are chosen randomly from
the unitary group U�N� using the Haar measure. We consider
two cases. In the first case, the map E is non-Hermitian and
the D matrices are chosen independently at random. In the
second case the matrices U�s� are chosen independently at
random for s=1, . . . ,D /2 and we pick U�s+D /2�=U�s�†. In
this case, D is even, and the map E is Hermitian and has real
eigenvalues. In this paper we begin in generality with the
non-Hermitian case, but then restrict to the Hermitian case
for simplicity of notation.

In the Hermitian case, we consider D�4, while in the
non-Hermitian case we consider D�2, as otherwise we
would clearly not have an expander. Let �2 be the eigenvalue
with the second largest absolute value of all eigenvalues
other than �1. Let

�H =
2�D − 1

D
. �3�

The main result of this paper is that, in the Hermitian
case, for any ��0 the probability that ��2� is within � of �H
approaches unity as N→�. Interestingly, this is the same as
the recently proven tight bound �9� in the classical case, but
the proof in the quantum case is much simpler.
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The proof is based on a version of the trace method. We
begin by introducing the trace method and describing its ap-
plication to the Hermitian and non-Hermitian cases. We then
give lower bounds on ��2� based on the return probability of
a random walk on a Cayley tree and discuss some numerical
results. We next introduce a set of Schwinger-Dyson equa-
tions, analogous to those used in lattice gauge theory �10�.
This is the key step, which enables us to take averages over
the unitary group efficiently. We will use these equations to
develop a convergent perturbation theory in 1/N for various
traces of unitary matrices, and bound the correction terms in
this perturbation theory. We start with a loose bound, giving
a loose bound on ��2�, and then tighten to get the tight bound
above. Finally, in the Appendix we discuss a related problem
of “quantum edge expanders,” which gives an analog in the
quantum case of the combinatorial definition of a classical
expander graph.

The space of N-by-N complex matrices M has a natural
inner product: �M ,N�=tr�M†N�. With respect to this inner
product, an orthonormal basis of matrices consists of the
matrices M�i , j�, defined to have a 1 in the ith row and jth
column, and zeroes everywhere else. Given this inner prod-
uct, we can consider the space of N-by-N matrices as an
N2-dimensional vector space, with E acting as a linear opera-
tor on this space. Then, in the Hermitian case, it is possible
to find a linear operator V, which is unitary with respect to
this inner product, such that E=V†	V, with 	 being a diag-
onal matrix with entries �a. Note that here E, V, and 	 are all
N2-by-N2 dimensional matrices. In the non-Hermitian case,
we can write E=V†TV, with T an upper triangular matrix
whose diagonal entries are the eigenvalues �a. Thus,

�
i,j

�Em
„M�i, j�…,Em

„M�i, j�…� = �
i,j

�Tm
„M�i, j�…,Tm

„M�i, j�…�

� �
a=1

N2

��a�2m, �4�

where Em�M� denotes acting with the map E successively m
times on M, and similarly for Tm�M�. In the case where E is
Hermitian, Eq. �4� is an equality.

To simplify notation, we now restrict to the Hermitian
case. In this case, Eq. �4� can be replaced by

�
i,j

�M�i, j�,Em
„M�i, j�…� = �

a=1

N2

��a�m � 1 + ��2�m, �5�

where we pick m to be an even integer. Then,

�
a=1

N2

��a�m = �
i,j

�M�i, j�,Em
„M�i, j�…�

= � 1

D
	m

�
s1=1

D

�
s2=1

D

¯�
sm=1

D

tr�U�sm + D/2� ¯U�s2 + D/2�


U�s1 + D/2��tr�U�s1�U�s2� ¯ U�sm�� . �6�

For notational convenience, we identify si+D with si
throughout this paper, so that si is a periodic variable with
period D.

Averaging U�1� , . . . ,U�D� over the unitary group we find

that E��i,j�M�i , j� ,Em(M�i , j�)��=E��a=1
N2

��a�m�, where E�¯�
denotes the given average. Averaging Eq. �6� we find

E1 
 � 1

D
	m

�
s1=1

D

�
s2=1

D

¯ �
sm=1

D

E0�s1, . . . ,sm� = E��
a=1

N2

��a�m� ,

�7�

where

E0�s1, . . . ,sm�


 E†tr�U†�sm� ¯ U†�s2�U†�s1��tr�U�s1�U�s2� ¯ U�sm��‡

= E†tr�U�sm + D/2� ¯ U�S2 + D/2�U�S1 + D/2��


tr�U�S1�U�S2� ¯ U�sm��‡ . �8�

I. LOWER BOUNDS AND NUMERICAL RESULTS

In this section we present lower bounds on ��2� based on
random walks on a Cayley tree and then provide some nu-
merical results. In the Hermitian case, it is possible, for cer-
tain choices of s1 , . . . ,sm in either Eq. �7� or Eq. �6�, that the
trace tr�U�s1�U�s2�¯U�sm�� can be reduced to a trivial trace
of the identity matrix by canceling successive appearances of
U�s�U�s+D /2� and replacing them with 1. The contribution
of such choices to E1 is proportional to a return probability
of a random walk on a Cayley tree as will be seen.

We begin with an upper bound on the number of such
choices: consider the unitaries U�s1�U�s2�¯U�sk� for some
k, 0�k�m. After making all possible cancellations of suc-
cessive terms, U�s�U�s+D /2�, this sequence of unitaries
may be reduced to another sequence of unitaries
U(s1��k�)U(s2��k�)¯U(sl�k�� �k�), for some l�k��k. Then, con-
sider the sequences of unitaries U�s1�U�s2�¯U�sk+1�. After
making the same cancellations, and then possibly canceling
U�sk+1� against U(sl�k�� �k�), we find a new sequence of unitar-
ies, U(s1��k+1�)U(s2��k+1�)¯U(sl�k+1�� �k+1�) with l�k+1�
= l�k�±1 and sj��k+1�=sj��k� for j� l�k�. When l�k+1�= l�k�
−1, then sk+1 is determined by sk. When l�k+1�= l�k�+1,
then if l�k��0 there are D−1 possible values of sk+1, while if
l�k�=0 there are D possible values. Note that l�k��0 for all
k. We define N(l�m� ,m) to be the number of choices of
s1 ,s2 , . . . ,sm, which give rise to the given l�m�. This is pre-
cisely the number of random walks of length m, on a tree
with D daughters at the root and D−1 daughters for every
other node, that end at a distance l�m� from the root. Note
that N�0,m� is equal to Dm times the return probability of a
random walk of length m on the Cayley tree.

An upper bound on N�0,m� is given by

N�0,m� � �D − 1�m/2 m!

�m/2�!�m/2�!
� �D − 1�m/22m. �9�

To show Eq. �9�, we consider a related problem: consider
sequences of l�k� in which l�k� may become negative, while
the number of choices of sm is considered to be D−1 when-
ever l�k+1�= l�k�+1, and the number of choices is consid-
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ered to be 1 whenever l�k�= l�k�−1. This gives an overesti-
mate of the number of sequences, and gives the value in Eq.
�9�.

On the other hand, a lower bound on N�0,m� is given by
assuming that if l�k+1�= l�k�+1 there are only D−1 possible
choices of sk+1, regardless of l�k�, in which case we find that

N�0,m� � c�2�D − 1�m/�m + 1�3/2, �10�

for some constant c of order unity. These bounds, Eqs. �9�
and �10�, are completely standard bounds �4�, and we only
repeat their derivation for completeness.

We now use Eq. �10� to get a lower bound on ��2� for any
completely positive map where the matrices A�s� are given
by Eq. �2�. We emphasize that, while the upper bounds else-
where in this paper are upper bounds on the typical behavior
of ��2�, the present result is valid for any such map given by
Eqs. �1� and �2�, and is a quantum analog of the Alon-

Boppana bound �11�. First, �a=1
N2

��a�m=1+�a=2
N2

��a�m�1
+ �N2−1���2�m�1+N2��2�m. Note that the product of traces
in Eq. �6� is equal to �tr�U�s1�U�s2�¯U�sm���2 and so is posi-
tive for all choices of s1 , . . . ,sm. If l�m�=0, then
�tr�U�s1�U�s2�¯U�sm���2=N2, and so the contribution of
terms with l�m�=0 to the sum in Eq. �6� is equal to
N2N�0,m� /Dm. Therefore,

1 + N2��2�m � �
a=1

N2

��a�m � N2N�0,m�
Dm � cN2�H

m/m3/2.

�11�

Thus, ��2���H�c /m3/2�1/m�1−m3/2 / �c�H
mN2��1/m. Picking m

= ln�cN2 /2�− �3/2�ln�ln�cN2 /2��� / ln�1/�H�, we find

��2� � �H�1 − O„ln„ln�N�…/ln�N��� . �12�

A very interesting question is to see whether a bound such
as Eq. �12� still holds for arbitrary trace preserving, com-
pletely positive Hermitian maps E�M�. As a partial step to-
ward this more general bound, note that the bound of Eq.
�12� can be readily generalized to the following case: let
A�s�=�P�s�U�s�, with the numbers P�s� obeying �s=1

D P�s�
=1, and with U�s�=U�s+D /2�† and P�s�= P�s+D /2�. Equa-
tion �2� is a special case of this with P�s�=1/D.

As stated before, the main result of this paper is that, for
any �, when the unitary matrices are chosen randomly, the
probability that ��2� is within � of �H approaches unity when
N becomes large. Interestingly, this seems to be true in more
generality than just for unitary matrices chosen with the Haar
measure. Using the construction in �1�, in which we pick a
random graph with constant coordination number and derive
unitary matrices from that graph and from certain random
phases, numerical studies also show that ��2� is close to �H.
We show in Fig. 1 the results of numerical diagonalization of
systems of size N=20,30,50, so that there are 400, 900, and
2500 eigenvalues, respectively. The second largest eigen-
value is indeed very close to �3/2. After sorting the eigen-
values by �a, from most positive to most negative, we plotted
the eigenvalues as a function of a /N2: the scaling collapse of
the curves is extremely good.

II. BOUNDS ON EIGENVALUES

A. Schwinger-Dyson equations

We will develop a perturbation theory in 1/N to estimate
the average �7�, which is a product of two traces. To do this,
we will develop general machinery for computing the aver-
age over the unitary group of products of an arbitrary num-
ber of traces. Consider such a product of the form

E�L1L2 ¯ Lk� , �13�

where

L1 = tr�U�s1,1�U�s1,2� ¯ U�s1,m1
�� ,

L2 = tr�U�s2,1�U�s2,2� ¯ U�s2,m2
��, . . . . �14�

Here we have an average of k traces, L1 , . . .Lk, each of which
is a product of mk unitary matrices. We now present the
Schwinger-Dyson equations.

Let Ta, for a=1, . . . ,N2, be Hermitian matrices such that

�
a=1

N2

T�
a T��

a = �����. �15�

Then

�
a=1

N2

�TaTa�� = N��. �16�

To compute the average in Eq. �13�, we begin with

0 1

a/N
2

-1

-0.5

0

0.5

1
λ a

0 0.05 0.1
0.7

0.8

0.9

FIG. 1. �Color online� Eigenvalues from numerical diagonaliza-
tion of a completely positive map based on the construction in �1�
using expander graphs, for N=20,30,50. The eigenvalue with ei-
genvalue unity is not shown. The second largest eigenvalue is at
roughly �3/2. Only a single realization is shown for each N. The
inset shows a detail of the behavior at small a. Curves in the inset
are N=20,30,50 from top to bottom; the curves in the main figure
are not distinguishable.
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E†tr�TaU�s1,1�U�s1,2� ¯ U�s1,m1
��L2 ¯ Lk‡ . �17�

We then use the invariance of the average over the unitary
group under an infinitesimal change in variables as follows:

U�s1� → �1 + i�Ta�U�s1� ,

U�s1 + D/2� → U�s1 + D/2��1 − i�Ta� , �18�

where we recall that U�s+D /2�=U�s�†. Applying the change
in variables given in Eq. �18� to Eq. �17�, and summing over
a and dividing by N, we find that

E†tr�U�s1,1�U�s1,2� ¯ U�s1,m1
��L2 ¯ Lk‡

= −
1

N
�
j=2

m1

�s1,1,s1,j
E†tr�U�s1,1� ¯ U�s1,j−1��tr�U�s1,j� ¯ U�s1,m1

��L2 ¯ Lk‡

+
1

N
�
j=2

m1

�s1,1,s1,j+D/2
E†tr�U�s1,1� ¯ U�s1,j��tr�U�sj+1,1� ¯ U�s1,m1

��L2 ¯ Lk‡

−
1

N
�
l=2

k

�
j=1

ml

�s1,1,sl,j
E†tr�U�s1,1� ¯ U�s1,m1

�U�sl,j�U�sl,j+1� ¯ U�sl,j−1��L2 ¯ Ll−1Ll+1 ¯ Lk‡

+
1

N
�
l=2

k

�
j=1

ml

�s1,1,sl,j+D/2E†tr�U�s1,1� ¯ U�s1,m1
�U�sl,j+1�U�sl,j+2� ¯ U�sl,j−1�U�sl,j��L2 ¯ Ll−1Ll+1 ¯ Lk‡ . �19�

We simplify the second and fourth lines after the equality sign of the above equation using U�s�U�s+D /2�=1 to get

E†tr�U�s1,1�U�s1,2� ¯ U�s1,m1
��L2 ¯ Lk‡

= −
1

N
�
j=2

m1

�s1,1,s1,j
E†tr�U�s1,1� ¯ U�s1,j−1��tr�U�s1,j� ¯ U�s1,m1

��L2 ¯ Lk‡

+
1

N
�
j=2

m1

�s1,1,s1,j+D/2
E†tr�U�s1,2� ¯ U�s1,j−1��tr�U�sj+1,1� ¯ U�s1,m1

��L2 ¯ Lk‡

−
1

N
�
l=2

k

�
j=1

ml

�s1,1,sl,j
E†tr�U�s1,1� ¯ U�s1,m1

�U�sl,j�U�sl,j+1� ¯ U�sl,j−1��L2 ¯ Ll−1Ll+1 ¯ Lk‡

+
1

N
�
l=2

k

�
j=1

ml

�s1,1,sl,j+D/2E†tr�U�s1,2� ¯ U�s1,m1
�U�sl,j+1�U�sl,j+2� ¯ U�sl,j−1��L2 ¯ Ll−1Ll+1 ¯ Lk‡ . �20�

These Schwinger-Dyson equations are quite long when writ-
ten out, but in reality are quite simple. Let us apply them to
compute the average of tr�U�tr�U†� over unitary matrices U.
We find after one iteration of Eq. �20� that this is equal to
�1/N�tr�1�=1. Now consider a more complicated example, to
compute the average of tr�UU�tr�U†U†� over unitary matri-
ces U. Then, the Schwinger-Dyson equations give after the
first iteration, �1/N��−E�tr�U�tr�U�tr�U†U†��+2E�tr�UU†���
=−�1/N�E�tr�U�tr�U�tr�U†U†��+2. We then apply the
equations again to the average E�tr�U�tr�U�tr�U†U†��,
giving E�tr�U�tr�U�tr�U†U†��= �1/N��−E�tr�UU�tr�U†U†��
+2E�tr�U�tr�U†���. Since we have already worked out
E�tr�U�tr�U†��=1, we have E�tr�U�tr�U�tr�U†U†��=−�1/
N�E�tr�UU�tr�U†U†��+2. Thus, putting it all together, we
find that

E�tr�UU�tr�U†U†�� = 2 + �1/N2�E�tr�UU�tr�U†U†�� − �2/N2� ,

�21�

and hence E�tr�UU�tr�U†U†��=2.
We now describe the general algorithm for reducing

traces of the form �13�. We initially cancel all pairs of ma-
trices U�s�U�s+D /2� appearing successively in the same
trace, replacing them with 1. We then apply Eq. �20�. Then,
we cancel all pairs of matrices U�s�U�s+D /2� appearing
successively in the resulting traces, replace the trace tr�1� by
N, and repeat this procedure for each term. After the first
application of Eq. �20�, the number of terms on the right-
hand side will be at most mtotal−1, where mtotal
m1+m2
+ ¯ +mk. Applying the equations repeatedly will generate
more and more terms at each application. We regard this as a
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branching process: each term on the right-hand side can be
then fed back into the left-hand side of the equation to gen-
erate new terms on the right-hand side. Note that at every
stage, each term will produce at most mtotal−1 terms on the
right-hand side since the total number of unitary matrices,
which appear in the traces m1+m2+ ¯ +mk, will always be
at most mtotal. If the number of unitary matrices becomes
equal to zero in some term after n iterations of Eq. �20�, then
we are left with only trivial traces and we say that this term
“terminates” at level n.

This algorithm generates an infinite series, where the nth
term in the series is equal to the sum of all terms terminating
at the nth level. We claim �and will show later when we
discuss the convergence of the series� that, if mtotal�N, then
this series is absolutely convergent and also the average of
the original trace is equal to the sum over all levels n�1 of
the terms which terminate at each level, so that the series
converges to the desired answer.

This series is in fact an infinite series for many simple
examples. In fact, for E�tr�UU�tr�U†U†�� we find that after
two repetitions of the process, the same average
E�tr�UU�tr�U†U†�� has reappeared, as can be seen on the
right-hand side of Eq. �21�, and thus the algorithm above
does not ever finish because there are always some terms
with nontrivial traces. In this particular case, however, al-
though the algorithm does not ever finish, the sum of the
terms terminating at any level n�1 is equal to zero; in other
cases �12� this is not true and the given series has an infinite
number of nonvanishing coefficients. We will later see how
this infinite series is related to an infinite series in 1/N for
the given trace.

We will apply this procedure to the trace E0=E[tr�U�sm

+D /2� ¯U�s2+D /2�U�s1+D /2��tr�U�s1�U�s2� ¯U�sm��].
Thus, L1=tr�U�sm+D /2�¯U�s2+D /2�U�s1+D /2��, and L2

=tr�U�s1�U�s2�¯U�sm��. Begin by reducing all successive
pairs of a unitary matrix followed by its Hermitian conju-
gate. What is left is two traces L1 ,L2 such that m1=m2 and
s1,i=s2,m2+1−i+D /2. We will proceed by estimating the prob-
ability of different values of m1 given a random choice of
s1 , . . . ,sm, and then estimating the behavior of E0 for the
given m1=m2.

B. Length of the reduced trace

In this subsection, we will estimate the number of choices
of s1 , . . . ,sm such that the reduced traces L1 ,L2 have a given
m1=m2.

We start with the case m1=m2=0 in which case E0=N2.
The number of different choices of s1 , . . . ,sm with m1=m2
=0 is given by Eq. �9� so the contribution of all such choices
to E1 is bounded by

N2D−m�D − 1�m/22m = N2�H
m. �22�

We can also bound the number of choices of s1 , . . . ,sm,
which give a given m1�0. In this case, l�m�=m1 and
sj��m�=s1,j. Using the same argument as given for Eq. �9�,
the number of such choices is bounded by

�D − 1�m1/2�D − 1�m/22m. �23�

This number is independent of the particular values of
s1,1 , . . . ,s1,m1

. There are �D / �D−1���D−1�m1 different pos-
sible values of s1,1 , . . . ,s1,m1

and therefore the total number
of choices of s1 , . . . ,sm, which give rise to a given choice of
s1,1 , . . . ,s1,m1

, is bounded by

D − 1

D � 1
�D − 1

	m1

�D − 1�m/22m. �24�

C. Nontrivial words

We now consider the case m1�0. After the first
application of Eq. �20�, the term on the fourth
line with l=2 and j=m reduces the trace
to �1/N�E[tr�U�s1,2�¯U�s1,m1

�U�s2,1�¯U�s2,m1−1��]= �1/
N�E�1�=1, so that the series terminates at level n=1. There
may also be other terms, which reduce the trace to a trivial
one after a single application of Eq. �20� if the sequence of
values s1,1s1,2¯s1,m1

has a symmetry under a shift: sj,1

=sj+m1/o,1 for some o�1, which we refer to as the period of
the shift. Here, we treat the index j as periodic with period
m1. For example, the problem studied in Eq. �21� has such a
symmetry under a shift with o=2. In the event that there is
such a shift symmetry, then the sum of terms terminating at
level n=1 is equal to o. For a given m1, the number of
choices of s1,1 , . . . ,s1,m1

, which have a shift symmetry with
period o, is bounded by �D / �D−1���D−1�m1/o. Thus, from
Eq. �24�, the total number of choices of s1 , . . . ,sm, which
give rise to a given m1 ,o, is bounded by �D
−1�m1/o� 1

�D−1
�m1�D−1�m/22m. Thus, the contribution to E1 of

terms terminating at level n=1 is bounded by

1 + �
m1�m

�
o=2

m1

o�D − 1�m1/o� 1
�D − 1

	m1

�H
m. �25�

The term in Eq. �25� with o=2 is is bounded by 2m�H
m, while

the sum of terms in Eq. �25� with o�2 is bounded by �D
−1�−1/6 / �1− �D−1�−1/6�2�H

m, which for D�4 is bounded by
30�H

m so that Eq. �25� is bounded by

1 + 2m�H
m + 30�H

m. �26�

We will now bound the sum of all terms terminating at
level n�1. Assuming that the sequence s1,2¯s1,m1

lacks the
shift symmetry discussed above, this is the only term that
terminates at level 1, and the other terms that appear after the
first iteration do not terminate and continue to branch, but
some of their descendents will terminate at lower levels.

We can estimate the value of a term that terminates at a
given level n�1 as follows. First, there is a sign equal to
plus or minus 1. Next, there is a factor of �1/N�n. Finally,
there is a factor of N for each trace of the form tr�1� that
appeared in this process. Suppose there are p such traces,
giving a factor of Np. How big can p be? Initially we have
k=2 different traces. The given term at level n arose from a
specific choice of terms on the right-hand side of Eq. �20� on
the first iteration. This specific choice has k1 different traces
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in it, with k1 equal to either 1 or 3. After the second iteration
there are k2 traces, then k3, and so on. The number of traces
k2 ,k3 , . . . can be determined as follows: an application of Eq.
�20� may increase the number of traces by one if the term
arises from the first or second line on the right-hand side, or
may decrease the number of traces by one if the term arises
from the third or fourth line on the right-hand side of Eq.
�20�. Next, some of the traces may be trivial. In the event
that the term arose from the first, second, or third line of Eq.
�20� it is not possible for any of the traces to be trivial, under
the assumption that any repetitions of the form U�s�U�s
+D /2� have been replaced by 1 in the trace. However, in the
event that the term arose from the fourth line, then it is
possible for one of the traces to be trivial, increasing p by
one. Thus, for each b�n, kb−kb−1 is equal to either +1, −1,
or −2. Let q be equal to the number of times the first or
second line was used from Eq. �20� and n−q equal the num-
ber of times the third or fourth line was used. Then, in order
for all traces to be trivial in this particular term resulting
from n iterations of Eq. �20�,

2 + q − �n − q� − p = 0. �27�

Also, since p can only increase when a term from the fourth
line is used,

p � n − q . �28�

Thus,

p � ��2 + n�/3� . �29�

Therefore, the value of a term terminating at the nth level,
n�0, is bounded in absolute value by

N��2+n�/3�−n. �30�

The number of terms terminating at the nth level is bounded
by

�2m − 1�n. �31�

Note also that there are no terms terminating at level n=2: if
the term does not terminate at level 1, then there are either 1
or 3 traces after the first iteration of Eq. �20�, and then there
is no way to have the term terminate at level 2. Thus, the
sum of terms terminating at level n�1 is bounded in abso-
lute value by

�2m�3N−2 + �2m�4N−2 + �2m�5N−3

+ �2m�6N−4 + �2m�7N−5 + ¯

� 8m3N−2 + 16m4N−2�1 + 2mN−1 + 4m2N−2�
1

1 − 8m3N−2 .

�32�

D. Convergence of series

We now show the claim that, for mtotal
m1+m2+ ¯

+mk�N, the average E�L1L2¯Lk� is indeed equal to the
sum over all levels n�1 of the number of terms terminating
at each level and that the series is absolutely convergent.

After n iterations of Eq. �20� some of the terms have termi-
nated. There are at most �mtotal−1�n terms, which have not
terminated, since there are at most �mtotal−1�n terms. Each of
these terms is equal to plus or minus one times N−n times
Npn, where pn is the number of times a trivial trace appeared
in the process, times the average of a product of traces. There
are at most mtotal− pn different traces in the product since
there were originally at most mtotal unitary matrices. Thus,
since each trace is bounded in absolute magnitude by N, the
sum of all terms which have not terminated after n applica-
tions of Eq. �20�, is bounded in absolute value by �mtotal

−1�nN−nNmtotal, which converges to zero as n→� for mtotal

�N. Thus, the difference between the sum of the terms ter-
minating at the first n levels and the actual value of the
average E�L1L2¯Lk� converges to zero as n→�. The sum
of all terms terminating at a given level is bounded in abso-
lute value by the number of such terms, times N−nNpn, and so
is bounded by �mtotal−1�nN−nNmtotal and so the series is abso-
lutely convergent for mtotal�N. This shows the desired
claim.

E. Loose bound

Adding the results in Eqs. �22�, �26�, and �32�, we find
that for 2m�N,

E1 � 1 + �N2 + 2m + 30��H
m + 8m3N−2

+ 16m4N−2�1 + 2mN−1 + 4m2N−2�
1

1 − 8m3N−2 .

�33�

We now pick m=ln�N4� / ln�1/�H�, so

E1 � 1 + 16�1 + o�1���log�N4�/log�1/�H��4N−2, �34�

where o�1� denotes terms asymptotically tending to zero as
N→�. Thus, the average of ��2� over the unitary group is
bounded by

16�1 + o�1���ln�N4�/ln�1/�H��4N−2�ln�1/�H�/ln�N4�

= �1 + o�1���loose�D� , �35�

where

�loose�D� 
 ��H =�2�D − 1

D
. �36�

Further, using Markov’s inequality, the probability that ��2� is
greater than c�loose�D�, for any c�1, is bounded by �1
+o�1��c−ln�N4�/ln�1/�H�, so that for large N it is very rare for ��2�
to be significantly above the loose bound �loose�D�.

F. Tight bound

We now tighten the bound. On a given iteration of the
Schwinger-Dyson equations, we go from a product of k
traces to a product of k+1, k−1, or k−2 traces. We will keep
track of how the matrices move under this iteration process
using a function fn(�l , i�) from pairs of integers to pairs of
integers. We say that the matrix U�sl,i� in the given product
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of traces, L1L2¯Lk, is in position �l , i�. Let us consider the
case of a term on the first line, where m increases by one.
Then, for any given j in the sum on the first line, we say that
the matrix in position �i ,1�, for i� j, on the n+1st iteration
corresponds to the matrix in position �1, i� on the nth itera-
tion, and so fn(�1, i�)= �1, i�, while the matrix in position
�2, i� on the n+1st iteration corresponds to the matrix in
position �1, i+ j−1� on the nth iteration, so fn(�1, i+ j−1�)
= �2, i�. The matrix in position �l , i�, for 2� l�k+1, on the
n+1st iteration corresponds to the matrix �l−1, i� on the nth
iteration, so fn�l−1, i�= �l , i�. We follow a similar procedure
for the other lines of Eq. �20� and if there are cancellations,
we keep track of how the matrix moves under the cancella-
tions.

We then keep track of which matrix after n iterations cor-
responds to a given matrix before any iterations, by defining
Fn(�l , i�)= fn(fn−1�¯f1(�l , i�)�� for l=1,2. Let us say that the
matrix at position �l , i� for l=1,2 is “trivially moved” under
the nth iteration of the Schwinger-Dyson equations if we are
considering a term in the equations, which did not arise from
TaU(�sl,i�); that is, the matrix is trivially moved if it is not in
position �1, j� using a term on the first or second line, or in
position �l , j� using a position from the third or fourth line, or
in position �1,1�. Let us define a “rung cancellation of matrix
i” to be the case in which, for some n, after the nth iteration
of the Schwinger-Dyson equation we perform a series of
cancellations such that the following hold �13�. First, a ma-
trix in position �l , j� is canceled against a matrix in position
�l� , j�� such that �l , j�=Fn−1(�1, i�) and �l� , j��=Fn−1(�2,m1

+1− i�). Second, at all previous iterations up to the n−1th
iteration, the given matrix was trivially moved. If there is a
rung cancellation of matrix 1 on the first iteration, then all
matrices cancel and the trace is equal to unity; this is pre-
cisely the case with l=2, j=m discussed at the start of the
section “Nontrivial words.” Note that the matrix in position
�l� , j��=Fn−1(�2,m1+1− i�) is equal to U�s2,m1+1−i�=U�si

+D /2�, which is why the matrix in position �l , j�
=Fn−1(�1, i�) can be canceled against this matrix.

We now make a stronger claim: for any given i, the
sum of all terms with a rung cancellation of matrix i
is equal to unity. To show this, consider the
trace tr�U�sm+D /2�¯U�si+1+D /2�X†U�si−1+D /2�¯U�s1

+D /2��tr�U�s1�¯U�si−i�XU�si+1�¯U�sm��, where X is
some arbitrary unitary matrix. Averaging this trace over all
unitary matrices U�s� and over all unitary matrices X with
the Haar measure, we find that the trace is equal to unity.
However, applying the Schwinger-Dyson equations to this
trace generates precisely the sum of terms mentioned above,
those in which there is a rung cancellation of matrix i. Thus,
this sum equals unity. We further claim that for any given
i1 , i2 , . . . , id, the sum of all terms with rung cancellations of
matrices i1 , i2 , . . . , id is equal to unity, as may be shown by
considering a trace in which matrices U�si1

� ,U�si2
� , . . . are

replaced by X1 ,X2 , . . ., and the trace is averaged over the
different X1 ,X2 , . . ..

On the other hand, if a term terminates at level n and
matrix i does not have a rung cancellation, then at some
previous iteration n either the matrix was not trivially moved

or was canceled against a matrix in position �l , j� such that
�l , j�=Fn−1�l� , j�� with �l� , j��� �2,m1+1− i�. In the latter
case, for l�=2 we know that sm+1−j�+D /2=si, while for l�
=1 we know that sj�=si, thus in both cases identifying some
k� i such as either s1,i=s1,k or s1,i=s1,k+D /2. If the matrix
was not trivially moved, we can also identify some k� i with
the same properties. Let us write k=��i� in both cases, for
some function ��i�.

Now consider the sum of terms in which there is no rung
cancellation for i of matrix i. By the inclusion-exclusion
principle in combinatorics, this is equal to the sum of all
terms, minus the sum over i of the sum of terms in which
there is a rung cancellation of matrix i, plus one half the sum
over i1� i2 of the sum of terms in which there are rung
cancellations of matrices i1 , i2, and so on. This is equal to the
sum of all terms minus the sum

m1 − m1�m1 − 1�/2 + m1�m1 − 1��m1 − 2�/6 − ¯ = 1.

�37�

Thus, the sum of all terms is equal to one plus the sum of
terms in which for no i is there a rung cancellation of matrix
i. So, we now focus on the sum of terms with no rung can-
cellation, which we define to be E0��s1 , . . . ,sm�. If s1 , . . . ,sm

has a shift symmetry as above, then there may be terms in
this sum terminating at the first level; the sum of these terms
is o−1.

Each E0 we are averaging over the unitary group results
from a particular set of choices of s1 , . . . ,sm in the sum in Eq.
�7�. There are Dm different terms in this sum in Eq. �7�. We
begin by bounding, for any given level n, the number of
choices of s1 , . . . ,sm, which give rise to an E0, which pro-
duces a term in the Schwinger-Dyson equations, which ter-
minates at level n with no rung cancellations. Suppose for a
given choice of s1 , . . . ,sm there is such a term, which termi-
nates at level n with no rung cancellations. There were two
traces of m unitaries in the definition of E0; then, after can-
celing successive pairs U�s�U�s+D /2�, we have m1�m uni-
taries for some m1. The number of different initial choices of
s1 , . . . ,sD, which produce a given m1 after these cancella-
tions, is given in Eq. �24�.

Then we iterate the Schwinger-Dyson equations with a
particular choice of l , j at each level, where 1� l�2m1 and
1� j�2m1 as given in Eq. �20�; if we pick a term from the
first or second line of the Schwinger-Dyson equations, we set
l=1 at that level. At each such iteration of the Schwinger-
Dyson equations, there may be cancellations in two different
traces if the term came from the second line of Eq. �20�, with
at most m1 cancellations in each trace, or cancellations in
two different places of a single trace, if the term came from
the fourth line of Eq. �20�, with at most m1 cancellations in
each place. Let us call the number of cancellations c1 ,c2 with
0�c1�m1 and 0�c2�m1. Then, by specifying l , j , c1 , c2
for each iteration, we succeed in fully specifying how the
matrices move under the n iterations of the Schwinger-
Dyson equation; this requires specifying 2n numbers ranging
from 1¯2m1, and 2n numbers ranging from 0¯m1. In par-
ticular, since there are no rung cancellations, we succeed in
specifying for each i, 1� i�m1, some j� i such that either
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s1,i=s1,j or s1,i=s1,j +D /2, giving the function ��i�. Having
specified this function, there are now only at most �D / �D
−1���D−1�m1/2 possible values of s1,1 , . . . ,s1,m1

. To show
this, we start by specifying the value of s1,1, which can as-
sume any of D different values. By specifying s1,1 we have
fixed the value of s1,��1�, as well as the value of any j such
that ��j�=1, so that there are now at most m1−2 different
values of s1,i, which remain undetermined. We then find the
smallest j1 such that s1,j1

is undetermined and specify its
value. Note that there are only D−1 possible values of this
s1,j1

since, by assumption, s1,j1
�s1,j1−1+D /2. Having speci-

fied this s1,j1
, we have fixed the value of s1,��j1� as well as the

value of any j such that ��j�= j1. We then find the smallest j2

such that s1,j2
is undetermined and specify that value. Pro-

ceeding in this way, we succeed in specifying s1,1 , . . . ,s1,m1
by specifying one of at most �D / �D−1���D−1�m1/2 different
choices. Thus, there are at most

�D/�D − 1���D − 1�m1/2�2m1�2n�m1 + 1�2n

� �D/�D − 1���D − 1�m1/2�2m1�4n �38�

such choices of s1 , . . . ,sm1
which can produce a term that

terminates at level n. Using Eq. �24�, the number of choices
of s1 , . . . ,sm, which can produce a term that terminates at
level n, is at most

�
m1=0

m

�D − 1�m/22m�2m1�4n � �D − 1�m/22m �2m + 1�4n+1

4n + 1
.

�39�

For any s1 , . . . ,sm, we define nmin�s1 , . . . ,sm� to be the
smallest level at which a term terminates with no rung can-
cellations. We rewrite the sum in Eq. �7� as

E1 = 1 + � 1

D
	m

�
n=0

�

�
s1=1

D

�
s2=1

D

¯ �
sm=1

D

�nmin�s1,. . .,sm�,n


E0��s1, . . . ,sm� , �40�

so that the second sum is over the set of all values of
s1 , . . . ,sm with the given nmin=n. We note that the bound of
Eq. �30� continues to apply to the terms terminating with no
rung cancellations, and the bound of Eq. �31� continues to
bound the number of such terms terminating with no rung
cancellations. From Eq. �30�, a bound on the value of the
term terminating at the nth level, for any n�0, is

N2N−�2/3�n. �41�

Therefore, for any s1 , . . . ,sm,

E0��s1, . . . ,sm� � N2 �
n�nmin�s1,. . .,sm�

N−�2/3�n�2m − 1�n

= N2 �N−2/3�2m − 1��nmin

1 − N−2/3�2m − 1�
. �42�

From Eqs. �39�, �40�, and �42�,

E1 � 1 + N2�H
m�

n=0

�
�2m + 1�4n+1

4n + 1

�N−2/3�2m − 1��n

1 − N−2/3�2m − 1�

� 1 + N2�H
m�

n=0

�
2m + 1

�4n + 1��1 − N−2/3�2m − 1��


�N−2/3�2m + 1�5�n. �43�

We then pick m= �1/4�N2/15, so that N−2/3�2m+1�5�1/2 and

��2� � �E1 − 1�1/m � N2/m�H„1 + O�1�…1/m

= �H�1 + O„log�N�…N−2/15� . �44�

As before, using Markov’s inequality, the probability that
��2� is greater than c�H�D�, for any c�1, is bounded by

c−�1/4�N2/15
�1+O(log�N�)N−2/15�.

This shows that for any �, the probability that �2��H
+� approaches unity as N→�. Combined with the previous
lower bound �12�, this proves the main result.

III. DISCUSSION

We consider some analogies between these results and
lattice gauge theory, some applications of these results, and
some extensions. We begin with analogies between the ran-
dom construction of quantum expanders and lattice gauge
theory and the Eguchi-Kawai construction �10�.

A. Gauge theory analogies

Consider a lattice gauge U�N� theory in D /2 dimensions
on a hypercubic lattice, with unitary matrices Ud̂�x� defined
for each link of the lattice. Here, x represents a point on the

lattice, and d̂ represents the direction of the link: if d
�D /2, it points in the direction of increasing the dth coor-
dinate by unity, while if D /2�d�D, then it points in the
direction of decreasing d−D /2th coordinate by unity. Then,
for a given choice of s1 , . . . ,sm we can define a path, starting
at the origin, and then moving in direction ŝ1 , ŝ2 , . . . until m
steps have been taken. We can define a product of traces
associated with this path: tr�Us1

�0�Us2
�0+ ŝ1� . . . �tr�. . .Us2

�0
+ ŝ1�†Us1

�0�†�. For certain choices of the s1 , . . . this path re-
turns to the origin after m steps, in which case the product of
traces is a product of two Wilson loops. If, however, the path
does not return to the origin, the product of traces is not
invariant under non-Abelian gauge transformations, and
hence the average of the product of traces is equal to unity.

At infinite coupling, all of the unitary matrices are inde-
pendent, except for the constraint Ud̂�x�=Ud + D / 2ˆ �x�, and
even if the path does return to the origin, the average of this
product of traces is equal to unity, unless, by chance, the path
of length m exactly retraces itself. The probability of this
retracing, for a random path, is precisely the Cayley tree
return probability discussed previously. Thus, this lattice
gauge theory at infinite coupling has tr�Us1

�0�Us2
�0

+ ŝ1� . . . �tr�. . .Us2
�0+ ŝ1�†Us1

�0�†�=1+N2D−mN�0,m�. The
Eguchi-Kawai construction is an approximation to large N
gauge theory, which replaces the infinite lattice by a
single site: this turns tr�Us1

�0�Us2
�0+ ŝ1� . . . �tr�. . .Us2

�0
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+ ŝ1�†Us1
�0�†� into E0�s1 ,s2 , . . . �, the quantity we considered

before. Thus, this paper can be seen as an estimation of cor-
rections to the Eguchi-Kawai construction in the infinite
coupling limit. There are a number of interesting terms
in these corrections: for example, the average
tr�U�1�U�1��tr�U†�1�U†�1�� is equal to 2 as calculated be-
fore, but the corresponding average in the lattice gauge
theory is equal to 1.

B. Applications

The general properties of ground states of local Hamilto-
nians with an excitation gap have become of great interest
recently. A basic result �14,15� is that correlations decay ex-
ponentially in such systems. One application of quantum
expanders is to finding matrix product states of one-
dimensional quantum systems with the following properties:
the correlation length is of order unity, the Hilbert space
dimension on a single site is small, also of order unity, and
yet the entanglement entropy across any cut is large. As an
example, consider a matrix product state of the form

��s1,s2, . . . ,sN� = �
�,�,. . .

A�,��s1�A�,��s2�A�,��s3� . . . ,

�45�

where s1 ,s2 , . . . ,sN are spin variables in a one-dimensional
quantum system of N sites. Associated with the matrix prod-
uct state is a completely positive map as in Eq. �1�. If this
map has a gap in its eigenspectrum to the second largest
eigenvalue, then the state � has exponentially decaying cor-
relations �16�, so that if operator A has support on sites
1 , . . . , j and operator B has support on sites j+ l , . . . ,N, then
�� ,AB��− �� ,A���� ,B�� is exponentially small in l, as
required for the ground state of a gapped, local quantum
system. However, as discussed in �1�, this means that the
existence of quantum expanders implies that the mere fact of
exponentially decaying correlations does not suffice to prove
bounds on entanglement entropy. Instead, bounds on the en-
tanglement entropy �17� proceed through a different route
and currently give weak bounds.

However, in �17�, a conjecture was developed regarding
properties of quantum expanders that may help in proving
tighter bounds on entanglement entropy. Consider the fol-
lowing different correlation function. Let A be an operator
with support on the sites 1 ,2 , . . . , j− l and j+ l , j+ l
+1, . . . ,N. Let �=��=1A����L��� � �R���, where �L���
are orthonormal states on sites 1 , . . . , j and �R��� are ortho-
normal states on j+1, . . . ,N. Let BL=��=1O�����L,0����

��L,0 � 1R�, where 1R is the unit operator on Xj+1,N, for
some function O���. Then, it was shown that for a gapped
local Hamiltonian,

��0,ABL�0� − ��0,A�0���0,BL�0�

� �A� �B�O�exp�− l/l0�� , �46�

for some l0.
It was conjectured in �17� that there is a function f�Deff�

such that if Eq. �46� holds for a state � for some l0, then the
entanglement entropy of � is bounded by f�Dl0�. Interest-

ingly, it seems that an expander where the A�s� are random
unitaries is unlikely to satisfy Eq. �46�. If this could be
shown to be a general property of expanders, showing the
conjecture, this would provide another way of studying area
laws in quantum systems.

C. Extensions

The method of Schwinger-Dyson equations used here is
fairly general and could be applied to other groups, such as
O�N� or Sp�2N�. We have not done the calculation, but it
seems that random choices from these groups will also give
quantum expanders. Always, the unit matrix is an eigenvec-
tor of the map E�M� with eigenvalue unity. Any matrix in the
center of the group is also an eigenvector of E�M� with ei-
genvalue unity, but for these cases, all elements of the center
are proportional to the identity matrix, and thus do not give
rise to additional eigenvectors with unit eigenvalue.

The method can be directly extended to the non-
Hermitian case. Some of the combinatorics become slightly

easier here. From Eq. �4�, the average of �a=1
N2

��a�2m over the
unitary group is bounded by the average of the trace as fol-
lows:

� 1

D
	2m

�
s1=1

D

¯ �
sm=1

D

�
s̄1=1

D

¯ �
s̄m=1

D

E†tr�U�s̄1�


U�s̄2� ¯ U�s̄m�U†�sm� ¯ U†�s2�U†�s1��


 tr�U�s1�U�s2� ¯ U�sm�U†�s̄m� ¯ U†�s̄2�U†�s̄1��‡ .

�47�

The probability of having U�s1�U�s2�¯U�sm�

U†�s̄m�¯U†�s̄2�U†�s̄1� cancel to the identity matrix is
equal to 1/Dm. Let

�nH =
1

�D
. �48�

Carrying through the calculation one finds that, for any �
�0, the probability that ��2���nH+� approaches unity as
N→�. Note that �nH��H and also note that in the non-
Hermitian case even a tight estimate on the average of the
trace only provides an upper bound on the eigenvalue, due to
the inequality in Eq. �4�. However, numerical work suggests
that the eigenvalue is asymptotically equal to �nH with high
probability in this case.

We can also provide a lower bound on the trace in the
non-Hermitian case. For any choice of unitaries U�s�, the
sum of terms in Eq. �47� with si= s̄i is bounded below by
1/Dm, while the other terms are all positive, so that the given
average �47� is bounded below by N2D−m. This result extends
readily to an arbitrary choice of A�s�, constrained only by the
trace-preserving condition �s=1

D A�s�A†�s�=1.
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APPENDIX: QUANTUM EDGE EXPANDERS

In this Appendix, we discuss the relationship between
quantum expanders and another concept, a quantum version
of an edge expander. We define a map to be a “quantum edge
expander” if the following condition holds: for any N-by-N
Hermitian matrix P such that P2= P and such that P has l
nonzero eigenvalues, l�N /2,

tr�PE�P�� � �e tr�P� , �A1�

for some �e less than one. We then prove a relation between
�e and ��2�, showing that a quantum edge expander is a quan-
tum expander. This is a quantum analog of a theorem of
Tanner �18� and Alon and Milman �19�, which shows that an
edge expander has a spectral gap. We consider only the Her-
mitian case in this Appendix, leaving the behavior in the
non-Hermitian case open. We also assume that the second
largest eigenvalue is positive; the case where it is negative
can be considered by looking at the square of the map E�M�.

Let X be the eigenvector of E with eigenvalue �2. We
work in a basis in which X is diagonal,

X = �e1

e2

¯

� , �A2�

and such that e1�e2� ¯ �eN. Since X is orthogonal to the
unit matrix, using the inner product �X ,N�=tr�XN�, we have
tr�X�=0. Define m such that ei�0 for i�m and ei�0 for i
�m. Without loss of generality we may suppose that m
�N /2, as otherwise we could have considered the matrix
−X, which has the same eigenvalue. Define M�i , j� to be the
matrix with a unit entry in the ith row and jth column and
zero everywhere else. Define

Pij = tr�M�i,i�E„M�j, j�…� . �A3�

Then, since the map E is trace preserving, we have

�
i

Pij = 1 �A4�

for all j. Also, we have Pij = Pji. Finally, since E is com-
pletely positive, we have Pij �0 for all i , j. Then,

�2 = tr�XE�X�� = �
i=1

N

�
j=1

N

eiejPij . �A5�

Define f i by

f i = ei���
i=1

m

ei
2, i � m ,

f i = 0, i � m . �A6�

Then,

�2 � �
i=1

m

�
j=1

m

fif jPij . �A7�

Then,

�
i=1

m

�
j�i

m

�f i
2 − f j

2�Pij

= �
i=1

m

�
j�i

m

��Pij�f i − f j����Pij�f i + f j��

���
i=1

m

�
j�i

m

Pij�f i − f j�2��
i=1

m

�
j�i

m

Pij�f i + f j�2

���
i=1

m

�
j�i

m

Pij�f i − f j�2��1/2��
i=1

m

�
j=1

m

Pij2�f i
2 + f j

2�

= �2��
i=1

m

�
j�i

m

Pij�f i − f j�2 � �2��1 − �2� , �A8�

where the first inequality uses Cauchy-Schwarz, the last
equality uses Eq. �A4�, and the last inequality uses Eq. �A7�.

Let Pi be the projector onto the vector space spanned by
the first i eigenvectors of M. Then,

�
i=1

m

�
j�i

m

�f i
2 − f j

2�Pij = �
i=2

m

�f i
2 − f i−1

2 �tr��1 − Pi�E�Pi�� .

�A9�

Using the property of a quantum edge expander �A1�, we
have

�
i=1

m

�f i
2 − f i+1

2 �tr��1 − Pi�E�Pi�� � �
i=1

m

�f i
2 − f i+1

2 �tr�Pi��1 − �e�

= �
i=1

m

�f i
2 − f i+1

2 �i�1 − �e�

= �
i=1

m

fi
2�1 − �e� = �1 − �e� .

�A10�

Combining Eqs. �A8�–�A10�, we find that

1 − �e � �2�1 − �2� . �A11�

We finally show the converse result, that a quantum
expander is a quantum edge expander. The normalized
eigenvector with unit eigenvalue is v1
�1/�N�1. We
have �v1 , P�=tr�P� /�N. So, P=tr�P�1 /N+ P�, where
P�= P−tr�P�1 /N. Then tr�PE�P��� ��2�tr�P�2�+ �v1 , P�2

= ��2��tr�P�−tr�P�2 /N�+tr�P�2 /N. If tr�P�= l�N /2,
then tr�P�2� �N /2�tr�P� and tr�PE�P��� ��2�tr�P�+ �1
− ��2��tr�P� /2 so

�e � ��2�/2 + 1/2. �A12�
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