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We study conditions for the deterministic transformation ���→ ��� of a bipartite entangled state by a sepa-
rable operation. If the separable operation is a local operation with classical communication �LOCC�, Nielsen’s
majorization theorem provides necessary and sufficient conditions. For the general case, we derive a necessary
condition in terms of products of Schmidt coefficients, which is equivalent to the Nielsen condition when either
of the two factor spaces is of dimension 2, but is otherwise weaker. One implication is that no separable
operation can reverse a deterministic map produced by another separable operation, if one excludes the case
where the Schmidt coefficients of ��� are the same as those of ���. The question of sufficient conditions in the
general separable case remains open. When the Schmidt coefficients of ��� are the same as those of ���, we
show that the Kraus operators of the separable transformation restricted to the supports of ��� on the factor
spaces are proportional to unitaries. When that proportionality holds and the factor spaces have equal dimen-
sion, we find conditions for the deterministic transformation of a collection of several full Schmidt rank pure
states �� j� to pure states �� j�.
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I. INTRODUCTION

A separable operation � on a bipartite quantum system is
a transformation of the form

�� = ���� = �
m

�Am � Bm���Am
†

� Bm
† � , �1�

where � is an initial density operator on the Hilbert space
HA � HB. The Kraus operators Am � Bm are arbitrary product
operators satisfying the closure condition

�
m

Am
† Am � Bm

† Bm = I � I . �2�

The extension of �1� and �2� to multipartite systems is obvi-
ous, but here we will consider only the bipartite case. To
avoid technical issues the sums in �1� and �2� and the dimen-
sions of HA and HB are assumed to be finite.

Various kinds of separable operations play important roles
in quantum information theory. When m takes on only one
value, the operators A1 and B1 are �or can be chosen to be�
unitary operators, and the operation is a local unitary trans-
formation. When every Am and every Bm is proportional to a
unitary operator, we call the operation a separable random
unitary channel. Both of these are members of the well-
studied class of local operations with classical communica-
tion �LOCC�, which can be thought of as an operation car-
ried out by Alice on HA with the outcome communicated to
Bob. He then uses this information to choose an operation
that is carried out on HB, with outcome communicated to
Alice, who uses it to determine the next operation on HA,
and so forth. For a precise definition and a discussion, see
��1�, Sec. XI�. While any LOCC is a separable operation, i.e.,
can be written in the form �1�, the reverse is not true: there
are separable operations that fall outside the LOCC class �2�.

Studying properties of general separable operations seems
worthwhile because any results obtained in this way then
apply to the LOCC subcategory, which is harder to charac-
terize from a mathematical point of view. However, rela-
tively little is known about separable operations, whereas
LOCC has been the subject of intensive studies, with many
important results. For example, a LOCC applied to a pure
entangled state ��� �i.e., �= ������ in �1�� results in an en-
semble of pure states �labeled by m� whose average entangle-
ment cannot exceed that of ��� ��1�, Sec. XV D�. One sus-
pects that the same is true of a general separable operation �,
but this has not been proved. All that seems to be known is
that � cannot “generate” entanglement when applied to a
product pure state or a separable mixed state: the outcome
�as is easily checked� will be a separable state.

If a LOCC is applied to a pure �entangled� state ���, Lo
and Popescu �3� have shown that the same result, typically
an ensemble, can be achieved using a different LOCC �de-
pending both on the original operation and on ���� in which
Alice carries out an appropriate operation on HA and Bob a
unitary, depending on that outcome, on HB. This in turn is
the basis of a condition due to Nielsen �4� which states that
there is a LOCC operation deterministically �probability 1�
mapping a given bipartite state ��� to another pure state ��� if
and only if ��� majorizes ��� �5�.

In this paper we derive a necessary condition for a sepa-
rable operation to deterministically map ��� to ��� in terms
of their Schmidt coefficients, the inequality �5�. While it is
weaker than Nielsen’s condition �unless either HA or HB is
two dimensional, in which case it is equivalent�, it is not
trivial. In the particular case that the Schmidt coefficients are
the same, i.e., ��� and ��� are equivalent under local unitar-
ies, we show that all the Am and Bm operators in �1� are
proportional to unitaries, so that in this case the separable
operation is also a random unitary channel. For this situation
we also study the conditions under which a whole collection
	�� j�
 of pure states are deterministically mapped to pure
states, a problem which seems not to have been previously*vgheorgh@andrew.cmu.edu
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studied either for LOCC or for more general separable op-
erations.

The remainder of the paper is organized as follows. Sec-
tion II has the proof, based on an inequality by Minkowski,
p. 482 of �6�, of the relationship between the Schmidt coef-
ficients of ��� and ��� when a separable operation determin-
istically maps ��� to ���, and some consequences of this
result. In Sec. III we derive and discuss the conditions under
which a separable random unitary channel will map a collec-
tion of pure states to pure states. A summary and some dis-
cussion of open questions will be found in Sec. IV.

II. LOCAL TRANSFORMATIONS OF BIPARTITE
ENTANGLED STATES

We use the term Schmidt coefficients for the non-negative
coefficients 	� j
 in the Schmidt expansion

��� = �
j=0

d−1

� j�āj� � �b̄j� , �3�

of a state ����HA � HB, using appropriately chosen ortho-

normal bases 	�āj�
 and 	�b̄j�
, with the order chosen so that

�0 � �1 � ¯ � �d−1 � 0. �4�

The number r of positive �nonzero� Schmidt coefficients is
called the Schmidt rank. We call the subspace of HA spanned
by �ā0� , �ā1� , . . . , �ār−1�, i.e., the basis kets for which the
Schmidt coefficients are positive, the HA support of ���, and

that spanned by �b̄0� , �b̄1� , . . . , �b̄r−1� its HB support.
Our main result is the following.
Theorem 1. Let ��� and ��� be two bipartite entangled

states on HA � HB with positive Schmidt coefficients 	� j

and 	� j
, respectively, in decreasing order, and let r be the
Schmidt rank of ���. If ��� can be transformed to ��� by a
deterministic separable operation, then:

�i� The Schmidt rank of ��� is less than or equal to r.
�ii�

�
j=0

r−1

� j � �
j=0

r−1

� j . �5�

�iii� If �5� is an equality with both sides positive, the
Schmidt coefficients of ��� and ��� are identical, � j =� j, and
the operators Am and Bm restricted to the HA and HB supports
of ���, respectively, are proportional to unitary operators.

�iv� The reverse deterministic transformation of ��� to ���
by a separable operation is only possible when the Schmidt
coefficients are identical, � j =� j.

Proof. For the proof it is convenient to use map-state du-
ality �see �7,8� and ��9�, Chap. 11�� defined in the following
way. Let 	�bj�
 be an orthonormal basis of HB that will re-
main fixed throughout the following discussion. Any ket
����HA � HB can be expanded in this basis in the form

��� = �
j

�	 j� � �bj� , �6�

where the 	�	 j�
 are the �unnormalized� expansion coeffi-
cients. We define the corresponding dual map � :HB→HA to
be

� = �
j

�	 j��bj� . �7�

Obviously, any map from HB to HA can be written in the
form �7�, and can thus be transformed into a ket on HA
� HB by the inverse process: replacing �bj� with �bj�. The
transformation depends on the choice of basis 	�bj�
, but this
will not matter, because our results will in the end be inde-
pendent of this choice. Note in particular that the rank of the
operator � is exactly the same as the Schmidt rank of ���.

For a separable operation that deterministically maps ���
to ��� �or, to be more specific, ������ to ������� it must be the
case that

�Am � Bm���� = �pm��� �8�

for every m, as otherwise the result of the separable opera-
tion acting on ��� would be a mixed state. �One could also
include a complex phase factor depending on m, but this can
be removed by incorporating it in Am—an operation is not
changed if the Kraus operators are multiplied by phases.� By
using map-state duality we may rewrite �8� in the form

Am�B̄m = �pm� , �9�

where by B̄m we mean the transpose of this operator in the
basis 	�bj�
—or, to be more precise, the operator whose ma-
trix in this basis is the transpose of the matrix of Bm. From
�9� one sees at once that, since the rank of a product of
operators cannot be larger than the rank of any of the factors,
the rank of � cannot be greater than that of �. When trans-
lated back into Schmidt ranks this proves �i�.

For the next part of the proof let us first assume that HA
and HB have the same dimension d, and that the Schmidt
ranks of both ��� and ��� are equal to d; we leave until later
the modifications necessary when these conditions are not
satisfied. In light of the previous discussion of �9�, we see

that B̄m has rank d, so is invertible. Therefore one can solve
�9� for Am, and if the solution is inserted in �2� the result is

I � I = �
m

pm��−1†B̄m
−1†��†��B̄m

−1�−1� � �Bm
† Bm� . �10�

The Minkowski inequality ��6�, p. 482� for a sum of posi-
tive semidefinite operators on a D-dimensional space is

det��
m

Qm��1/D
� �

m

�det Qm�1/D, �11�

with equality if and only if all Qm’s are proportional, i.e.,
Qi= f ijQj, where the f ij are positive constants. Since Am

† Am
� Bm

† Bm is a positive operator on a �D=d2�-dimensional
space, �10� and �11� yield
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1 � det��
m

pm��−1†B̄m
−1†��†��B̄m

−1�−1� � �Bm
† Bm���1/d2

� �
m

�det�pm��−1
† B̄m

−1†��†��B̄m
−1�−1� � �Bm

† Bm��…1/d2

= �
m

pm
det��†��1/d

det��†��1/d =
det��†��1/d

det��†��1/d , �12�

which is equivalent to

det��†�� � det��†�� . �13�

The relation det�A � B�= �det A�b�det B�a, where a ,b are the
dimensions of A and B, was used in deriving �12�. Since �13�
is the square of �5�, this proves part �ii�.

If �5� is an equality with both sides positive,
det��†�� /det��†��=1 and the inequality �12� becomes an
equality, which implies that all positive operators in �11� are
proportional, i.e.,

Am
† Am � Bm

† Bm = fmnAn
†An � Bn

†Bn, �14�

where the fmn are positive constants. Setting n=1 in �14� and
inserting it in �2�, one gets

��
m

fm1�A1
†A1 � B1

†B1 = I � I . �15�

This implies that both A1
†A1 and B1

†B1 are proportional to the
identity, so A1 and B1 are proportional to unitary operators,
and of course the same argument works for every m. Since
local unitaries cannot change the Schmidt coefficients, it is
obvious that ��� and ��� must share the same set of Schmidt
coefficients, that is, � j =� j, for every j, and this proves �iii�.

To prove �iv�, note that, if there is a separable operation
carrying ��� to ��� and another carrying ��� to ���, the
Schmidt ranks of ��� and ��� must be equal by �i�, and �5� is
an equality, so �iii� implies equal Schmidt coefficients.

Next let us consider the modifications needed when the
Schmidt ranks of ��� and ��� might be unequal, and are
possibly less than the dimensions of HA or HB, which need
not be the same. As noted previously, �9� shows that the
Schmidt rank of ��� cannot be greater than that of ���. If it is
less, then the right side of �5� is zero, because at least one of
the � j in the product will be zero, so part �ii� of the theorem
is automatically satisfied, part �iii� does not apply, and �iv� is
trivial. Thus we only need to discuss the case in which the
Schmidt ranks of ��� and ��� have the same value r. Let PA
and PB be the projectors on the HA and HB supports SA and
SB of ��� �as defined at the beginning of this section�, and let
TA and TB be the corresponding supports of ���. Note that
each of these subspaces is of dimension r. Since �PA

� PB����= ���, �8� can be rewritten as

�Am� � Bm� ���� = �pm��� , �16�

where

Am� = AmPA, Bm� = BmPB �17�

are the operators Am and Bm restricted to the supports of ���.
In fact, Am� maps SA onto TA, and Bm� maps SB onto TB, as this
is the only way in which �16� can be satisfied when ��� and

��� have the same Schmidt rank. Finally, by multiplying �2�
by PA � PB on both left and right one arrives at the closure
condition

�
m

Am�
†Am� � Bm�

†Bm� = PA � PB. �18�

Thus if we use the restricted operators Am� and Bm� we are
back to the situation considered previously, with SA and TA
�which are isomorphic� playing the role of HA, and SB and
TB the role of HB, and hence the previous proof applies. �

Some connections between LOCC and the more general
category of separable operations are indicated in the follow-
ing corollaries.

Corollary 1. When ��� is majorized by ���, so there is a
deterministic LOCC mapping ��� to ���, there does not exist
a separable operation that deterministically maps ��� to ���,
unless these have equal Schmidt coefficients �are equivalent
under local unitaries�.

This is nothing but �iv� of Theorem 1 applied when the
��� to ��� map is LOCC, and thus separable. It is nonetheless
worth pointing out because majorization provides a very pre-
cise characterization of what deterministic LOCC operations
can accomplish, and the corollary provides a connection with
more general separable operations.

Corollary 2. If either HA or HB is two dimensional, then
��� can be deterministically transformed to ��� if and only if
this is possible using LOCC, i.e., ��� is majorized by ���.

The proof comes from noting that, when there are only
two nonzero Schmidt coefficients, the majorization condition
is �0��0, and this is equivalent to �5�.

III. SEPARABLE RANDOM UNITARY CHANNEL

A. Condition for deterministic mapping

Any quantum operation �trace-preserving completely
positive map� can be thought of as a quantum channel, and if
the Kraus operators are proportional to unitaries, the channel
is bistochastic �maps I to I� and is called a random unitary
channel or a random external field in Sec. 10.6 of �9�. Thus a
separable operation in which the Am and Bm are proportional
to unitaries Um and Vm, so that �1� takes the form

�� = ���� = �
m

pm�Um � Vm���Um � Vm�†, �19�

with the pm
0 summing to 1, can be called a separable
random unitary channel. We shall be interested in the case in
which HA and HB have the same dimension d, and in which
the separable unitary channel deterministically maps not just
one but a collection 	�� j�
, 1� j�N, of pure states of full
Schmidt rank d to pure states. This means that �8� written in
the form

�Um � Vm��� j� � �� j� �20�

must hold for all j as well as for all m. The symbol � means
that the two sides can differ by at most a complex phase.
Here such phases cannot simply be incorporated in Um or Vm,
because �20� must hold for all values of j, even though they
are not relevant for the map carrying �� j��� j� to �� j��� j�.
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Theorem 2. Let 	�� j�
, 1� j�N, be a collection of states
of full Schmidt rank on a tensor product HA � HB of two
spaces of equal dimension, and let � be the separable ran-
dom unitary channel defined by �19�. Let � j and � j be the
operators dual to �� j� and �� j�—see �6� and �7�.

�i� If every �� j� from the collection is deterministically
mapped to a pure state, then

Um
† Un� j�k

† � � j�k
†Um

† Un �21�

for every m, n, j, and k.
�ii� If �21� holds for a fixed m and every n, j, and k, it

holds for every m, n, j, and k. If in addition at least one of
the states from the collection 	�� j�
 is deterministically
mapped to a pure state by �, then every state in the collec-
tion is mapped to a pure state.

�iii� Statements �i� and �ii� also hold when �21� is replaced
with

Vm
† Vn� j

†�k � � j
†�kVm

† Vn. �22�

Proof. �i� By map-state duality, �20� can be rewritten as

Um� jV̄m � � j , �23�

where V̄m is the transpose of Vm—see the remarks following
�9�. By combining �23� with its adjoint with j replaced by k,

and using the fact that V̄m is unitary, we arrive at

Um� j�k
†Um

† � � j�k
†. �24�

Since the right side is independent of m, so is the left, which
means that

Un� j�k
†Un

† � Um� j�k
†Um

† . �25�

Multiply on the left by Um
† and on the right by Un to obtain

�21�.
�ii� If �25�, which is equivalent to �21�, holds for m=1 it

obviously holds for all values of m. Now assume that ��1� is
mapped by � to a pure state ��1�, so �23� holds for all m
when j=1. Take the adjoint of this equation and multiply by

V̄m to obtain

�1
†Um

† � V̄m�1
†. �26�

Set k=1 in �25�, and use �26� to rewrite it as

Un� jV̄n�1
† � Um� jV̄m�1

†. �27�

Since by hypothesis ��1� has Schmidt rank d, the same is true

of �1, and since Um and V̄m in �23� are unitaries, �1 and thus
also �1

† has rank d and is invertible. Consequently, �27� im-
plies that

Un� jV̄n � Um� jV̄m, �28�

and we can define � j to be one of these common values, for

example, U1� jV̄1. Map-state duality transforms this � j into
�� j� which, because of �28�, satisfies �20�.

�iii� The roles of Um and Vm are obviously symmetrical,
but our convention for map-state duality makes � j a map

from HB to HA, which is the reason why its adjoint appears
in �22�. �

B. Example

Let us apply Theorem 2 to see what pure states of full
Schmidt rank are deterministically mapped onto pure states
by the following separable random unitary channel on two
qubits:

���� = p� + �1 − p��X � Z���X � Z� . �29�

The Kraus operators are I � I and X � Z, so U1= I and U2
=X. Thus the condition �21� for a collection of states 	�� j�
 to
be deterministically mapped to pure states is

X� j�k
† � � j�k

†X . �30�

It is easily checked that

��1� = �� + ��0� + �− ��1��/�2 �31�

is mapped to itself by �29�. If the corresponding

�1 =
1

2
�1 1

1 − 1
� �32�

is inserted in �30� with k=1, one can show that �30� is sat-
isfied for any 2�2 matrix

� j = �aj bj

cj dj
� �33�

having cj = ±aj and dj = bj, and that in turn these satisfy
�30� for every j and k. Thus all states of the form

��±� = a�00� + b�01� ± a�10�  b�11� , �34�

with a and b complex numbers, are mapped by this channel
into pure states.

IV. CONCLUSIONS

Our main results are in Theorem 1: if a pure state on a
bipartite system HA � HB is deterministically mapped to a
pure state by a separable operation 	Am � Bm
, then the prod-
uct of the Schmidt coefficients can only decrease, and if it
remains the same, the two sets of Schmidt coefficients are
identical to each other, and the Am and Bm operators are
proportional to unitaries. �See the detailed statement of the
theorem for situations in which some of the Schmidt coeffi-
cients vanish.� This product condition is necessary but not
sufficient: i.e., even if it is satisfied there is no guarantee that
a separable operation exists which can carry out the specified
map. Indeed, we think it is likely that when both HA and HB
have dimension 3 or more there are situations in which the
product condition is satisfied but a deterministic map is not
possible. The reason is that �5� is consistent with ��� having
a larger entanglement than ���, and we doubt whether a sepa-
rable operation can increase entanglement. While it is known
that LOCC cannot increase the average entanglement
��1�, Sec. XV D�, there seems to be no similar result for
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general separable operations. This is an important open ques-
tion.

It is helpful to compare the product condition �5� with
Nielsen’s majorization condition, which says that a determin-
istic separable operation of the LOCC type can map ��� to
��� if and only if ��� majorizes ��� �5�. Corollary 2 of Theo-
rem 1 shows that the two are identical if system A or system
B is two dimensional. Under this condition a general sepa-
rable operation can deterministically map ��� to ��� only if it
is possible with LOCC. This observation gives rise to the
conjecture that when either A or B is two dimensional any
separable operation is actually of the LOCC form. This con-
jecture is consistent with the fact that the well-known ex-
ample �2� of a separable operation that is not a LOCC uses
the tensor product of two three dimensional spaces. But
whether separable operations and LOCC coincide even in the
simple case of a 2�2 system is at present an open question
�see note added in proof�.

When the dimensions of A and B are both 3 or more, the
product condition of Theorem 1 is weaker than the majoriza-
tion condition: if ��� majorizes ��� then �5� will hold �10�,
but the converse is in general not true. Thus there might be
situations in which a separable operation deterministically
maps ��� to ��� even though ��� does not majorize ���. If
such cases exist, Corollary 1 of Theorem 1 tells us that ���
and ��� must be incomparable under majorization: neither
one majorizes the other. Finding an instance, or demonstrat-
ing its impossibility, would help clarify how general sepa-
rable operations differ from the LOCC subclass.

When a separable operation deterministically maps ��� to
��� and the products of the two sets of Schmidt coefficients

are the same, part �iii� of Theorem 1 tells us that the collec-
tions of Schmidt coefficients are in fact identical, and that the
Am and Bm operators �restricted if necessary to the supports
of ���� are proportional to unitaries. Given this proportional-
ity �and that the map is deterministic�, the identity of the
collection of Schmidt coefficients is immediately evident,
but the converse is not at all obvious. The result just men-
tioned can be used to simplify part of the proof in some
interesting work on local copying, specifically the unitarity
of local Kraus operators in ��11�, Sec. 3.1�. It might have
applications in other cases where one is interested in deter-
ministic nonlocal operations.

Finally, Theorem 2 gives conditions under which a sepa-
rable random unitary operation can deterministically map a
whole collection of pure states to pure states. These condi-
tions �see �21� or �22�� involve both the unitary operators and
the states themselves, expressed as operators using map-state
duality, in an interesting combination. While these results
apply only to a very special category, they raise the question
whether simultaneous deterministic maps of several pure
states might be of interest for more general separable opera-
tions. The nonlocal copying problem, as discussed in
�11–14�, is one situation where results of this type are rel-
evant, and there may be others.

Note added in proof. Our conjecture on the equivalence of
separable operations and LOCC for low dimensions has been
shown to be false �17�.
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