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We construct a large class of quantum d ® d states which are positive under partial transposition (so called

PPT states). The construction is based on certain direct sum decomposition of the total Hilbert space displaying
characteristic circular structure—that is why we call them circulant states. It turns out that partial transposition
maps any such decomposition into another one and hence both original density matrix and its partially trans-
posed partner share similar cyclic properties. This class contains many well-known examples of PPT states
from the literature and gives rise to a huge family of completely new states.
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I. INTRODUCTION

The interest on quantum entanglement has dramatically
increased during the last two decades due to the emerging
field of quantum information theory [1]. It turns out that
quantum entanglement may be used as basic resources in
quantum information processing and communication. The
prominent examples are quantum cryptography, quantum
teleportation, quantum error correction codes, and quantum
computation.

It is well known that it is extremely hard to check whether
a given density matrix describing a quantum state of the
composite system is separable or entangled. There are sev-
eral operational criteria which enable one to detect quantum
entanglement (see, e.g., Ref. [2] for a recent review). The
most famous Peres-Horodecki criterion [3,4] is based on the
partial transposition: if a state p is separable then its partial
transposition (1® 7)p is positive. States which are positive
under partial transposition are called PPT states. Clearly each
separable state is necessarily PPT but the converse is not
true. It was shown by Horodecki ez al. [5] that PPT condition
is both necessary and sufficient for separability for 2® 2 and
2®3 systems.

Now, since all separable states belong to a set of PPT
states, the structure of this set is of primary importance in
quantum information theory. Unfortunately, this structure is
still unknown, that is, one may check whether a given state is
PPT but we do not know how to construct a general quantum
state with PPT property. There are only several examples of
PPT states which do not show any systematic methods of
constructing them [with one exception, i.e., a class of PPT
entangled states which is based on a concept of unextendible
product bases [6] (see also Ref. [7])]. Other examples of PPT
entangled states were constructed in Refs. [4,8—15] and the
extreme points of the set of PPT states were recently ana-
lyzed in [19]. PPT states play also a crucial role in math-
ematical theory of positive maps and, as is well known, these
maps are very important in the study of quantum entangle-
ment. The mathematical structure of quantum entangled
states with positive partial transposition were studied in Refs.
[16-18].

Recently in Ref. [20] we proposed a class of PPT states in
d®d which are invariant under the maximal commutative
subgroup of U(d), i.e., d-dimensional torus U(1)X---
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X U(1). In the present paper we propose another class which
defines considerable generalization of Ref. [20]. The con-
struction of this new class is based on certain decomposition
of the total Hilbert space C‘®C? into direct sum of
d-dimensional subspaces. This decomposition is controlled
by some cyclic property, that is, knowing one subspace, say
3,0, the remaining subspaces %, ..., _; are uniquely deter-
mined by applying a cyclic shift to elements from 3. Now,
we call a density matrix p a “circulant state” if p is a convex
combination of density matrices supported on . The cru-
cial observation is that a partial transposition of the circulant
state has again a circular structure corresponding to another
direct sum decomposition 50 &0 id_l.

The paper is organized as follows. For pedagogical reason
we first illustrate our general method for d=2 in Sec. II and
for d=3 in Sec. III. Interestingly, there is only one circular
decomposition for d=2 and exactly two different decompo-
sitions for d=3. In general case presented in Sec. IV there
are (d—1)! decompositions labeled by permutations from the
symmetric group S,_;. Section V presents several known ex-
amples of PPT states that do belong to our class. Final con-
clusions are collected in the last section.

II. TWO QUBITS
A. An instructive example

Consider a density matrix living in C>® C? which has the
following form:

aoy
by | boi
big | b1y

ayp - T day

aopo

(1)

In order to have more transparent pictures we replaced all
vanishing matrix elements by dots (we use this convention
throughout this paper). It is clear that Eq. (1) defines a posi-
tive operator iff the following 2 X 2 matrices:

apy a boy b
a=< 00 01)7 b=< 00 01) 2)
ayp an by by
are positive. Normalization adds additional condition
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Tra+Trb=1.

Now, the crucial observation is that partially transposed ma-

trix p"=(l ® 7)p belongs to the same class as original p
dgo do;
by,

bll

ap

500

510

ajo

where the matrices @=[a;;] and b= [l;ij] read

ap b ~ [by a
5:(00 01>, b:<00 01>' )
bip ay ayy by
Hence, p defined in Eq. (1) is PPT iff
and b=0. (5)

a=0

The above conditions together with a=0 and »=0 may be
equivalently rewritten as

2

agar; = lag

i

agar = |boi |, (6)
and

boob11 = lagi |,

booboo = [boil, (7

which presents the full characterization of PPT states within

a class (1). We stress that for by =b,,=0 the above class

reduces to the family of PPT states considered in Ref. [20].
B. Cyclic structure

In order to generalize the above example to higher dimen-
sional cases let us observe that there is an interesting prop-
erty of cyclicity which governs the structure of Eq. (1). For
this reason we call Eq. (1) the circulant state. Note that p
may be written as a direct sum

p=po+pi, (®)
where p, and p, are supported on two orthogonal subspaces

3, = span{e, ® ep,e; ® e},

21=Span{eo®el,el ®eo}, (9)
where {e,,e,} is a computational base in €2, and clearly

20@21=‘C2®C2.

One has
1
po= 2 ae;; ® ey, (10)
i.j=0
1
pi=> bijei; ® €4y jut> (11)
i.j=0
where
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e;j=leXeyl, (12)

and one adds mod 2. Now, let us introduce the shift operator
§:(%— (2 defined by
Se,-=ei+1 (mod 2) (13)

It is clear that matrix elements S;; define the following cir-

culant matrix [21]:
S ( 1) (14)
=\, )

2, =01®9)%,. (15)

Moreover, introducing two orthogonal projectors P, and P,
=(1®S)Py(1®S)" projecting onto X, and X, respectively,

One finds that

1

Py=2 e ® ¢y, (16)
i=0
1
Pi=¢;® €irl isl>s (17)
i=0
one finds
pi=PipP; (18)
and, hence,
p=PopPy+ P\pP,;. (19)

Now, it turns out that Eq. (1) may be nicely rewritten in
terms of S. Introducing the following diagonal matrices:

aij .
Xij = ( . b,‘j ) P (20)
one may rewrite Eq. (1) in the following form:

%0080 | $%,S!
p=< loo0 101 ). 1)
le()S S .XHS

It is therefore clear that partially transposed matrix p” also
possesses a cyclic structure

o [8%%ppS° | 8" S°
P =1c 1| ¢l 1/ (22)
S Xl()S S )C“S

and may be decomposed as the following direct sum:

p"=po+p1s (23)
with
1
o= 2, ae;; ® e, (24)
i.j=0

1
P = ”20 Ez’jez‘j ® €yl ji1- (25)

i j=

In analogy with Egs. (26) and (27) one has
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pi=PipP; (26)
and

p’=Pop Py + Pip'Py. (27)

Note that partial transposition p— p” reduces to the follow-
ing operations on the level on 2 X2 matrices:

a—ad and b—b.

Again these operations are fully controlled by the circulant
matrix S

d=acl+boS (28)

and, similarly,

b=bol+aoS, (29)

where xoy denotes the Hadamard product of two matrices x
and y [22].

III. TWO QUTRITS

A similar construction may be performed in C3® C*. The
basic idea is to decompose the total Hilbert space C*® (3
into a direct sum of three orthogonal subspaces 3,; related by
a certain cyclic property. In analogy to Eq. (13) let us define
a shift operator §:C3— (3 via
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2
P1= 2 b,-jeij ® SeijS*’

i,j=0
2
=2 bije;; ® ey jui- (36)
i,j=0
2
_ )
pr= 2 cijeij ® S7e;S 7,
i,j=0
2
= Cijeij @ €2 j42s (37)
i.j=0
where a;;, b;;, and c;; give rise to the following 3 X3 matri-
ces:
doo dor do2 boo bo1 boy
a=|ayp ay ap|, b={byy by b,
Ay dp1 dxm byy by ba

Coo Co1 Co2
C=|Cp €11 €12
Cyo €21 Cp2

Positivity of p; is guaranteed by positivity of a, b, and c.
Finally, define a circulant 3 ® 3 state by

pP=po+pi+p:. (38)
Se;=e;,; (mod 3). (30) )
It is clear that
It is clear that matrix elements S;; define the following 3
X 3 circulant matrix: Pa=PopPs =012, (39)
1 where P, denotes orthogonal projector onto 2,
2
S=|1 (31)
| Py=e;®e; (40)
i=0
Now, let us define three orthogonal three-dimensional sub-  4p4
spaces in (*® C? .
P,=(1® SYPy(l® S, (41)
3,0 =spanfey ® ep,e; ® e1,e, ® €5} (32) .
with
and
P0+P1+P2:]I®]I. (42)
21 = (ﬂ ® S)E(), 22 = (l & 52)20. (33) . . .
Using definitions of p; one easily finds
One easily finds
doo aol ao
21 = Span{eo ® €1,€; ® €,,6) ® 60}, b()() b01 b02
22 = Span{eo ® €9,€] ® €0, €7 ® 6‘1}, (34) €00 | o1 0
. Cio | €11 C12
together with
7 7 pP=1 o ap arp
002 03,=0C. bo by | by
The construction of a circulant state in C*® C? goes as fol- by by | by
lows: define three positive operators p; which are supported a0 | Cag o
on X, (i=0,1,2):
a0 as) an
(43)

2
po= 2 age; ® e,
ij=0

(35)

Normalization of p implies
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Tr(a+b+c)=1.

It turns out that Eq. (43) may be nicely rewritten in terms of
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one may rewrite Eq. (43) in the following block form:

S. Introducing the following diagonal matrices: §%q08™0 | 8%, 5! | $0xpp8™2
p=| M08 | Sx; 87 | Slx ;872 (45)
aij SZX20S*0 SZX21S*1 S2X225*2
Xij=\ - bij ) (44)
©Cy Partially transposed p” has the following form:
J
doo doy dpy
Eoo ' 501 502
Coo Co1 Co2
510 ' 511 512
p'= Cio | ’ (46)
o ay| - ap
20 o1 xn
day dy | © dx
520 ' 521 522
|
where the matrices a=[a;], b= [l;,]] and ¢=[c;;] read as 1
agy Co1 bop boo agr coo =1 1 ! (49)
a=\cpo by an|, b=|ayp cn bp |,
byy ar; Cy Coo by ay Again, one has a cyclic structure
coo bo ao 2, =1®8)3,. (50)
c=|byy ay cpp Moreover, it is clear that
ay €1 by Pa=PpP, a=0,12,
Note, that ~ ) -
o where P, denotes orthogonal projector onto X,
p"=Po+ P+ Pas (47) _ .
where p, are supported on three orthogonal subspaces of Py={1 @ MPy1eIl) (51)
G and
i0 =span{e) ® eg,e; ® ey,e, ® ey}, P,=(® S“)ISO(l ® 59", (52)
~ ith
2 =spanfe) ® ej,e; ® ep,e; ® ey}, wit
ﬁ0+ﬁ1+ﬁ2:][®]l. (53)

3, =span{ey ® e5,¢; @ e1,¢; ® ep}. (48)

Therefore, one has the following.
Theorem 1. A circulant 3 ® 3 state p is PPT iff the matri-

ces a, b~, and ¢ are positive. Note, that
i() = (“ ® ﬁ)zo,

where IT is the following permutation matrix:

It is therefore clear that p” is again a circulant operator and
its circular structure is governed by

§%,08™0 | §%%,,572
p = 8°%,,87 | %%,

~ k| —~ £3
S'%50870 | 8'%,,8™

0= ¢*l
S X02S
2~ ¢o*l
S xle N

~ ot
SI.X22S !

(54)

where
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Interestingly, matrices da, l;, and ¢ may be nicely defined in
terms of IT and S. It is not difficult to show that

G=aoT+bo(1IS) + co (117,
b=boll+co(IIS) +ao (I15?),
F=coll+ao (I1S) + bo (I1S?), (56)

where “o” denotes the Hadamard product.

Let us stress that this class in a significant way enlarges
the class considered in Ref. [20]. One can reconstruct Ref.
[20] by taking as b and ¢ diagonal matrices:

by - : €00
b= . b]] . N c= . C1
by : T O

Then one finds for the partially transposed matrix

g - : by ag
a= by ap |, b= aip €1t )
daz; € : )
and
€00 ap
c= apy
ay - by

IV. GENERAL d®d CASE

Now we are ready to construct circular states in d ® d. The
basic idea is to decompose the total Hilbert space C¢® (¢
into a direct sum of d orthogonal d-dimensional subspaces
related by a certain cyclic property. It turns out that there are
(d-1)! different cyclic decompositions and it is therefore
clear that they may be labeled by permutations from the
symmetric group S,_;. For d=2 one has only one decompo-
sition

3, =span{e, ® ep,e; ® e},

3 =span{e) ® ej,e; ® eg}, (57)

whereas for d=3 we have found 2 different cyclic decompo-
sitions

20 = Span{eo ® €0,€1 ® €1,6) ® 62},
21 = Span{eo ® €1,€; ® €y,6) ® 60},

22 = Span{eo ® €7,€q ® €0,€7 ® 6‘1}, (58)

and

PHYSICAL REVIEW A 76, 032308 (2007)
So=span{ey ® ep.e; ® er,e; @ e},

S, =span{e) ® e1.¢; ® eg.e, ® ¢3},

52 = Span{eo ® €9,€] ® €1,6y ® e()}. (59)
Let us introduce a basic d-dimensional subspace
30 =spanfey ® ep,e; ® ey, ...,e4. @ ea ). (60)

Now, for any permutation 7€ S let us define 2§ which is
spanned by

€q ® ew(o),el ® ew(l), s €y ® ew(d_l). (61)

Note that introducing a permutation matrix I corresponding
to v one has

ST=(1e I3, (62)

Actually, it is enough to consider only a subset of permuta-
tions such that 77(0)=0, it means that vector ¢;® ¢, always
belongs to the subspace number “0” in each decomposition.
Finally, the remaining (d— 1) subspaces in the decomposition
labeled by 7 are defined via

Sh=(1® 827,
=(1 ® S“I)3,, (63)
where § is a circulant matrix corresponding to shift in C:

1

(64)

One easily check

Srede - o3  =0'® 4

To construct a circulant state corresponding to this de-
composition let us introduce d positive d X d matrices a'®
:[a§f>]; a=0,1,...,d-1. Now, define d positive operators
pr supported on X7 via

d-1 d-1
pr= > az(';y)eij ® 8% m()S = az(']q)eij ® €r(i)ra,mij)+a
1,j=0 1,j=0
(65)
Finally,
Pr=po+ P+ Py (66)

defines circulant state (corresponding to 7). Normalization
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of p, is equivalent to the following condition for matrices
(a).
a'?:

PHYSICAL REVIEW A 76, 032308 (2007)

a®
aij
(m

aj;
;=\ . Do . , (67)
Tr(@® +aV + -+ + a4 V)=1. : : - (' )
d—1
Interestingly, p,, has the following transparent block form: iy
introduce a set of ¢> diagonal matrices then one finds
J

SﬂT(O)xoos'ﬂ(O)* SW(O)XOIsﬂ'(I)* SﬂT(O)xo d_lsﬂ(d—l)*

Sﬂ(l)xlos'ﬂ(o)* Sw(l)xllsﬂ'(l)* Sﬂ(l)xl,d_lsw(d_l)*
Pr= R : : (68)

Sﬂ(d—l)xd_] yOSW(O)* S')T(d—l)xd_l’ls'ﬂ(l)* Sw(d—l)xd_l d_lsw(d—l)*

Having defined a circulant state p,; let us look for a partially
transposed matrix p.. Now comes the crucial observation.

Theorem 2. 1If p_, is a circulant state corresponding to per-
mutation 77 such that 7(0)=0, then its partial transposition
pr is also circulant with respect to another decomposition
corresponding to permutation 7r such that

(i) + 7(i) = d, (69)
for i=1,2,...,d-1, and 7(0)=0.

Note that for d=2 there is only one (trivial) permutation [
7(0)=0,7(1)=1] and hence 7=, that is both 7 and 7 de-
fine the same decomposition (57). For d=3 one has two dif-
ferent permutations in S,: the trivial one [7(0)=0,7(1)=1,
7(2)=2] which corresponds to Eq. (58) and “true” permuta-

tion [7(0)=0,7(1)=2,7(2)=1] which corresponds to Eq.
(59).
Hence, p; may be decomposed as follows:

PL= By + BT+ P (70)
and p; are defined by
d-1
= 2 Zéf)eij ® Saeﬁ'([),ﬂ'(/ E a; a)e ® e (i)+a,7(j)+a>
i,j=0 i,j=0
(71)

where again we trivially extended 7 from S, ; to S, by
7(0)=0.

In analogy to Eq. (68) one finds the following block form
of pr:

S%(O)xoosﬁ(o) Sﬁ'(O)xOlsﬁ'(l)* Si’(O)xO d—lsi(d_l)*
S‘Tr(l)x Sﬁ'(O)"< Sﬁ'(l)x S‘Tr(l)* S‘Tr(l)x _ Sﬁ'(d—l)*
pr= 10 11 Ld-1 ’ (72)
S‘IT(d 1) S'?T(O) S')T(d—l) S')T(l Sﬁ'(d—l)xd_l d_lsﬁ'(d—l)*
|
where by Eq. (69). Finally, one finds the following intricate formula
O for a'®:
aj; d-1
1 _
o a;’ @9 =3 o P o (isf) (mod d), (74)
xij = : (73) B=0
ag}‘.’") where “o” denotes the Hadamard product and
S, =11"SII. (75)

Hence a partial transposition applied to a circulant state p,
reduces to (1) introducing “complementary” permutation 7
and (2) defining a new set of dXd matrices ﬁ(”:[&fj‘)].
Now, “complementary” permutation 7 is fully characterized

Therefore, we arrive at our main result.
Theorem 3. A circulant state p,. is PPT iff the matrices a(®
defined in Eq. (74) are positive.
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V. EXAMPLES
A. PPT class from Ref. [20]

One reconstructs a class of PPT states from Ref. [20]
taking the circular decomposition corresponding to trivial
permutation with arbitrary (but positive) a'® and positive
diagonal a® (k=1,...,d-1). Note, however, that there are
new classes defined by the same matrices a'® but corre-
sponding to different permutations, that is, apart from the
state defined by

d-1 d-1d-1
0 k
p=2> az(j)eij Qe+ > Y afe; ® irkivks  (76)
i,j=0 k=1 i=0
one has its 7 partner
pr=(®Mpl eIl
d-1 d-1d-1
0 k
=> afj)eij ® €n(i),m(j) T > agi)eii @ € (i) rk, m(i)+k-
i,j=0 k=1 i=0
(77)

It is, therefore, clear that all examples discussed in Ref. [20]
(together with the corresponding “r partners”) belong to our
new class.

B. 7 isotropic state
The standard isotropic state [23] in d ® d
d-1
1-

A
d2 "@"‘FZE el-j®eij,

7= (78)

i,j=0

corresponds to trivial permutation and it is defined by the
following set of d X d positive matrices:

o _ N, i #J,
a;;” = o .. (79)
J Nd+(1=N)/d*, i=]
and diagonal
0 i#+j
k) _ ¢ ’ 80
i {)\/d+(1 NI, i=j (80)
for k=1,...,d—1. Again, for each permutation 7 we may
define 7 isotropic state
d-1
e L=\ N
I=(leMI(lel)="—rIal+" > € ® iy m(i)s
i,j=0
(81)

which is defined by the same set of matrices a(® but corre-
sponds to 7 decomposition.

C. 7 Werner state

The celebrated Werner state [24] is defined by the follow-

ing well known formula:
W=(1-p)Q*+pQ-, (82)

where
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0* I®1+F), (83)

Tdd+1)

and [ denotes a flip operator defined by
d-1
F= E eij ® e.il‘.

i-j=0

It is clear that W belongs to a class of bipartite operators
obtained from the class of isotropic states by applying a par-
tial transposition. One easily finds

x_, I
&ﬁ,‘-’>={ ) (84)
X_+x,, 1=]
and
a¥=x1, k=1,....d-1, (85)
where
1-p P
= ) 86
T PidT i —d (86)

It is clear that for any permutation 7 one may define 7
Werner state

W= W1 eIl)=(1-p)0,+p0,. (87)
where
* = ITolxlk,), 88
0 d(dil)( +F,) (88)
and I denotes a “m flip operator” defined by
d-1
Fﬂ_: (H ® H)F(]‘ ® Hv) = 2 eij ® eﬂ(j)m(/-).
i,j=0

D. Ha example in 4®4

Ha [16] constructed a 4 ® 4 PPT state which was used to
check that the seminal Robertson positive map A: M,(C)
— M 4(C) [25] is indecomposable. Ha’s state belongs to our
class labeled by a trivial permutation 7r; (see the Appendix)
with four positive matrices defined as follows:

The partially transposed state defines a circulant operator
corresponding to decomposition labeled by 77, and defined
by
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Evidently Zi,l;,E,J =(. Interestingly, as was shown by Ha
[16] both p and p” are of Schmidt rank two (it proves that
Robertson map is not only indecomposable but even atomic,
i.e., it cannot be written as a sum of two-positive and two-
copositive maps). We stress that this example does not be-
long to the previous class defined in Ref. [20].

E. Fei et al. bound entangled state in 4®4

Fei et al. [27] constructed 4 ®4 bound entangled state
which correspond to 77; decomposition (see the Appendix). It

is defined by the following set of a ,5 ,C, d:

X1 )C3 - X3
X5 — X5 —X3 X3
9 b
X1 X4 — X4
X5 - Xs ) T Xy
X2 —X
X1
b
—X2 X2
X1

Evidently a ,5 ,C ,J =0, for x;=0. Now, the partially trans-
posed state is circular with respect to 7r; decomposition (see
the Appendix) and it is defined by the following set of 4
X 4 matrices a,b,c,d:

X —X3 —Xp . X3
—X3 X T T XS
_x2 . xl —x4 ’ . . x4 ’

— X5 —Xy X1

X2
Xs - - -
X2
Xs Ce e xy
It is clear that in general a is not a positive matrix. However,
for x;=(1-¢)/4 and x,=x3=x,=x5=¢/8 it has three differ-
ent eigenvalues

14, (1-2¢e)/4, (1-g)4,

and hence p is PPT for 0<e=<1/2. It was shown [27] that p
being PPT is entangled.
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VI. CONCLUSIONS

We have constructed a large class of PPT states in d®d
which correspond to circular decompositions of C¢® C¢ into
direct sums of d-dimensional subspaces. This class signifi-
cantly enlarges the previous class defined in Ref. [20]. It
contains several known examples from the literature and pro-
duces a highly nontrivial family of new states.

There are many open problems: the basic question is how
to detect entanglement within this class of PPT states. One
may expect that there is a special class of entanglement wit-
nesses which are sensitive to entanglement encoded into cir-
cular decompositions. The related mathematical problem is
the construction of linear indecomposable positive maps A:
M ,(C)— M 4(C) satisfying

(1® A)p#*0, (89)

for some circulant PPT state p. A corresponding class of such
maps correlated with the previous class of PPT states [20]
was recently proposed in Ref. [26]. It would be interesting to
establish a structure of edge states [28,29] within circulant
PPT states since the knowledge of edge states is sufficient to
characterize all PPT states. Finally, it is interesting to explore
the possibility of other decompositions leading to new
classes of PPT states. We stress that the seminal Horodecki
3 ® 3 entangled PPT state [4] does not belong to our class. In
a forthcoming paper we show that this state belongs to a new
class of PPT states which is governed by another type of
decompositions of C¢® 4,
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APPENDIX

For d=4 one has six different decompositions of C*® C*
into the direct sum of four four-dimensional subspaces.
These are labeled by permutations from the symmetric group
S3. One finds

(m(0)=0,m (1) =1,m(2) =2,m(3) =3),
(7(0)=0,7,(1)=3,7(2)=2,7(3) = 1),
(m(0) =0,my(1) =2,m,(2) =3,m(3) = 1),
(7,(0) =0,7,(1) =2,7,(2) = 1,7,(3) = 3),
(m3(0) =0,m5(1) =3,m5(2) = 1,m5(3) = 2),

(75(0) = 0,75(1) = 1,75(2) =3,75(3) = 2).

The corresponding permutation matrices read as
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CIRCULANT STATES WITH POSITIVE PARTIAL TRANSPOSE

1 1
I ! II (A1) ! !
b 1 »o 1 ’ 1 1 ’
1 1
1 1 respectively.
. 1
H2 - 5 H2 - 5 (Az) -
1 1 1. 71y and 77 circulant states
1 1
201 =span{ey ® ep,e; ® e,e, ® €y,€3 @ €3},
1 1
1 _ -
H3 = . H3 1 (A3) 21 = Span{eo ® €1,€] & €,,69 &® €3,€3 & eo},
1 1
~ ~ ~ 2;1=Span{eo®ez,el ®€3,€2®€1,e3®€2},
Moreover, one finds for (a) HlSWl, HleTI, and HleTI
1 ! 1 271 =span{e) ® e3,e; ® ep,e; ® €1,3 @ ey,
1 1 1
1 ’ 1 ’ 1| -
1 1 20] =Span{€0®€0,€1 ®€3,€2®€2,€3 ®€1},
(b) 11,8, 1,87 , and 1,52 : B
2 2 2 T
21 =span{ey ® e,e; ® eg,e, ® e3,e5 @ e},
1 1 1
1 1 B
1 ’ 1 ’ 1 ’ 2;1=Span{eo®e2,el ®€1,€2®€0,€3®63},
1 1 1
(c) and for 1:[3S7,3, l:[3Sng, and l:[3Sng: STt = spanfe, ® es.e; ® e, ® ey.e3 @ e}
|
oo apy ap aps
boo Do) by | boz
€00 Co1 | Co2 Co3
doo | do do do3
dyg | dp diy di3
ao ary apn as
bio by biy | b3
Cio C11|C12 13
Pm =
€20 Co1 | €22 €23
dy | dy dy dy;
aso asy an ass
by by, by | bys
b3y b3, by, | b33
C30 C31 | C32 €33
dy | d3 ds ds3
asp asy asp ass
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where the matrices a, b ,C ,c~l are given by

Sl

Aaono
dio

€20
by

Co2
by

an
dy

Aaopo Aoy am aps
boo by, by, bos
Coo Co1 Co2 €03
doo dpi dpy dos
by by by, b3
Ci0 11 Ci2 13
dyp dyy diy di3
ajo ap apn as
€20 €21 €2 €23
dy dy) dy dy
dso as A ans
by by, by by
dy ds dy, dy3
asp asy asp ass
b3 b3 bs, b33
C30 €31 C3 €33
bos boo ap dop co3 coo boi ap dy dyo
as b= ay diy ¢ by F= by ay dip ci3 = €10
b - b - b -
dy3 dyy €y by an ayy dy Cxm by by
€33 c3 by axn dy dyy c31 by as asp

2. 7, and 7, circulant states

EgZ = Span{eo & €0,€1 & €5,69 & €3,€3 & el},

T
22 =span{e; ® €),e; ® e3,€, ® ep,e3 @ e},

372 =span{e; ® e;,6; ® ep,e, ® €1,e3 @ €3},

2;72 = Span{eo ® €3,€ & €1,6) & €),€3 & 60},

Sk
202 = Span{eo ® €0,€1 ® €5,6) ® €1,63 ® 63},

SKU
22 =span{e; ® €),e; ® e3,€, ® ey,e3 @ €},

2;72 = Span{eo ® €7,€] ® €p,€n ® 3,63 ® el},

272 =span{e, ® e3,e; ® e1,e; ® ep,e3 @ e}
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CIRCULANT STATES WITH POSITIVE PARTIAL TRANSPOSE

Aaopo aog am aps
byo boy | boy bos
Coo Co1 Co2 €03
doo dpi doy dos
€10 1 C12 C13
dy dy, diy di3
ao ap app ags
o = byg by | b1y bi3
T
2
by by1 | by by3
C20 2] C €23
dy dy dy dy;
aro asz an as
ds d3; ds ds3
asp asy asp ds3
b3y b3y | b3, b33
€30 €31 3 €33
/aoo aol (2] aps
© Do bo) b bo3
) Co1 Co2 Co3
dyo do, dp do3
C10 11 C12 13
dio d diy di3
o arp app as
o = by by by b3
Ty ~ ~ ~ ~
2
dy dy) dx dy3
Ay asy an ass
by by by, bys
020 Coy Cop c23
by b3 by, b33
C30 31 C3 €33
dsy ds dy, dyz -
dsg as as © o d33
where the matrices a,b,c,d are given by
agy Cco1 by dos boo doi cop ags coo dor doy bos doo o
= cio ap dip bys = dig by ap cp3 F ayp ¢y by dis = by dp
- 9 - ’ - ’ -
by dy ¢y an Co Ay dy by dyy by axy cx ary) €21
dy b3 azy c33 ay ¢z by dy by d3; c3 axp C30 d3)
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3. 773 and 773 circulant states

20° =spanfey ® ep,e; ® e3,6, ® e1,e3 @ e},

T
1 =span{e; ® e,e; ® ep,e; ® e;,e3 ® e3},

233 = Span{eo ® €9,€ ® €1,6, & €3,€3 & 60},

T
233 = Span{eo ® €3,€ ® €,,6y ® €p,€3 ® el},

2/(7;.3 = Span{eo ® €0,€1 ® €1,y ® €3,€3 ® ez},

2?3 = Span{eo & €1,€ ® €5,69 ® €(,€3 ® 63},

Eg3 = Span{eo & €7,€ & €3,6) ® €1,€3 & 60},

3% =spanfe) ® e3,6; ® €y, ® €y,3 D €}

ago . . . . . . ag . ag . . . . ags

(ST o Ciro : : : o Ci2|Ci3

al() . . . . . . all . a12 . . . . al3

(A8)

ay . . . . . . a . a . . . . ars

Cy - TG . ) : T Cn|Co3

C3p - B Y : : : 03] C33
dy | - ©ody - |dn - : : < dss

a30 . . . . . . a31 . 032 . . . . a33
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oo i i a \
500 501 502 ’ 503
o0 Co1 Con Co3
goo 501 502 goz
6710 311 6712 313
o ar ap ap
510 511 512 513
p;x: _ 1o _ i1 . Ci2 €13 — | (A9)
) by by, by by3
a0 o Cxn Cx3
320 6721 322 522
dy Ay dy any
C30 €31 Cxn €33
6730 331 6732 332
dsy as as ay -
b3 by b ' 533/
where the matrices a, l;, 5,(7 are given by
ag by dy co3 boo o1 apy dos coo dor by aps dy ag cor bos
= big ¢y ap dp b= cio di by aps Fe dig ay ¢y b3 = ayp by dip o3
dy ax ¢ by ’ ayy by dy o3 ’ byy ¢y ax dy ’ € dy by an
c3 dy by az dy az; c3n by azy bsy dyp ¢33 b3y c31 azp dsy
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