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Sequential quantum teleportation of optical coherent states
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We demonstrate a sequence of two quantum teleportations of optical coherent states, combining two high-
fidelity teleporters for continuous variables. In our experiment, the individual teleportation fidelities are evalu-
ated as F;=0.70+£0.02 and F,=0.75+0.02, while the fidelity between the input and the sequentially teleported
states is determined as F®'=0.57+0.02. This still exceeds the optimal fidelity of one half for classical tele-
portation of arbitrary coherent states and almost attains the value of the first (unsequential) quantum telepor-

tation experiment with optical coherent states.
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I. INTRODUCTION

By utilizing shared entanglement and classical communi-
cation, quantum teleportation [1] enables one, in principle, to
transfer arbitrary quantum states with unit fidelity. In a real-
istic scenario, typically, a receiver obtains an imperfect ver-
sion of the sender’s state. If the receiver decides to teleport
his approximate version to a third party, the original quantum
state will further degrade when it arrives at the final destina-
tion. Such a sequential quantum teleportation therefore re-
quires a sufficiently good performance of each individual
teleporter; otherwise the finally teleported state would hardly
resemble the input state.

Most protocols for quantum information processing and
their experimental realizations are based upon either discrete
qubits (qudits) or continuous phase-space variables. In quan-
tum optical implementations, typically, the single-photon-
based qubit approach suffers from rather low efficiencies, but
achieves, in principle, near-unit fidelities. Combining several
single-photon teleporters [2,3] would, in principle, still result
in very good fidelities, though conditioned upon coinciding
detection events at very low success rates.

Conversely, when Gaussian resource states and
continuous-variable homodyne measurements are used, un-
conditional operations lead to, in principle, near-unit effi-
ciencies, even when basic subroutines such as quantum tele-
portation are concatenated. The continuous-variable
approach [4—6], however, as it relies on intrinsically imper-
fect squeezed-state entanglement, will never result in arbi-
trarily high fidelities. In continuous-variable (CV) quantum
teleportation [7], the teleported state is a noisy replica of the
input state, with an excess noise depending on the quality of
the squeezing and entanglement resources. Therefore, when
quantum information is sequentially manipulated through
Gaussian resources, for instance, via a sequence of telepor-
tation circuits in a continuous-variable cluster computation
[8], the unwanted excess noise accumulates and leads to in-
creasingly deteriorating fidelities. In order to achieve still
better than classical fidelities, it is thus crucial to improve the
quality of each individual teleporter.

So far, a variety of (unsequential) quantum teleportation
protocols have been demonstrated, for instance, with photo-
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nic qubits [2,3], optical field modes [9], between atoms
[10,11], and even between light and atoms [12]. Since the
first realization of CV quantum teleportation of optical co-
herent states [9], several related experiments have followed
[12-17]. The CV quantum teleporter can be characterized by
the fidelity F=(ipyu|t) for an input state |¢) and a tele-
ported state p,,. Furthermore, in order to assess the perfor-
mance of the teleporter, we have to determine the fidelity
averaged over all possible input states [18]. When the quan-
tum information to be transferred is encoded onto a coherent
state drawn from an alphabet of arbitrary coherent states, the
gains of the classical channels should be set to unity to maxi-
mize the average fidelity (F,,). In the case of teleportation of
coherent states with unit gains, the average fidelity is identi-
cal to the fidelity for a particular coherent state input (F
=F,,) [16]. The total (average) fidelity for a sequence of n
quantum teleportations may then be described by [19]

FW=1/(1 +ne™?), (1)

where r is the squeezing parameter of the (equally) en-
tangled, standard two-mode squeezed-state resources. In the
case of n=2, at least r=0.35 is required (corresponding to
two F=2/3 teleporters) in order to surpass the classical limit
Fy=1/2[18,20,21].

In the present work, we demonstrate an experiment of two
sequential quantum teleportations of optical coherent states.
The input states are teleported from a sender (“Alice 1”) to a
first receiver (“Bob 1) and could be retrieved there, as we
verify through fidelity measurements. In a second round of
teleportation, the output states of the first teleporter are then
transferred from Bob 1 (now acting as “Alice 2”) to a second
receiver (“Bob 2”) where they can be verified again via fi-
delity measurements. As we use two high-fidelity teleporters,
the total fidelity of the output states is still well beyond the
classical limit, despite the excess noise accumulated during
the two rounds of quantum teleportation. During the entire
protocol, none of the participants (the Alice’s and Bob’s)
gain any substantial information about the input state, though
they do obtain some partial knowledge because of the non-
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maximal degree of entanglement of the finitely squeezed
states used for teleportation.

Based on these results, one could sequentially communi-
cate coherent signal states over two different segments of a
channel, provided the corresponding amount of entanglement
is available in each channel segment. For realistic, noisy
channels, this would require entanglement distillation (puri-
fication) procedures [22,23] performed prior to the teleporta-
tions. In general, however, by dividing a communication
channel into shorter segments [24], a higher degree of en-
tanglement can be maintained in each segment and entangle-
ment distillation will be more efficient. Via sequential quan-
tum teleportation, quantum information can then be sent to
an intermediate station where it could be either retrieved or
passed on to the next station.

If the total communication channel covers a large dis-
tance, it will be necessary to connect some of the purified
entangled states via entanglement swapping [25] and repu-
rify the resulting states [24]. Using various levels of purifi-
cation and swapping enables one to cover a larger distance
compared to sequential quantum teleportation. However, af-
ter entanglement swapping, quantum information can no
longer be transferred to the intermediate stations and poten-
tially retrieved there. As a consequence, in CV entanglement
swapping [15], resource requirements are less demanding
and, in principle, any nonzero squeezing value of the initial
two-mode squeezed states results in a swapped entangled
state sufficient for > F4=1/2 quantum teleportation of co-
herent states [26] (as opposed to the »>0.35 squeezing limit
in sequential quantum teleportation). A comparison between
these related schemes is shown in Fig. 1.

Concerning quantum computation rather than communi-
cation, measurement-based schemes [27-29] have been
shown to be an interesting alternative to the more traditional
circuit-based approach. The present experiment is also a first
step towards a sequential, measurement-based manipulation
of quantum information during its propagation through an
efficient Gaussian resource state [8,30]. A comparison of the
current sequential teleportation scheme with a protocol in
which an input state is sent through a linear Gaussian cluster
state is shown in Fig. 1.

II. SEQUENTIAL QUANTUM
TELEPORTATION PROTOCOL

The quantum state to be teleported here is that of an elec-
tromagnetic field mode. An electromagnetic field mode is
represented by an annihilation operator ¢ with real and
imaginary parts X and p corresponding to the “position” and
“momentum” quadrature-phase amplitude operators. These
operators £ and p satisfy the commutation relation [£,p]
=i/2 (units-free, with 2A=1/2).

In our experiment, the input state is a coherent state for an
optical sideband at 1 MHz. The experimental setup is shown
in Fig. 2. In order to generate squeezed vacuum states, we
use four subthreshold optical parametric oscillators (OPOs)
with a periodically poled KTiOPO, as a nonlinear medium
[19]. An output of cw Ti:sapphire laser at 860 nm is fre-
quency doubled in an external cavity with a potassium nio-
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FIG. 1. Comparison of sequential quantum teleportation (a) with
the propagation of a quantum state through a linear cluster state (b)
and entanglement swapping plus quantum teleportation (c). In the
present experiment, the input coherent state is first teleported onto
mode 2 as in (a); after this first quantum teleportation, the input
state, now present in mode 2, could be verified by measuring its
fidelity; the state of mode 2 is then again teleported, this time onto
mode 4. In the cluster scenario (b), the input state is attached to the
cluster and, in order to send it along the chain to mode 4, quadrature
measurements are performed on each individual mode except mode
4; the entangling gate, attaching the input mode to the cluster, and
the subsequent single-mode measurements of the input mode and
mode 1 correspond to Bell measurement 1 in (a); however, different
than (a), in (b), there is no intermediate occurrence of the teleported
state at mode 2, as modes 2 and 3 have been entangled prior to any
measurements; in (a), the entangling gate between 2 and 3 is post-
poned until Bell measurement 2. Another related scheme is (c),
including entanglement swapping; here the first Bell measurement
is performed on modes 2 and 3, leaving modes 1 and 4 in an
entangled state (whose particular form depends on the measurement
outcomes); finally the input state can be teleported onto mode 4 via
a second Bell measurement of the input mode and mode 1; again
different from (a), in (c), there is no intermediate occurrence of the
input state at mode 2.

bate crystal. The output beam at 430 nm is divided into four
beams to pump the four OPOs. The pump powers are about
90 mW. By combining two squeezed-vacuum states at a
symmetric beam splitter, we can generate an entangled two-
mode squeezed (EPR) state. Using four squeezed vacuum
states, we generate two pairs of EPR beams in order to con-
struct two teleporters.

In the following, we describe the teleportation process in
the Heisenberg representation. Initially, the sender Alice and
the receiver Bob share a pair of EPR beams. Alice performs
a joint measurement on her EPR mode (£4,p,) and the input
mode (%, Pi). She combines these two modes at a symmet-
ric beam splitter and measures X,=(%,—%,)/\2 and p,
=(pin+Da)/ V2 with two homodyne detectors. The measure-
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ment results (x,,p,) are then sent to Bob through classical
channels with gain g, and g,,.

The (normalized) gains of the classical channels are ad-
justed similar to Ref. [14] and defined as g,=(L,,0/{Xin)>
8p={Pou!{Pin)- The adjusted gains for the teleporters 1 and 2
are g,1=1.00+0.02, g,;=1.00£0.02 and g,,=1.00=0.01,
8,2=1.00£0.01, respectively. For simplicity, these gains are
fixed throughout the experiment and treated as unity.

Bob receives Alice’s measurement results (x,,p,) through
the classical channels and displaces his EPR beam (%g,p5)
accordingly, Xz — X, =X5+ v’axu and pg— po=pPp+ \Epv. In
our experiment, the displacement operations are realized via
electro-optical modulators (EOMs) and highly reflecting mir-
rors (99/1 beam splitters). Bob modulates two beams by
using amplitude and phase modulators, corresponding to the
displacement of x and p quadratures, respectively. The
modulated beams are combined with Bob’s mode (£z,pp) at
the 99/1 beam splitters.

The teleported mode can be written as [15]

)eoutz)ein_()eA_xAB)’ pAout:Iain+(ﬁA+pAB)- (2)
Ideally, the EPR beams would have perfect correlations such
that x,—xz— 0 and p,+pp— 0. Hence, the state of the out-
put mode, expressed by X, and p,,, would coincide with
that of the input mode, %, and p;,.

III. EXPERIMENTAL RESULTS

In the real experiment, the teleported state has some ad-
ditional noise due to the finite EPR correlations, i.e.,
Agpr(x) = ([A(fA—fB)]2> #0 and Agpr(p) =([A(pa +l33)]2>
#0. In the process of n sequential quantum teleportations,
this excess noise is added n times to the input state. Thus, the
variances of the output state are

((AFGR)%) = ((A2n)*) + 2 Apr (1),

(PG = ((Ap)) + 2 Aepei(p). (3)

where Agpg ; are the added noise terms of the ith teleporter.

Figure 3 shows the measurement results of the two se-
quential quantum teleportations. The outputs of the homo-
dyne detection are measured by a spectrum analyzer. The
measurement frequency is 1 MHz. Figure 3(a) shows the in-
put coherent state with the phase scanned. In our experiment,
an input coherent state is generated by modulating a weak
coherent beam at 1 MHz. Figure 3(b) shows the teleported
states for the x quadrature (the p quadrature is not shown).

The variances of the teleported state are <(A)€£)L)[)2>

=25+0.2dB and ((Ap\)*)=2.8+0.2 dB relative to the
vacuum noise level. Here superscript (1) stands for the out-
put of the first teleporter. Figure 3(c) shows sequentially tele-
ported states for the x quadrature (the p quadrature is not
shown). The variances of the sequentially teleported state are
(AZ29)2)=3.9+0.2 dB and ((Ap\¥)?)=4.0+0.2 dB. Note
that the amplitudes of the teleported states are almost iden-
tical to those of the input states, reassuring that the gains of
the teleporters are near unity.

We also evaluate the performance of the second teleporter
individually (not shown in Fig. 3). We teleport a coherent
state by using the second teleporter, and determine the vari-
ances of the output. The measured variances of the output
state are ((A£2)2)=2.3+0.2 dB and ((Ap2)?)=2.2+0.2 dB
with respect to the vacuum noise level. From Eq. (3), we can
calculate the variance of the sequentially teleported state
from the added noise of each teleporter. The calculated vari-
ances are ((A)?ffzq))2>=3.9 dB and ((Aﬁfﬂiq))z)=4.l dB, which
is in good agreement with the experimental results. This con-
firms that our teleporters maintain their fidelities even when
combining them. In principle, we can build a larger sequence
of teleporters (though at the expense of a further decreasing
total fidelity).

To estimate the performance of a teleporter, we use the
fidelity F=(a|p,,|a) for teleporting a coherent state with
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FIG. 3. Measurement results of sequential teleportation for x quadrature (p quadrature is not shown). In all figures, traces (i) show
vacuum noise level. (a) Input coherent state. Trace (ii) shows the input state with phase scanned. (b) Teleported states for x quadrature. Trace
(ii) shows the teleported states for a coherent state input with a phase of the input state scanned. Trace (iii) shows the teleported states for
a vacuum input of which noise level corresponds to the variances of the output. The variance is 2.5+0.2 dB (that of p is 2.8+0.2 dB). (c)
Sequentially teleported state. Trace (ii) shows sequentially teleported states for a coherent state input. Trace (iii) show the sequentially
teleported states for a vacuum input. The variance is 3.9+0.2 dB (that of p is 4.0+0.2 dB). The measurement frequency is 1 MHz, resolution
and video bandwidths are 30 kHz and 300 Hz, respectively. All traces except for (ii) are averaged 30 times.

amplitude « yielding the output state p,,.. For coherent-state
inputs with unity gains, the fidelity can be written as [15]

F= 2 .
VI +4((AR DT +H(Apou)D]

(4)

The fidelity is calculated from the variances of the output
states. The variances of the coherent state input is ((A£;,)%)
=((Apin)*)=1/4, hence the fidelity can be determined by the
added noise of Appgr(x) and Appr(p). We calculate the fidelity
from the measured variances using Eq. (4). The performance
of each teleporter is estimated for a coherent-state input as
F1=0.70+0.02 and F,=0.75+0.02 for teleporters 1 and 2,
respectively. Note that our teleporters exceed both the clas-
sical limit F,;=1/2 [18,20,21] and the no-cloning limit Fyc
=2/3 [31,32]. We also calculate the fidelity between the in-
put and the sequentially teleported state. The fidelity is F®
=0.57+0.02 which still exceeds the classical limit F,=1/2
and verifies the successful demonstration of two sequential
quantum teleportations.

Figure 4 shows the Wigner functions reconstructed via

(®)

optical homodyne tomography technique [33]. The Wigner
function is a quasiprobability distribution defined by
W(x,p)==2 [ déexp(~4iép)(x+&|plx—& [34,33]. In optical
homodyne tomography, we also use 1 MHz sidebands of the
carrier beam [35]. The output of a homodyne detector is
high-pass filtered and then mixed with an electrical oscillator
signal of frequency 1 MHz, which is the same frequency as
for the creation of the input coherent state. The intermediate-
frequency output of the mixer is low-pass filtered (the band-
width is 30 kHz) and recorded in a PC with an analog-to-
digital converter (ADC). The sampling rate of the ADC is set
to 300 kHz and we measure around 100 000 points with the
local oscillator (LO) phase scanned. To reconstruct the
Wigner function, we use the inverse Radon transformation
[33,35]. Figure 4(a) shows the input coherent state. Figure
4(b) shows the teleported state, and Fig. 4(c) shows the se-
quentially teleported state. Note that here we lock the phase
of the input coherent state to ~45° with respect to the x
quadrature. Although the teleported states have excess noise
and turn into mixed states, the input state is clearly recon-
structed after the two rounds of quantum teleportation.

©

-6 -6 x 14 -6 -6 %

FIG. 4. Wigner function reconstructed by using optical homodyne tomography. (a) Input coherent state. (b) Teleported state. (c)
Sequentially teleported state. In these measurement, we locked the phase of input coherent state ~ 45° from x quadrature.
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IV. SUMMARY

In summary, we demonstrated two sequential quantum
teleportations of coherent states of light. The experimentally
determined fidelity for the sequentially teleported coherent
states was well beyond the classical limit. These results im-
ply the possibility of sequential quantum communication
over several segments of a channel using efficient Gaussian
resources (combined with non-Gaussian distillation tech-
niques [23]). Moreover, our experiment represents a step to-
wards sequentially manipulating quantum information using
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entangled Gaussian resource states. Future extensions of this
work will include more general measurement-based Gauss-
ian transformations [30] and the use of non-Gaussian signal
states as well as the addition of non-Gaussian measurements
in order to achieve universal quantum information process-

ing [8].
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