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We have generalized the two-step approach to the solution of systems of N coupled quantum anharmonic
oscillators. By using the squeezed vacuum state of each individual oscillator, we construct the tensor product
state, and obtain the optimal squeezed vacuum product state through energy minimization. We then employ this
optimal state and its associated bosonic operators to define a basis set to construct the Heisenberg matrix. The
diagonalization of the matrix enables us to obtain the energy eigenvalues of the coupled oscillators. In par-
ticular, we have applied our formalism to determine the eigenenergies of systems of two coupled quantum
anharmonic oscillators perturbed by a general polynomial potential, as well as three and four coupled systems.
Furthermore, by performing a first-order perturbation analysis about the optimal squeezed vacuum product
state, we have also examined into the squeezing properties of two coupled oscillator systems.
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I. INTRODUCTION

As an important model in physics, quantum oscillators
have been studied extensively in the past �1–9�. Motivated
by its application to molecular physics and quantum field
theory, researchers begin to investigate the consequences and
effects of interaction within a system of coupled oscillators.
This leads to studies into pairs of interacting harmonic oscil-
lators �10,11� or quartic anharmonic oscillators �12–15�,
which serve as useful starting points to understand the many
interesting properties typical of quantum systems with many
degrees of freedom. For example, Bosco et al. first look into
a system of two coupled harmonic oscillators to arrive at the
correct sequence of variable transformations, before general-
izing their treatment to the more complicated N coupled os-
cillator systems �10�.

However, to examine more realistic and complex physical
systems, it is necessary to incorporate the anharmonic char-
acter of the oscillations. Recently, researchers are able to
model the hole transfer problem in B-DNA double strands
�16� by modeling clusters of nucleobases as a chain of
coupled quantum anharmonic oscillators. They have been
able to explore a larger size system with this model without
incurring too much computational cost. Nonetheless, a sys-
tem of two coupled quantum anharmonic oscillators is inter-
esting in their own right as realistic models of physical sys-
tems. For example, they have been employed to model
molecular systems such as the five-membered ring com-
pounds including 2,5-dihydrofuran, cyclopentanone, cyclo-
pentene, silacyclopentane, and germacyclopentane; and have
enabled the calculation of the bend and twist eigenvalues and
energy transitions of these systems. Furthermore, they are
able to describe the nonlinear optical activity of a dimerlike
chiral molecule �17�, the semiclassical theory of bound state
�14�, and the interaction of quantum system with classical
environment �18�.

It is well known that systems of two coupled quantum
anharmonic oscillators cannot be treated analytically. Hence,
diverse schemes such as mixed diagonalization �15�, semi-
classical calculation �14�, Bargmann representation �12�, and

operator method �19� have been developed to approximate
their properties. In this paper, we have explored another so-
lution to this problem by extending a two-step diagonaliza-
tion approach. The perturbing anharmonic potential that we
consider has the general form of a polynomial of two vari-
ables with degree up to m :�v=0

m �u=0
m−vcuvx1

ux2
v. Our approach

first performs a Bogoliubov transform on the original
bosonic operators of the coupled oscillator system to produce
a set of bosonic operators. These bosonic operators and the
associated squeezed vacuum product state are parametrized
by a set of independent parameters. We then select the opti-
mal bosonic operators and squeezed vacuum product state
through minimizing the energy of the system by a variation
of these parameters. We then employ these operators and
vacuum product state to determine the energy eigenvalues
and squeezing properties of the general systems of two
coupled quantum anharmonic oscillators.

The organization of the paper is as follows. In Sec. II, we
extend the two-step approach to higher dimension, and con-
struct a multidimensional matrix representation of the Hamil-
tonian. The energy eigenvalues of the coupled anharmonic
oscillators are then obtained by standard diagonalization
scheme after transforming the multidimensional matrix to a
normal two-dimensional �2D� matrix. In Sec. III, we verify
our approach by applying the method to both symmetric and
unsymmetric two coupled quartic oscillators, and compare
our results with those obtained by other approaches. We find
close agreement of our results with these approaches. Subse-
quently, we apply our method to investigate the energy ei-
genvalues of a pair of coupled quantum pendulums. In Sec.
IV, we continue to validate the applicability of the extended
two-step approach by solving the eigenenergies of systems of
three and four coupled sextic oscillators. In Sec. V, we first
show that the squeezed vacuum state is a coherent state by
using the fact that it is an eigenstate of the “two-photon
annihilation operator.” We then proceed to study the squeez-
ing properties of the ground state of the two coupled anhar-
monic oscillators perturbatively with respect to the squeezed
vacuum state. Finally, we conclude our paper in Sec. VI.
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II. GENERALIZED TWO-STEP APPROACH TO SYSTEMS
OF N COUPLED QUANTUM ANHARMONIC

OSCILLATORS

A. Extended two-step approach

The two-step approach �8� can be extended to a system of
N coupled quantum anharmonic oscillators. In the first step, a
Bogoliubov transformation is used to define a set of creation
and annihilation operators bj

† and bj from the original set aj
†

and aj, as follows:

bj =
aj − tjaj

†

�1 − tj
2

, �1�

bj
† =

aj
† − tjaj

�1 − tj
2

, �2�

where tj is real and satisfies �tj � �1. Since the transformation
is canonical, these new bosonic operators satisfy the commu-
tation relation �bi ,bj

†�=�ij, where �ij is the Kronecker �. Note
that i , j=1,2 , . . . ,N. Furthermore, the corresponding ground
state �� j , tj�, which satisfies bj �� j , tj�=0, is a squeezed
vacuum state. It is defined through the action of the squeeze
operator S�tj� on the original ground state �0 j�:

�� j,tj� = S�tj��0 j� = exp	 tj

2
aj

†2
�0 j� = �
nj=0

�
1

nj!
	 tj

2
aj

†2
nj

�0 j�

= �
nj=0

�
tj
nj��2nj�!
2njnj!

�2nj� . �3�

Note that nj is the index to the original number state �nj�. The

squeeze operator S�tj� is, however, different from the general
one �20� by a factor of exp�− tj

2 aj
2�. Incidentally, the squeezed

vacuum state is also the eigenstate �� , +1� of the “two-
photon annihilation operator” �TAO� aj

†−1aj �20� with eigen-
value tj,

aj
†−1aj�� j,tj� = tj�� j,tj� , �4�

where aj
†−1 is the inverse creation operator.

Next, let us take the tensor product of the individual os-
cillator states as follows:

��1,t1� � ��2,t2� � ¯ � ��N,tN�

= ��1,�2, . . . ,�N,t1,t2, . . . ,tN�

= exp	�
j=1

N
tj

2
aj

†2
�01,02, . . . ,0N� . �5�

The bosonic operators now operate on these states in the
following way:

bj��1,�2, . . . ,�N,t1,t2, . . . ,tN� = 0 for j = 1,2, . . . ,N .

�6�

Thus, we observe that the set of bosonic operators is associ-
ated with the new squeezed vacuum product state
��1 ,�2 , . . . ,�N , t1 , t2 , . . . , tN�, and they are parametrized by N
independent parameters t1 , t2 , . . . , tN. By defining

� j =
1 − tj

1 + tj
, �7�

which amounts to a rescaling of the form xj→�� jxj, we
select the optimal set of bosonic operators and squeezed
vacuum product state by minimizing the ground state energy,

E��1,�2, . . . ,�N� =
��1,�2, . . . ,�N,�1,�2, . . . ,�N�H��1,�2, . . . ,�N,�1,�2, . . . ,�N�
���1,�2, . . . ,�N,�1,�2, . . . ,�N��1,�2, . . . ,�N,�1,�2, . . . ,�N�

, �8�

with respect to the set of � j. In other words, we solve for the

�̄ j which gives

�E��̄1,�̄2, . . . ,�̄N�
�� j

= 0. �9�

Then, the optimal generalized number product basis
�n̄1 , n̄2 , . . . , n̄N� can be generated from the optimal squeezed
vacuum product state

��̄1,�̄2, . . . ,�̄N� = ��1,�2, . . . ,�N,�̄1,�̄2, . . . ,�̄N� �10�

in the following way:

�n̄1, n̄2, . . . , n̄N� =
b̄1

†n̄1b̄2
†n̄2

¯ b̄N
†n̄N

�n̄1 ! n̄2 ! ¯ n̄N!
��̄1,�̄2, . . . ,�̄N� .

�11�

In the second step, we use the optimal generalized number
product basis to obtain the Heisenberg matrix through trun-
cating the basis by limiting n̄j �M. The Heisenberg matrix is
a multidimensional matrix. We convert it to a MN�MN ma-
trix by means of the following transformation:

C�r,s� = �i1,i2, . . . ,iN�H�j1, j2, . . . , jN� , �12�

where

r = �
k=1

N

�ik − 1�MN−k + 1,
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s = �
k=1

N

�jk − 1�MN−k + 1, �13�

and ik , jk=1,2 , . . . ,M. By diagonalizing C�r ,s�, the eigenen-
ergies of the system of N coupled quantum anharmonic os-
cillators can be determined.

B. Application to systems of two coupled quantum
anharmonic oscillators

Let us apply the extended two-step approach to a pair of
coupled quantum anharmonic oscillators, which is described
by a Hamiltonian of the following general form:

H = �
j=1

2 	 pj
2

2mj
+

1

2
mj	 j

2xj
2
 + ��

v=0

m

�
u=0

m−v

cuvx1
ux2

v, �14�

where � is the perturbative constant and cuv is the coupling
coefficients. Note that the polynomial of the perturbating an-
harmonic potential is up to degree m. The Hamiltonian can
also be written in the second-quantized form based on the
creation and annihilation operators of each oscillator as fol-
lows:

H = �
j=1

2


	 j�aj
†aj + 1

2� + ��
v=0

m

�
u=0

m−v

cuv
�1

u�2
v

2�u+v�/2 �a1
† + a1�u

��a2
† + a2�v, �15�

where xj =� j�aj
†+aj� /�2, pj = i
�aj

†−aj� /�2� j, and � j

=�
 /mj	 j.
In applying our extended approach, we first employ Eqs.

�1�, �2�, and �7� to re-express the Hamiltonian in terms of bj
†,

bj, and � j in the following manner:

H = �
j=1

2


	 j	1 + � j
2

4� j
+

1 + � j
2

2� j
bj

†bj +
1 − � j

2

4� j
�bj

†2 + bj
2�


+ ��
v=0

m

�
u=0

m−v

cuv
�1

u�2
v

2�u+v�/2�1
u/2�2

v/2

� �
p=0

�u/2�

�
q=0

u−2p
u ! b1

†�u−2p−q�b1
q

2pp ! q ! �u − 2p − q�!

� �
r=0

�v/2�

�
s=0

v−2r
v ! b2

†�v−2r−s�b2
s

2rr ! s ! �v − 2r − s�!
, �16�

where the symbol �x� means rounding the value of x to the
nearest lower integer. Note that we have expressed the
Hamiltonian in the normal-ordered form for the convenience
of constructing the Heisenberg matrix later. By applying the
variational principle through Eqs. �8� and �9� with N=2, the
following set of simultaneous equations are obtained:


	1
�̄1

2 − 1

�̄1

− � �
v=0,2

m

�
u=0,2

m−v
cuv�1

u�2
vu ! v ! �u/2�

2�u+v−2��u/2� ! �v/2� ! �̄1
u/2�̄2

v/2
= 0,

�17�


	2
�̄2

2 − 1

�̄2

− � �
v=0,2

m

�
u=0,2

m−v
cuv�1

u�2
vu ! v ! �v/2�

2�u+v−2��u/2� ! �v/2� ! �̄1
u/2�̄2

v/2
= 0.

�18�

Equations �17� and �18� are then solved numerically to yield
the optimal values of �1 and �2.

The transformation performed above has rescaled the
Hamiltonian such that the frequencies of the normal modes

are now given by 	 j�̄ j, while the magnitude of the pertur-

bation has diminished by a factor of the form 1/��̄1
u�̄2

v,
with u and v being integers smaller than m. This has the
implication that the rescaled system is amenable to perturba-

tive techniques based on the optimal bosonic operators b̄j
†

and b̄j, the squeezed vacuum product states ��̄1 , �̄2�, and the
generalized number product states

�n̄1, n̄2� =
b̄1

†n̄1b̄2
†n̄2

�n̄1 ! n̄2!
��̄1,�̄2� . �19�

Using these generalized number product states as basis, we
obtain the multidimension matrix representation of H for the
system of two coupled oscillators,

Hi1j1i2j2
= �i1,i2�H�j1, j2� = 	
	1

1 + �̄1
2

4�̄1

+ 
	1j1
1 + �̄1

2

2�̄1

+ 
	2
1 + �̄2

2

4�̄2

+ 
	2j2
1 + �̄2

2

2�̄2


�i1j1
�i2j2

+ 
	1
1 − �̄1

2

4�̄1

���j1�j1 − 1��i1,j1−2

+ ��j1 + 1��j1 + 2��i1,j1+2��i2j2
+ 
	2

1 − �̄2
2

4�̄2

���j2�j2 − 1��i2,j2−2 + ��j2 + 1��j2 + 2��i2,j2+2��i1j1

+ ��
v=0

m

�
u=0

m−v
cuv�1

u�2
v

2�u+v�/2�̄1
u/2�̄2

v/2
�
p=0

�u/2�

�
q=0

u−2p
u ! �j1 ! �u − 2p − 2q + j1�!

2pp ! q ! �j1 − q� ! �u − 2p − q�!

� �
r=0

�v/2�

�
s=0

v−2r
v ! �j2 ! �v − 2r − 2s + j2�!

2rr ! s ! �j2 − s� ! �v − 2r − s�!
�i1,j1+u−2p−2q�i2,j2+v−2r−2s, �20�
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where i1 , i2 , j1 , j2=1 ,2 , . . . ,M. This is a M �M �M �M
4-D matrix. Next, we convert this multidimension matrix
into a M2�M2 matrix through the following transformation:

C�M�i1 − 1� + i2,M�j1 − 1� + j2� = H�i1, j1,i2, j2� . �21�

By applying the standard diagonalization scheme to the
C�r ,s� matrix, we obtain the eigenenergies of the coupled
system.

Finally, it is interesting to note that our approach for the
systems of two coupled anharmonic oscillators is a generali-
zation of that for a single oscillator with a polynomial poten-
tial �2�. This is because the latter system can be treated by
simply setting the parameter of the second oscillator in the
two coupled oscillator system to zero.

III. ENERGY LEVELS OF A PAIR OF COUPLED
ANHARMONIC OSCILLATORS

A. Coupled quartic anharmonic oscillators

We first apply our method to a pair of coupled quartic
anharmonic oscillators with the Hamiltonian

H =
p1

2

2m1
+

1

2
m1	1

2x1
2 +

p2
2

2m2
+

1

2
m2	2

2x2
2 + ��c40x1

4 + c22x1
2x2

2

+ c04x2
4� , �22�

which models the dynamics of the five-membered ring com-
pounds �13�, and compare our results to those in �12�.

We truncate the Hamiltonian matrix at M =5, 9, 15, and
19. Table I shows that the low-lying energy eigenstates of the
symmetrically coupled quartic anharmonic oscillators con-
verge throughout the whole range of �. We then choose to
truncate the basis at M =9 and compare our results to those in
�12� �see Table II�. Note that En is the result of our calcula-
tion, while En

H is that due to Hioe et al. The results for un-
symmetrically coupling, i.e., c40�c04, is shown in Table III.
Note that in this paper, all energy eigenvalues are in atomic
units such that 
=mi=1 �i=1,2 , . . . ,N�.

B. Coupled cubic anharmonic oscillators

Next, we apply our method to a system of harmonic os-
cillators coupled by cubic potential

H =
p1

2

2m1
+

1

2
m1	1

2x1
2 +

p2
2

2m2
+

1

2
m2	2

2x2
2 + ��c12x1x2

2 + c30x1
3� ,

�23�

which has been employed to approximate the normal mode
of an anharmonic triatomic oscillator. This system has in fact
been used in the study of the semiclassical theory of bound
states by Eastes et al. �14�.

Low-lying energy levels are computed by truncating the
Hamiltonian matrix at M =9. Our results En1n2

are found to
compare favorably to the numerically computed exact results
En1n2

W of �14� �see Table IV�.

C. Coupled oscillators with cubic and quartic anharmonicity

We have also explored the applicability of our approach to
a more complicated system of harmonic oscillators coupled

by mixed cubic and quartic potential. The Hamiltonian of
this system is given below:

H =
p1

2

2m1
+

1

2
m1	1

2x1
2 +

p2
2

2m2
+

1

2
m2	2

2x2
2 + ��c40x1

4 + c30x1
3

+ c04x2
4 + c03x2

3 + c21x1
2x2 + c12x1x2

2 + c22x1
2x2

2� . �24�

TABLE I. Convergence of the first three states of the system of
coupled quartic anharmonic oscillators for the case of 
=m1=m2

=	1=	2=c40=c04=1, c22=2.

� Size of matrix E0 E1 E2

0.1 52�52 1.150238 2.417194 3.775260

92�92 1.150188 2.414344 3.772339

152�152 1.150188 2.414340 3.772322

192�192 1.150188 2.414340 3.772322

0.5 52�52 1.476477 3.241042 5.203985

92�92 1.476036 3.231518 5.195597

152�152 1.476025 3.231453 5.195314

192�192 1.476025 3.231453 5.195313

1.0 52�52 1.724994 3.844320 6.226393

92�92 1.724206 3.830464 6.214372

152�152 1.724184 3.830325 6.213817

192�192 1.724184 3.830323 6.213815

10.0 52�52 3.304048 7.564173 12.430486

92�92 3.301300 7.527662 12.398972

152�152 3.301210 7.527050 12.396828

192�192 3.301210 7.527043 12.396815

100.0 52�52 6.918703 15.952793 26.312626

92�92 6.912122 15.870528 26.241507

152�152 6.911900 15.868991 26.236273

192�192 6.911899 15.868972 26.236240

5000.0 52�52 25.299783 58.446221 96.495492

92�92 25.274871 58.139655 96.230311

152�152 25.274025 58.133767 96.210410

192�192 25.274022 58.133692 96.210282

TABLE II. Energy eigenvalues for the first three states of the
system of coupled quartic anharmonic oscillators for the case of 

=m1=m2=	1=	2=c40=c04=1, c22=2.

� E0 E0
H E1 E1

H E2 E2
H

0.05 1.0843 1.0843 2.2388 2.2388 3.4542 3.4542

0.10 1.1502 1.1502 2.4143 2.4143 3.7723 3.7723

0.50 1.4760 1.4760 3.2315 3.2315 5.1956 5.1953

1.00 1.7242 1.7242 3.8305 3.8304 6.2144 6.2140

10.0 3.3013 3.3012 7.5277 7.5271 12.399 12.397

100 6.9121 6.9119 15.871 15.869 26.242 26.237

5000 25.275 25.274 58.140 58.134 96.230 96.213
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Energy eigenvalues are computed by truncating the
Hamiltonian matrix at M =11. The energy levels of the
ground state and the 50th excited state are shown in Fig. 1.
The results correspond very well to those computed by Her-
nandez �15�.

D. Coupled quantum pendulums

Finally, we have also applied our approach to a system of
two pendulums coupled through the parameter �. The Hamil-
tonian of this system is given by �21�

H = H1 + H2 + Hint

= �
j=1

2 	 pj
2

2
+ 
�1 − cos xj�
 + ��1 − cos�x1 − x2��

= �
j=1

2 	 pj
2

2
+


xj
2

2

 + 
 �

m=4,6

�

�− 1�m/2−1 xj
m

m!

+ � �
m=2,4

�

�
r=0

m

�− 1�m/2−1 x1
m−rx2

r

�m − r� ! r!
. �25�

Notice that we have expressed the cosine potential as an
infinite polynomial series about xj =0. In order to apply our
approach, we have to approximate the cosine potential by
truncating the series at m=8. With M =7, we have deter-
mined the low-lying energy eigenvalues �less than the energy
of the separatix Es=2
� from the Heisenberg matrix with

=50. The results are displayed in Table V.

IV. APPLICATION OF THE EXTENDED TWO-STEP
APPROACH TO SYSTEMS OF THREE

AND FOUR COUPLED ANHARMONIC OSCILLATORS

By extending the analysis of Sec. II B, we have deter-
mined in this section the eigenenergies of systems of three

and four coupled anharmonic oscillators. This has enabled us
to further verify the validity of the extended two-step ap-
proach to problems of higher dimension.

A. System of three coupled sextic oscillators

Applying the extended two-step approach to a system of
three coupled sextic anharmonic oscillators with the follow-
ing Hamiltonian:

H =
p1

2

2
+

1

2
x1

2 + 2x1
4 +

1

2
x1

6 +
p2

2

2
+

1

2
x2

2 + 2x2
4 +

1

2
x2

6 +
p3

2

2
+

1

2
x3

2

+ 2x3
4 +

1

2
x3

6 + x1x2 + x1x3 + x2x3, �26�

we found close convergence of the energy eigenvalues to the
results of �22� as shown in Table VI, where we have trun-
cated the Hamiltonian matrix at M =5, 9, and 17.

B. System of four coupled sextic oscillators

Next, we apply the approach to a system of four coupled
sextic anharmonic oscillators with the following Hamil-
tonian:

H =
p1

2

2
+

1

2
x1

2 + 2x1
4 +

1

2
x1

6 +
p2

2

2
+

1

2
x2

2 + 2x2
4 +

1

2
x2

6 +
p3

2

2
+

1

2
x3

2

+ 2x3
4 +

1

2
x3

6 +
p4

2

2
+

1

2
x4

2 + 2x4
4 +

1

2
x4

6 + x1x2 + x1x3 + x1x4

+ x2x3 + x2x4 + x3x4. �27�

We have computed the low-lying energy levels by truncating
the Hamiltonian matrix at M =3, 5, and 9. Our results are
found to compare favorably to those of �23� �see Table VII�.

V. SQUEEZING OF THE PRODUCT STATE

In this section, we shall investigate into the effects of
nonlinearity and coupling on the squeezing properties of the
vacuum product state of the coupled anharmonic oscillators.
This shall be performed with respect to the transformed op-

timal bosonic operators b̄j
† and b̄j, and its associated

squeezed vacuum product state. In Sec. II, we have observed
that the transformation to the set of bosonic operators has
scaled the angular frequencies of the harmonic potential and

TABLE III. Energy eigenvalues for the first three states of the
system of coupled quartic anharmonic oscillators for the case of 

=m1=m2=	1=	2=1, c40=0.4,c04=1, c22=2.

� E0 E0
H E1 E1

H E2 E2
H

0.05 1.0669 1.0669 2.1580 2.2231

0.10 1.1206 1.1206 2.2818 2.3889

0.50 1.3965 1.3965 2.8989 3.1691

1.00 1.6123 1.6123 3.3725 3.7451

10.0 3.0176 3.0175 6.4059 7.3205

100 6.2773 6.2772 13.3821 15.4119

5000 22.913 22.913 48.903 56.438

TABLE IV. Energy eigenvalues of the system of coupled cubic anharmonic oscillators for the case of

=m1=m2=1, c12=1, c30=0.1.

� 	1
2 	2

2 E00 E00
W E10 E10

W E20 E20
W

−0.10 0.36 1.96 0.9939 0.9939 1.5809 1.5809 2.1613 2.1612

−0.10 0.49 1.69 0.9955 0.9955 1.6870 1.6870 2.3750 2.3750

−0.08 0.81 1.21 0.9980 0.9980 1.8944 1.8944 2.7899 2.7899
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diminished the magnitude of the perturbing anharmonic po-
tential. This implies that one can analyze the rescaled system
by means of perturbation theory about the squeezed vacuum
product state. By treating the squeezed vacuum state as the
zero-order vacuum product state, we examine into the zero-
order squeezing effects on the coordinate and momentum
uncertainties. After which, we proceed to study into the
squeezing effects on these uncertainties for the coupled an-
harmonic oscillators based on the standard first-order pertur-
bation theory.

A. Zero-order estimation of the coordinate
and momentum uncertainties

By using the fact that the squeeze vacuum product state
��̄1, �̄2� is an eigenstate of the TAO, we can simply deter-
mine the following expectation values:

�xj� = �pj� = 0, �28�

�aj
†aj� =

t̄ j
2

1 − t̄ j
2

, �29�

�aj
†2� =

t̄ j

1 − t̄ j
2

, �30�

�aj
2� =

t̄ j

1 − t̄ j
2

, �31�

where j=1,2. From Eqs. �28�–�31�, we readily obtain the
uncertainties of x and p,

�xj

2 = �xj
2� = � j

2	1

2
+

t̄ j

1 − t̄ j

 =

� j
2

2�̄ j

, �32�
TABLE V. Energy eigenvalues of the system of coupled pendu-

lums for the case of 
=1, 
=50.

� E00 E10,E01 E02,E20 E11

0.0 7.0080 13.9517 20.7651 20.8955

13.9517 20.7651

0.5 7.0426 13.9870 20.8395 21.0225

14.0536 20.8688

1.0 7.0768 14.0218 20.8867 21.1750

14.1546 20.9716

TABLE VI. Convergence of the energy eigenvalues of the sys-
tem of three coupled sextic anharmonic oscillators.

Size of matrix E0 E1 E2

53�53 2.986296 5.339869 5.905519

93�93 2.978875 5.298264 5.867776

173�173 2.978305 5.296000 5.865828

Braun �22� 2.978302 5.295992 5.865822
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FIG. 1. �Color online� Energy eigenvalues of the system of coupled cubic-quartic anharmonic oscillators for the case of 
=m1=m2=1,
	1=1000 cm−1, 	2=800 cm−1, c30=k1 /6, c40=k1 /24, c03=c04=0, c12=c21=kc /2, c22=kc /4, �=1.
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�pj

2 = �pj
2� =


2

� j
2	1

2
−

t̄ j

1 + t̄ j

 =


2�̄ j

2� j
2 . �33�

This gives the zero-order estimation of the coordinate and
momentum uncertainties. Equation �32� shows that coordi-
nate squeezing occurs when −1� t̄ j �0, while Eq. �33�
shows that momentum squeezing occurs when 0� t̄ j �1.
Since the product of the uncertainties �xj

and �pj
is always

equal to 
 /2, the squeezed vacuum product state is a coher-
ent state. The same results can also be obtained by operating
the position and momentum operators on the squeezed

vacuum state with the new bosonic operators b̄j
† and b̄j as

follows:

��̄ j�xj��̄� =
� j

�2�̄ j

��̄ j�b̄j
† + b̄j��̄ j� , �34�

��̄ j�pj��̄ j� =
i
��̄ j

� j
�2

��̄ j�b̄j
† − b̄j��̄ j� . �35�

B. Position and momentum uncertainties by first-order
perturbation theory

Since the squeezed vacuum product state is not the energy
eigenstate of the Hamiltonian of the coupled anharmonic os-
cillators, it cannot adequately describe the ground state of
these oscillators. Hence, a first-order perturbation analysis is
required to determine their coordinate and momentum uncer-
tainties. In this section, we shall first perform the perturba-
tion analysis on a coupled harmonic oscillators as a check on
accuracies, before performing the evaluation on a coupled
quartic anharmonic oscillators.

1. Coupled harmonic oscillators

The Hamiltonian for a system of coupled harmonic oscil-
lators can be written as follows:

H =
p1

2

2m1
+

1

2
m1	1

2x1
2 +

p2
2

2m2
+

1

2
m2	2

2x2
2 + ��c20x1

2 + c11x1x2

+ c02x2
2� . �36�

By transforming to the harmonic oscillator states character-

ized by the bosonic operators b̄j
† and b̄j, the Hamiltonian can

be formulated into an unperturbed H0 and a small perturba-
tion H1 quantified by the parameter ��, as was done in Sec. II
for the general case,

H = H0 + ��H1, �37�

where

H0 = �
j=1

2


	 j�̄ j	1

2
+ b̄j

†b̄j
 , �38�

H1 = �b̄2
†b̄1

† + b̄2
†b̄1 + b̄2b̄1

† + b̄2b̄1� , �39�

and ��=�c11�1�2 / �2��̄1�̄2�.
Next, we expand the vacuum state �0 0� of the coupled

harmonic oscillators about the optimal squeezed vacuum

state �0̄0̄�0�� perturbatively as follows:

�00� = �0̄0̄�0�� + ���0̄0̄�1�� + ��2�0̄0̄�2�� + ¯ . �40�

This allows us to calculate the position and momentum un-
certainties for the first oscillator perturbatively,

�x = ��00�x1
2�00� − �00�x1�00�2, �41�

�p = ��00�p1
2�00� − �00�p1�00�2, �42�

up to first order. Our calculated results for �x and �p are
shown in Table VIII. Compared to those calculated by Mac-
Dermott and Redmount �11� ��R�, our first-order approxima-
tions are not as accurate for larger �, but are sufficiently
good for us to investigate into the squeezing of the state. To
obtain more accurate results, one has to perform higher-order
perturbative calculations. From Table VIII, we observe that
our results lead to the same conclusion as MacDermott: the
coupling squeezes the uncertainty in x, while it raises the
uncertainty in p. The overall effect is an increase in the prod-
uct of the uncertainties.

2. Coupled quartic anharmonic oscillators

Let us consider again the pair of coupled quartic anhar-
monic oscillators with Hamiltonian given by Eq. �22�,

TABLE VII. Convergence of the energy eigenvalues of the sys-
tem of four coupled sextic anharmonic oscillators.

Size of matrix E0 E1 E2

34�34 4.047835 6.523707 7.230376

54�54 3.970225 6.328065 7.057805

94�94 3.960086 6.283305 7.017863

Kaluža �23� 3.959304

TABLE VIII. Position and momentum uncertainties of the system of coupled harmonic oscillators for the
case of 
=m1=m2=	1=	2=1, c20=0.5, c02=0.5, c11=−1.

� �x ��
 /2� �x
R ��
 /2� �p ��
 /2� �p

R ��
 /2� �x�p �
 /2� �x
R�p

R �
 /2�

0.05 0.98809 0.98830 1.01249 1.01213 1.00043 1.00029

0.10 0.97721 0.97798 1.02491 1.02385 1.00155 1.00130

0.50 0.91297 0.92388 1.11815 1.09868 1.02083 1.01505

1.00 0.86038 0.88807 1.21676 1.16877 1.04688 1.03795
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H =
p1

2

2
+

1

2
x1

2 +
p2

2

2
+

1

2
x2

2 + ��c40x1
4 + c22x1

2x2
2 + c04x2

4� .

�43�

As before, we formulate the Hamiltonian into the unper-
turbed harmonic oscillator part H0 and a small perturbation
H1 quantified by ��,

H = H0 + ��H1, �44�

where

H0 = E0 + �
j=1

2

�̄ jb̄j
†b̄j , �45�

E0 = �
j=1

2
3�̄ j

2 + 1

8�̄ j

, �46�

H1 =
c40

�̄1
2
:�b̄1

† + b̄1�4: +
c04

�̄2
2
:�b̄2

† + b̄2�4: +
c22

�̄1�̄2

�b̄1
†2b̄2

†2 + b̄1
†2b̄2

2

+ b̄1
2b̄2

†2 + b̄1
2b̄2

2 + 2b̄1
†2b̄2

†b̄2 + 2b̄1
2b̄2

†b̄2 + 2b̄2
†2b̄1

†b̄1

+ 2b̄2
2b̄1

†b̄1 + 4b̄1
†b̄1b̄2

†b̄2� , �47�

and ��=� /4. Note that the symbol : : denotes normal order-
ing.

We have again expanded the ground state perturbatively
about the squeezed vacuum state. Although a perturbation
series in integral powers of � for the quartic anharmonic
oscillators is known to be a divergent series, our approach
has rescaled the value of � and reduced the magnitude of the
perturbing anharmonic potential such that a first-order per-
turbative analysis becomes amenable �24,25�. The resulting
truncated series with a variational approach turns out to be
convergent, as was exemplified by the converging results of
the energy eigenvalues of the coupled quartic oscillators re-
ported in Sec. III A. We have calculated the position and
momentum uncertainties of the first oscillator for �=1 based
on the standard first-order perturbative analysis. Our result is
displayed in Table IX. We have also investigated the indi-
vidual effects of anharmonicity and coupling on the squeez-
ing properties of the vacuum product state of the coupled
quartic oscillators through setting the corresponding param-
eters to zero. These results are shown in Figs. 2 and 3, re-
spectively, where we have plotted the normalized �̄x
=�x /�x

c and �̄p=�p /�p
c, as well as their product. Note that �x

and �p are the position and momentum uncertainties of the
vacuum product state of the coupled quartic oscillators,
while �x

c and �p
c are the position and momentum uncertain-

ties of the coherent state.
Compared to the uncertainties of a single anharmonic os-

cillator, the coupling in the coupled anharmonic oscillators
has the effect of decreasing the position uncertainty and in-
creasing the momentum uncertainty of the individual oscil-
lator. In addition, it also has the effect of increasing the
uncertainty product without violating the Heisenberg uncer-
tainty principle. By comparing with results obtained from the
system of coupled harmonic oscillators, the effect of nonlin-
earity in the anharmonic potential of the coupled anharmonic
oscillator is to enhance the squeezing and antisqueezing of
the position and momentum uncertainties, respectively, with-
out any significant increase in the uncertainty product.

It is important to note that although the observations
given above show that the effect of coupling and anharmo-
nicity leads to a squeezing in x and an antisqueezing in p,
this is not always the case. A perturbative calculation for the
coupled quantum pendulum given in Sec. III shows that it
can indeed happen the other way round, with an antisqueez-

TABLE IX. Comparison of the position and momentum uncer-
tainties of the system of coupled harmonic oscillators �CHO�, the
system of coupled anharmonic oscillators �CAHO�, and the single
anharmonic oscillator �SAHO�.

Oscillator �x ��
 /2� �p ��
 /2� �x�p �
 /2�

CHO 0.8604 1.2168 1.0469

CAHO 0.6815 1.4763 1.0060

SAHO 0.7089 1.4178 1.0051
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FIG. 2. �Color online� Effects of anharmonicity on the squeez-
ing properties of the vacuum product state of the coupled quartic
oscillators when �=1. The degree of anharmonicity is quantified by
the dimensionless parameter c40. The effect of coupling has been
switched off by setting c22=0.
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FIG. 3. �Color online� Effects of coupling on the squeezing
properties of the vacuum product state of the coupled quartic oscil-
lators when �=1. The degree of coupling is quantified by the di-
mensionless parameter c22. The effect of anharmonicity has been
switched off by setting c40=c04=0.
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ing in x ��x=1.009 04�
 /2� and a squeezing in p ��p

=0.991 04�
 /2�.

VI. CONCLUSION

By applying the Bogoliubov transform on the bosonic op-
erators of each oscillator of a system of coupled anharmonic
oscillators, we derive a basis set for the description of the
quantum states of systems of coupled oscillators. The
vacuum state of this basis set is a squeezed coherent product
state and is parametrized by a set of independent parameters.
We select the optimal squeezed vacuum product state by
minimizing the energy of the coupled anharmonic oscillators.
This enables us to construct an optimal basis set to evaluate

the energy eigenvalues of the systems of N coupled anhar-
monic oscillators. We have applied this formalism to various
systems of two, three and four coupled quantum anharmonic
oscillators. We have found that the energy eigenvalues com-
puted by our approach agree closely with those obtained
from the literature. In addition, we have also investigated the
squeezing of the coupled oscillators vacuum state by per-
forming a first-order perturbation analysis about the optimal
squeezed vacuum product state. Our results show that the
vacuum state of the coupled nonlinear oscillators is not a
coherent state. Furthermore, we have found that the effect of
coupling and anharmonicity is to enhance the squeezing in
the state without any significant change to the uncertainty
product.
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