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I. INTRODUCTION

It is well known that in quantum gravity and string theory,
there is a lower bound to the possible resolution of distances,
i.e., a minimal observable length on the scale of the Planck
length of 10−35 m. This minimal length may be introduced as
an additional uncertainty in position measurements, so that
the standard Heisenberg uncertainty relation becomes ��X�
���P��

�
2 �1+���P�2+ ¯ �, where � is a small positive pa-

rameter �1–3�. It is clear that in this new relation, ��X� is
always larger than ��X�min=���. It was shown in Refs.
�4–7� that the introduction of specific corrections to the usual
canonical commutation relations between position and mo-
mentum operators imply this new generalized uncertainty re-
lation in a natural way. This formalism, based on a noncom-
mutative Heisenberg algebra, together with the new concepts
it implies, has been discussed in one and more dimensions
�4�. Quantum field theory �QFT� has also been reformulated
within this framework, and it has been shown, in particular,
that this minimal length may regularize unwanted divergen-
cies �8,9�.

In addition to its importance in QFT, a minimal length
may be of great interest in nonrelativistic or relativistic quan-
tum mechanics. Indeed, it has been argued �5,10� that this
length may be viewed as an intrinsic scale characterizing the
system under study. Consequently, the formalism based on
these deformed commutation relations may provide a new
model for an effective description of complex systems such
as quasiparticles and various collective excitations in solids,
or composite particles such as nucleons, nuclei, and mol-
ecules �5�. Various topics were studied over the last ten
years, in connection with this formalism: the spectrum of the
hydrogen atom has been obtained perturbatively in coordi-
nate space by several authors �11–14�, whereas its momen-
tum space treatment was done in Ref. �15�. The authors
found an upper bound of about 0.1 fm for the minimal length
by exploiting the experimental data from precision hydrogen
spectroscopy �the Lamb shift�. The harmonic oscillator po-
tential has also been solved exactly in arbitrary dimensions
�16� and perturbatively �4,5,11�. In Ref. �16�, an upper bound

for the minimal length has been calculated by confronting
theoretical results to precision measurement of electrons
trapped in a strong magnetic field; it is of the same order of
magnitude as the result obtained in the hydrogen atom prob-
lem. The influence of the minimal length on the Casimir
energy between two parallel plates has also been examined
�17,18�. The problem of a charged particle of spin one-half
moving in a constant magnetic field has been treated within
the minimal length formalism, and the thermal properties of
the system at high temperatures have been investigated �19�.
The minimal length was introduced in the Dirac equation in
Ref. �20�, where a one-dimensional Dirac oscillator has been
solved exactly; in three dimensions, this problem has been
solved using supersymmetric quantum mechanics �21�. Fi-
nally, the modifications of the gyromagnetic moment of elec-
trons and muons due to the minimal length have been dis-
cussed in Ref. �22�. For a review of different approaches of
theories with a minimal length scale and the relation between
them, we refer the reader to Ref. �23�.

In this paper, we study the effect of a minimal length in
nonrelativistic quantum mechanics with a potential V�R� of
the form V�R�=−� /R2 with 2m� /�2�1/4 �m is the particle
mass�. Such a potential is singular when used in conjunction
with the usual Schrödinger equation. Specifically, the condi-
tion of square integrability of the wave function does not
lead to an orthogonal set of eigenfunctions with their corre-
sponding eigenvalues �24,25�. This is due to the fact that the
Hamiltonian operator is not self-adjoint �26�; to cure this
illness, we must define self-adjoint extensions of the Hamil-
tonian or equivalently require orthogonality of the wave
functions �24�. However, the obtained spectrum is a peculiar
one, as the energy eigenvalue may take values from 0 to −�,
so that there is no finite ground state. Landau and Lifshitz
associate the occurrence of this infinite bound state to the
classical fall to the center of the particle �27�. In addition to
this fundamental problem, the expression of the energy spec-
trum depends on an arbitrary phase parameter, coming from
restoring the self-adjointness of the Hamiltonian. For a re-
view of works concerning this potential, we refer the reader
to Refs. �30,31�.
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From a physical point of view, the strongly attractive
1/R2 potential is very interesting. Indeed, the problem of
atoms interacting with a charged wire, relevant to the fabri-
cation of nanoscale atom optical devices, is known to pro-
vide an experimental realization of an attractive 1/R2 poten-
tial �32,33�. It is a fundamental �long range� part of the
potential describing dipole-bound anions in polar molecules
�34�, and has some applications in black holes physics �35�.
Finally, let us note that the Efimov effect in three-body sys-
tems �36� arises from the existence of a long range effective
interaction V�R� of the form V�R��c /R2 �c some constant�,
where R is built from the relative distances between the three
particles. Further interest in the singular inverse square po-
tential also arose from recent studies showing that it provides
a simple example of a renormalization group limit cycle in
nonrelativistic quantum mechanics �37–39�. We also men-
tion, for the sake of completeness, other works on the regu-
larization and the renormalization of this potential �40–42�.

In this work we study in detail how the introduction of a
generalized uncertainty relation regularizes the singular in-
verse square potential in nonrelativistic quantum mechanics.
We show, in particular, that the “elementary length” included
in these relations may be interpreted as an effective cutoff
regularizing the potential at large momenta. It follows that in
this new framework the existence of an elementary length
regularizes the 1/R2 potential, without introducing any arbi-
trary cutoff.

Our paper is organized as follows. In Sec. II, we study the
attractive 1/R2 potential in ordinary quantum mechanics, us-
ing the momentum representation. In Sec. III, we derive the
corresponding equations in quantum mechanics with a modi-
fied uncertainty relation. In Sec. IV, within the formalism
of deformed Heisenberg algebra, we solve exactly the
Schrödinger equation and extract the energy spectrum. Some
concluding remarks are reported in the last section.

II. SINGULAR ATTRACTIVE 1/R2 POTENTIAL
IN ORDINARY QUANTUM MECHANICS

The singular attractive inverse square potential has been
extensively studied in the coordinate representation �see, for
instance, �24,25,28–30��. In Ref. �25�, the expression of the
momentum wave function was given as a Fourier transform
of the wave function in configuration space. We use here a
simple method for dealing with the attractive 1/R2 potential
in momentum space, as first applied to the hydrogen atom
potential �44�.

A. Schrödinger equation in momentum representation

We write the Schrödinger equation for a particle of mass
m in the external potential V�R�=−� /R2, ��0 in the form

�R2P2 − 2m���	� = 2mER2�	� , �1�

where R� and P� are, respectively, the position and momentum
operators. In the momentum representation, the wave func-
tion reads �16�

	�p�� = Ylm�
,��	�p� .

Without loss of generality, we restrict ourselves to s waves.
One then has

R2	�p� = − �2	 �2

�p2 +
2

p

�

�p

	�p� ,

P2	�p� = p2	�p� .

From Eq. �1�, we obtain the following differential
equation:

d2	

dp2 +
2

p
	3p2 + k2

p2 + k2 
d	

dp
+ 	6 + 2m�/�2

p2 + k2 
	 = 0, �2�

where k2=−2mE.
Introducing the dimensionless variable y, defined by

y = −
p2

k2 ,

the Schrödinger equation �2� takes the following form:

y�1 − y�
d2	

dy2 + 	3

2
−

7

2
y
d	

dy
−

1

2
	3 +

m�

�2 
	 = 0. �3�

This equation is in the form of a hypergeometric equation
�45� as follows:

y�1 − y�
d2	

dy2 + �c − �a + b + 1�y�
d	

dy
− ab	 = 0,

with the parameters

a =
5

4
+

i

2
� ,

b =
5

4
−

i

2
� ,

c =
3

2
, where � =�2m�

�2 − 1/4. �4�

The solution to Eq. �3� finite for p=0 is �45�

	�p� = AF	a,b,c;−
p2

k2
 , �5�

where A is a normalization constant. This solution was ob-
tained in Ref. �25� by taking the Fourier transform of the
configuration space wave function 	�r�, with

	�r� = Ar−1/2Ki��kr� ,

where Ki� is the modified Bessel function.
Let us now examine the asymptotic behavior of solution

�5� in the vicinity of p=0 and p→�. For p=0, one has
	�p�=finite constant, as F�a ,b ,c ;y��y11; so, it is quadrati-
cally integrable at the origin. In the limit p→�, by means of
the transformation �45�
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F�a,b,c;y�

=
��c���b − a�
��b���c − a�

�− y�−aF	a,1 − c + a,1 − b + a;
1

y



+
��c���a − b�
��a���c − b�

�− y�−bF	b,1 − c + b,1 − a + b;
1

y

 ,

�6�

the wave function �5� is written as

	�p� =
��3/2���− i��

�	5/4 −
i�

2

�	1/4 −

i�

2

	

p

k

−5/2−i�

�F	a,1 − c + a,1 − b + a;−
k2

p2

+

��3/2���i��

�	5/4 +
i�

2

�	1/4 +

i�

2

	

p

k

−5/2+i�

�F	b,1 − c + b,1 − a + b;−
k2

p2
 . �7�

Then the behavior of 	�p� at infinity is of the form

	�p� �
p→�

p−5/2�Ap−i� + Bp+i�� , �8�

where A and B are complex constants.
Solution �7� is a linear combination of two solutions that

behave in the same manner at infinity and, both of them, are
quadratically integrable. Usually the integrability condition
suffices to distinguish between the two independent solu-
tions, but this is not the case here. From Eq. �8�, one can see
that the wave function depends on an arbitrary phase � as
	�p��p→�p−5/2 cos�� ln p+��, for real 	�p�, and then it has
an infinite number of oscillations as p→�. As was expected,
the oscillating behavior of 	�p� at infinity is analogous to the
oscillating behavior of the configuration space wave function
	�r� in the neighborhood of the origin �see, for example, Ref.
�24��.

B. Integral equation

For later comparison with the solution of the Schrödinger
equation with a minimal length, we derive now an integral
equation equivalent to Eq. �2�. Let us observe that Eq. �1�
can be written in the form

�L + g�p����p� = 0,

where

��p� = �p2 + k2�	�p� ,

g�p� =
2m�

�2

p2

�p2 + k2�
,

and L is the self-adjoint operator

L = −
p2

�2R2 =
d

dp
	p2 d

dp

 . �9�

Then ��p�, satisfying the boundary conditions ��0�
=constant and ����=0, is given by �48�

��p� = �
0

�

G�p,p��g�p����p��dp�. �10�

The Green’s function G�p , p�� is then given by

G�p,p�� =

�p − p��

p
+


�p� − p�
p�

, �11�

and the integral equation satisfied by the wave function 	�p�
is

�p2 + k2�	�p� =
2m�

�2 �
0

�

p�2	�p��G�p,p��dp�. �12�

This equation can also be obtained by calculating the Fourier
transform of the potential and inserting it in the s-wave inte-
gral Schrödinger equation and then integrating over the
angles �43�.

Note that putting 	�p�� ps in Eq. �12�, we get

ps+2 =
p��

2m�

�2  1

p
�p��

p�s+2dp� + �
p��

p�s+1dp�� .

After integration we get the characteristic equation

1 =
2m�

�2 � 1

s + 3
−

1

s + 2
� ,

which has two roots s=− 5
2 ± i�, corresponding to the two

solutions �8�.
This is the momentum space illustration of the singular

nature of the potential −� /R2: Eq. �12� has square integrable
solutions for any value of k2�0.

C. Energy spectrum

For the sake of completeness, we now show, following
�49�, how a spectrum can be obtained by requiring the func-
tions 	�p� to be mutually orthogonal.

1. Orthogonality of the eigenfunctions

Let us consider two eigenfunctions 	1�p� and 	2�p� cor-
responding, respectively, to the eigenvalues k1 and k2. The
scalar product between these two functions reads

�	1�	2� = A1A2
*�

0

�

p2dpF	a,b,c;−
p2

k1
2
F	a,b,c;−

p2

k2
2
 .

�13�

Introducing the change of variable x= p2 and using the
formula �47�
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�
0

�

xc−1F�a,b,c;− �x�F�a�,b�,c;− �x�dx = �−a�a−c ���c��2��a + a� − c���a + b� − c���a� + b − c���b + b� − c�
��a���b���a����b����a + a� + b + b� − 2c�

�F	a + a� − c,a + b − c,a + a� + b + b� − 2c;1 −
�

�

 ,

Re c, Re�a + a� − c�, Re�a + b� − c�,

Re�a� + b − c�, Re�b + b� − c� � 0,

�arg ��, �arg �� � � ,

we obtain

�	1�	2� = �	 k1

k2

i�

F	1 + i�,1,2;1 −
k1

2

k2
2
 ,

where

� =
1

2
A1A2

*k1
5/2k2

1/2
��	3

2

�2

���1��2��1 + i����1 − i��

��2���	5

4
+ i

�

2

�2��	5

4
− i

�

2

�2

.

Using the formula �45�

F�a,b,c;z� =
1

b − 1 − �c − a − 1�z
��b − c�F�a,b − 1,c;z�

+ �c − 1��1 − z�F�a,b,c − 1;z�� ,

and

F�a,b,b;z� = �1 − z�−a, F�0,b,c;z� = F�a,0,c;z� = 1,

we get, finally, the following expression for the scalar prod-
uct:

�	1�	2� =
�

i�	 k1
2

k2
2 − 1
�	

k1

k2

+i�

− 	 k1

k2

−i��

=
2�

�	 k1
2

k2
2 − 1
 sin�� ln	 k1

k2

� . �14�

It is clear that 	1 and 	2 are orthogonal, if the following
condition is satisfied:

� ln	 k1

k2

 = n�, n = 0, ± 1, . . . . �15�

This condition leads to the following discrete spectrum:

En = E1 exp�−
2n�

�
�, n = 0, ± 1, . . . . �16�

It is the same result as obtained in coordinate space by
Case �24�. Thus a requirement that the state functions for
bound states, for 2m� /�2�1/4, be a mutually orthogonal

set imposes a quantization of energy. It does not uniquely fix
the levels, but it fixes the levels relative to one another. If we
fix E1, then the bound levels extend to −� and have an ac-
cumulation point at zero energy �49�.

Now we show that the energy spectrum can be obtained
by introducing a momentum space cutoff ��k with the
boundary condition 	���=0. We note that this regularization
procedure was used in Refs. �40–42�, in coordinate space.
This regularization is equivalent to replacing the potential at
short distances with an infinitely repulsive barrier.

2. Regularization by an ultraviolet cutoff

Let us go back to the wave function �7�, by writing the
boundary condition 	���=��k0. Bearing in mind that
F�a ,b ,c ;y��y11, we obtain

	�

k

−5/2−i�

exp�− i arg�A�� + 	�

k

−5/2+i�

exp�i arg�A�� = 0,

�17�

where

A �
��i��

�	5/4 +
i�

2

�	1/4 +

i�

2

 = �A�exp�i arg�A�� ,

Eq. �17� can be written as

cos�arg�A� + � ln	�

k

� = 0, �18�

which gives the following bound states:

En = −
k2

2m
= −

�2

2m
exp

2

�
�arg�A� − 	n +

1

2

�� ,

n = 0, + 1, + 2, . . . . �19�

Consequently, this regularization leads to a quantized en-
ergy spectrum, which now possesses a finite ground state for
the singular attractive 1/R2 potential.

III. QUANTUM MECHANICS WITH A GENERALIZED
UNCERTAINTY RELATION

Let us consider the following modified commutation rela-
tion between the position and momentum operators:

�X̂, P̂� = i��1 + �P̂2�, � � 0. �20�

This commutation relation leads to the generalized uncer-
tainty relation �4�
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��X���P� �
�

2
�1 + ���P�2 + ��P̂�2� , �21�

which implies a lower bound for �X or a minimal length,
given by

��X�min = ��� . �22�

The striking feature of Eq. �21� is the UV/IR mixing: when
�P is large �UV�, �X is proportional to �P and, therefore, is
also large �IR�. This phenomenon is said to be necessary to
understand the cosmological constant problem or the observ-
able implications of short distance physics on inflationary
cosmology; it has appeared in several contexts, for example,
in noncommutative field theory �46�. Another fundamental
consequence of the minimal length is the loss of localization
in coordinate space, so that momentum space is more con-
venient in order to solve any eigenvalue problem.

An explicit form for X̂ and P̂ satisfying Eq. �20� is given
by

X̂ = i���1 + �p2�
�

�p
+ �p� ,

P̂ = p , �23�

where a constant � does not affect the observable quantities;
it determines only the weight function in the definition of the
scalar product �16� as follows:

���	� = �
−�

+� dp

�1 + �p2�1−�/��*�p�	�p� . �24�

A generalization of Eq. �20� to D dimensions is
�4,5,16,46�

�X̂i, P̂j� = i���1 + �P̂2��ij + ��P̂iP̂j�, ��,��� � 0.

�25�

If we assume that

�P̂i, P̂j� = 0, �26�

then the Jacobi identity determines the commutation rela-

tions among the coordinates X̂i as

�X̂i,X̂j� = i�
2� − �� + ��2� + ���P̂2

1 + �P̂2
�P̂iX̂j − P̂jX̂i� . �27�

The generalized uncertainty relation implied by Eq. �25�
is

��Xi���Pi�

�
�

2
	1 + ��

j=1

D

���Pj�2 + �P̂j�2� + �����Pi�2 + �P̂i�2�
 .

�28�

This relation leads to a lower bound of �Xi, given by

��Xi�min = ���D� + ���, ∀ i . �29�

In the momentum representation, the following realization
satisfies the above commutation relations:

X̂i = i�	�1 + �p2�
�

�pi
+ ��pipj

�

�pj
+ �pi
 ,

P̂i = pi. �30�

As in one dimension, the arbitrary constant � does not affect
the observable quantities; its choice determines the weight
factor in the definition of the scalar product as follows:

���	� =� dDp

�1 + �� + ���p2�1−��*�p�	�p� ,

� =

� − ��	D − 1

2



� + ��
. �31�

IV. SINGULAR ATTRACTIVE 1/R2 POTENTIAL
IN QUANTUM MECHANICS

WITH A GENERALIZED
UNCERTAINTY RELATION

A. Schrödinger equation

We proceed, as in Sec. II, by writing the Schrödinger
equation, for a particle of mass m in the external potential
V�R�=−� /R2, ��0, in the form

�R2P2 − 2m���	� = 2mER2�	� . �32�

Restricting ourselves to the l=0 wave function and using Eq.
�30� with �=0, we obtain the following expression for R2

��i=1
3 XiXi:

R2 = �i��2�1 + �� + ���p2�2 d2

dp2

+ �1 + �� + ���p2��2�2� + ���p +
2

p
� d

dp
� . �33�

From Eqs. �32� and �33� the Schrödinger equation for the
−� /R2 potential in the presence of a minimal length takes the
form

d2	�p�
dp2 +

2

p
4� p2 − mE

p2 − 2mE
� −

1 + ��p2

1 + �� + ���p2�d	�p�
dp

+ 6 + �10� + 6���p2

�1 + �� + ���p2�
+

2m�/�2

�1 + �� + ���p2�2� 	�p�
�p2 − 2mE�

= 0. �34�

In the case �=��=0, this equation reduces to Eq. �2� of
ordinary quantum mechanics.

We can again transform Eq. �34� to an integral equation.
We write Eq. �32� in the form

R2��p� = 2m�	�p� , �35�

where
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��p� = �p2 − 2mE�	�p� .

Then R2 can be written as

R2 = − �2p−2�1 + �� + ���p2�2−��/��+����L̃ ,

where L̃ is the following self-adjoint operator:

L̃ =
d

dp
	K�p�

d

dp

 , �36�

with

K�p� = p2�1 + �� + ���p2��/��+���.

Equation �35� is then transformed to the following nonhomo-
geneous Sturm-Liouville equation:

�L̃ + g�p����p� = 0, �37�

where

g�p� =
2m�

�2

p2

p2 − 2mE
�1 + �� + ���p2���/��+����−2. �38�

Then ��p� is given by the integral �48�

��p� = �
0

�

G�p,p��g�p����p��dp�

+ ���0�K�0�
dG�p,p��

dp�
�

p�=0

− �����K���
dG�p,p��

dp�
�

p�=�

. �39�

G�p , p�� is the corresponding Green’s function.
In order to have a homogeneous integral equation in the

form of an eigenvalue problem

��p� = �
0

�

G�p,p��g�p����p��dp�, �40�

��p� must vanish at infinity. The wave function 	�p� is then
required to satisfy the boundary condition

p2	�p� =
p→�

0. �41�

The explicit form of G�p , p��, using the boundary condi-
tions �41�, and 	�0�=constant, is found to be

G�p,p��

= �
1

p
F	−

1

2
,

�

� + ��
,
1

2
;− �� + ���p2
 − C , p � p�,

1

p�
F	−

1

2
,

�

� + ��
,
1

2
;− �� + ���p�2
 − C , p � p�,�

where C is the constant

C =

�� + ���1/2�	1

2

�	1

2
+

�

� + ��



��1��	 �

� + ��

 . �42�

Finally, the integral equation satisfied by the wave func-
tion 	�p� is

�p2 − 2mE�	�p� =
2m�

�2 �
0

�

p�2�1 + �� + ���p�2���/��+����−2

�G�p,p��	�p��dp�. �43�

In the limit �=��=0, Eq. �43� reduces to Eq. �12� of ordi-
nary quantum mechanics.

Let us return now to the differential equation �34�; by
introducing the dimensionless variable z, defined as

z =
�� + ���p2 − 1

�� + ���p2 + 1
, �44�

which varies from −1 to +1, and using the following nota-
tions:

�1 = � + ��, �2 = � + 2��, �3 = 2� + 3��,

�4 =
�

� + ��
, � = − m�� + ���E, � =

m�

2�2 , �45�

we obtain the differential equation

�1 − z2�
d2	

dz2 + �8
�1 + �� + �1 − ��z

�1 + 2�� + �1 − 2��z
−

1

�1
��2z + �3��d	

dz

+ ��z2 + 2��4 − ��z + �6 + 2�4 + ��
�− 1 + 2��z2 − 4�z + �1 + 2�� �	 = 0. �46�

To rewrite this equation in the form of a known differen-
tial equation, we make the following transformation:

	�z� = �1 − z���1 + z���f�z� , �47�

where � and �� are arbitrary constants. Then, the equation
for f�z� is

d2f

dz2 +  − 2�

�1 − z�
+

2��

�1 + z�
+

8��1 + �� + �1 − ��z�
�1 − z2���1 + 2�� + �1 − 2��z�

−
��2z + �3�
�1�1 − z2� �df

dz
+ ��� − 1�

�1 − z�2 +
����� − 1�

�1 + z�2

−
8���1 + �� + �1 − ��z�

�1 − z2��1 − z���1 + 2�� + �1 − 2��z�

+
8����1 + �� + �1 − ��z�

�1 − z2��1 + z���1 + 2�� + �1 − 2��z�

+ �
��2z + �3�

�1�1 − z�2�1 + z�
− ��

��2z + �3�
�1�1 − z��1 + z�2

+
�z2 + 2��4 − ��z + �6 + 2�4 + ��

�1 − z2���− 1 + 2��z2 − 4�z + �1 + 2���
−

2���

�1 − z2�� f

= 0. �48�

This equation constitutes our starting point for studying
the attractive 1/R2 potential in quantum mechanics with a
minimal length. We shall be interested in the singularity
structure of this equation and the effect of the finite length.
For this purpose, let us begin with the case E=0.
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B. Zero energy solution

The simplicity of the zero energy Schrödinger equation
allows us to investigate whether the “deformed” version of
the −� /R2 potential in momentum space from Eq. �48� re-
mains singular.

Let us rewrite Eq. �48�, in the case �=0 in the following
form:

�1 − z2�
d2f

dz2 + ��− 2� + 2�� + 5 + �4�

− �2� + 2�� + 2 − �4�z�
df

dz

+
1

�1 − z2�
��1 + z����� − 1��1 + z� − 2����1 − z�

− ��5 + �4� + ��2 − �4�z + 2�4�

+ �1 − z������� − 1��1 − z� + ���5 + �4�

− ���2 − �4�z + ��1 − z�� + 6�f = 0. �49�

We choose � and �� by requiring that the coefficient of
f�z� in Eq. �49� vanishes for z= ±1; this leads to the two
equations for � and �� as follows:

�2 − 	5

2
+ �4
� +

3

2
+ �4 = 0,

��2 +
5

2
�� + � +

3

2
= 0. �50�

The values of � and �� satisfying this system are

� = 1, 	3

2
+ �4
 ,

�� = 	−
5

4
− i

�

2

, 	−

5

4
+ i

�

2

 ,

where �=�4�−1/4. We note that there are four possible
choices concerning �� ,��� leading to the same solution of
the Schrödinger equation. We select the set �1,− 5

4 − i �
2

�; so
the transformation �47� becomes

	�z� = �1 − z��1 + z��−�5/4�−i��/2��f�z� . �51�

By substituting � and �� with their values in Eq. �49�, we
obtain

�1 − z2�
d2f

dz2 + 	1

2
+ �4 − i�
 − 	3

2
− �4 − i�
z�df

dz

+ 	1

8
−

�4

4

 + i�	1

4
−

�4

2

� f = 0. �52�

This equation is a second-order differential equation with
three �regular� singular points z=1,−1,�. Consequently, it
may be written in a canonical form of a hypergeometric
equation, merely by transforming the singular points to z
=0,1 ,�. We can do this by means of the simple following
change of variable:

� =
z + 1

2
. �53�

Thus, Eq. �52� becomes

��1 − ��f���� + �c − �a + b + 1���f���� − abf��� = 0,

�54�

with the parameters

a =
1

4
−

�4

2
−

�

2
− i

�

2
,

b =
1

4
−

�4

2
+

�

2
− i

�

2
,

c = 1 − i�, � = �4� − 1/4,

� = ���4 − 1�2 − 4�, � = m�/2�2. �55�

Equation �54� is a hypergeometric equation which has, in
the neighborhood of �=0, the following two solutions �45�:

f1��� = F�a,b,c;�� , �56�

f2��� = �1−cF�a − c + 1,b − c + 1,2 − c;�� , �57�

where F�a ,b ,c ;��� 2F1�a ,b ,c ;�� is the hypergeometric
function.

Finally, from Eq. �51�, we obtain two solutions 	1��� and
	2���, each solution being the complex conjugate of the
other. Thus, the general solution is

	��� = �1 − ���−5/4�A�−i��/2�F�a,b,c;��

+ B�i��/2�F�a − c + 1,b − c + 1,2 − c;��� . �58�

In the particular case where �4=1/2 ��=���, we have
�= i� and b=0. As F�a ,0 ,c ;��=1, the wave function 	���
simplifies to

	�=����� = �1 − ���−5/4�A�−i��/2� + B�+i��/2�� . �59�

In the limit � ,��1, one has ���1p21, so that 1−�
�1 and F�a ,b ,c ;���1. Consequently, Eq. �58� becomes

	�p� �
�11

p−5/2�Ap−i� + Bp+i�� . �60�

This is exactly the zero energy solution of ordinary quantum
mechanics, which has the same form as the solution in the
limit p→� �see Eq. �8��.

Solutions �58� have the same behavior near �=0. This is
not so, however, for p→� ��→1�. Using �45�

f1��� = F�a,b,a + b + 1 − c;1 − �� , �61�

f2��� = �1 − ��c−a−bF�c − b,c − a,c − a − b + 1;1 − �� ,

�62�

we find in the limit �→1, f1����1 and f2�����1−��c−a−b.
On the other hand, �1−��� p−2, so by replacing f1��� and
f2��� in Eq. �51�, we obtain the following behavior of the two
solutions:
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	1�p� �
p→�

p−2, �63�

	2�p� �
p→�

p−3−2�4. �64�

These two solutions can be found by considering the
Schrödinger equation �34� in the limit p→� and seeking a
solution in the form ps.

This behavior is completely different from that of ordi-
nary quantum mechanics: both solutions are independent
of the coupling constant; moreover, the solution with
asymptotic behavior �63� does not depend on the deforma-
tion parameters and falls off more slowly than 	2. This im-
plies that 	1 does not satisfy the boundary condition �41�,
imposed by the integral equation, and so must be rejected.
We conclude that the physical wave function is 	2 with be-
havior at infinity given by

p2	�p� �
p→�

p−1−2�4. �65�

The main conclusion, which we draw from this section, is
that the singular attractive 1/R2 potential is regularized by
this minimal length, so that the boundary condition �65� will
suffice to extract the energy spectrum, as will be shown in
Sec. IV D.

C. Full solution

By the same technique as in the case E=0, Eq. �48� can
be rewritten in a form of a known differential equation by
choosing conveniently the parameters � and �� of transfor-
mation �47�. Taking �=1 and ��=0, Eq. �47� reads

	�z� = �1 − z�f�z� , �66�

and Eq. �48� becomes after some calculations

d2f�z�
dz2 + � 2

�z − 1�
+

8��1 + �� + �1 − ��z�
�2� − 1��z2 − 1��z − z0�

+
��2z + �3�
�1�z2 − 1� �df�z�

dz

+ �	2 − �4 +
�

1 − 2�

z − 	1 + �4 +

�

1 − 2�



�z + 1��z − 1��z − z0�
� f�z� = 0,

�67�

with the notations defined by Eq. �45�, and

z0 =
2� + 1

2� − 1
.

Equation �67� is a linear homogeneous second-order dif-
ferential equation with four singularities z=−1,1 ,z0 ,�, all
regular. So, Eq. �67� belongs to the class of Fuchsian equa-
tions, and can be transformed into the canonical form of
Heun’s equation, having regular singularities at z
=0,1 ,�0 ,� �50,51�. The simple change of variable

� =
z + 1

2

leads to the following canonical form of Heun’s equation:

d2f���
d�2 + 	 c

�
+

e

� − 1
+

d

� − �0

df���

d�
+ 	 ab� + q

��� − 1��� − �0�
 f���

= 0, �68�

with the parameters

a =
1

2
�3 − �4 − �̃�, �̃ = ���4 − 1�2 −

4�

1 − 2�
�1/2

,

b =
1

2
�3 − �4 + �̃�, �0 =

2�

2� − 1
,

c =
3

2
, d = 2, e =

1

2
− �4,

q = − 	3

2
+

�

1 − 2�

 , �69�

which are linked by the Fuchsian condition

a + b + 1 = c + d + e . �70�

In the neighborhood of �=0, the two linearly independent
solutions of Eq. �68� are �51�

f1��� = H��0,q,a,b,c,d;�� , �71�

f2��� = �1−cH��0,q�,1 + a − c,1 + b − c,2 − c,d;�� , �72�

where

q� = q − �1 − c��d + �0�1 + a + b − c − d�� .

H��0 ,q ,a ,b ,c ,d ;�� is the Heun function defined by the se-
ries

H��0,q,a,b,c,d;�� = 1 −
q

c�0
� + �

n=2

�

Cn�n, �73�

where the coefficients Cn are determined by the difference
equation

�n + 2��n + 1 + c��0Cn+2

= ��n + 1�2��0 + 1�

+ �n + 1��c + d − 1 + �a + b − d��0� − q�Cn+1

− �n + a��n + b�Cn, �74�

with the initial conditions

C0 = 1, C1 =
− q

c�0
, and Cn = 0, if n � 0.

Now, we can write the full solution of the deformed
Schrödinger equation �46�. Thus, by using Eq. �66� the solu-
tion 	���, which is regular �finite� in the neighborhood of �
=0, is given by
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	��� = A�1 − ��H��0,q,a,b,c,d;�� , �75�

where A is a normalization constant.
We show in the Appendix that in the limit � ,��1, we

recover the result of ordinary quantum mechanics, given by
Eq. �5�; in the limit E→0, the zero energy solution �58� is
obtained, and finally, as was expected, Eq. �75� has the same
behavior as Eq. �58� in the limit p→�.

D. Eigenvalue problem

We now study in more detail the solution to Eq. �68�, to
show how the introduction of a minimal length regularizes
the singular attractive 1/R2 potential. For this purpose, we
begin by the special case �=��.

1. Special case �=��

In this case, the Heun equation �68� is reduced to a hy-
pergeometric equation. Indeed, we have �4= 1

2 , and hence

e = 0,

ab = − q =
3

2
+

�

1 − 2�
,

and the Fuchsian condition �70� becomes

a + b + 1 = c + d .

Using the change of variable

x =
�

�0
,

Eq. �68� takes the form of a hypergeometric differential
equation �45�

x�1 − x�f��x� + �c − �a + b + 1�x�f��x� − abf�x� = 0,

�76�

with the parameters

a =
5

4
−

�̃

2
,

b =
5

4
+

�̃

2
,

c =
3

2
, �̃ = �1

4
−

4�

1 − 2�
�1/2

. �77�

The solution to the Schrödinger equation, which is finite in
the vicinity of �=0, is

	�=����� = A�1 − ��F�a,b,c;�/�0� . �78�

2. Energy spectrum

To compute the energy spectrum, we merely require that
the wave function �78� satisfies the boundary condition �41�.
Since

1 − � =
1

1 + 2�p2 �
p→�

p−2,

�

�0
=

2� − 1

2�

�1p2

1 + �1p2 �
p→�

2� − 1

2�
,

the wave function �78� behaves like

	�=�� �
p→�

p−2F	a,b,c;
2� − 1

2�

 .

From the boundary condition p2	→p→�0, we then obtain the
following condition:

F	a,b,c;
2� − 1

2�

 = 0. �79�

This equation constitutes the quantization condition; the ei-
genvalues � are the zeros of the hypergeometric function.

Let us now consider the limit ��−2m�E1, i.e.,

�2� − 1

2�
� �

1

2�
� 1.

By means of the transformation �6�, and by taking into ac-
count that F�a ,b ,c ;−2����11, Eq. �79� can be written in
the following form:

�5/4exp�i	arg�A� −
�

2
ln�2��
�

+ exp�− i	arg�A� −
�

2
ln�2��
�� = 0, �80�

where we have used the notations

A =
��i��

�	5

4
+ i

�

2

�	1

4
+ i

�

2

 = �A�exp�i arg�A�� ,

� = �4� − 1/4.

From Eq. �80�, we have

cos�arg�A� −
�

2
ln�2��� = 0, �81�

which gives the following expression of the energy spec-
trum:

En =
− 1

4m�
exp2

�
�arg�A� − 	n +

1

2

��� , �82�

as one has

�En� 
1

4m�
, n = 0,1,2, . . . .

We recall that the deformation parameter � is related to the
minimal length via Eq. �29�, hence ��r�min=2���.

The energy spectrum �82� is identical to the one obtained
by a cutoff regularization �see Eq. �19��. The parameter �
+��=2� is simply the inverse square of the ultraviolet cutoff
�.
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Equation �82� is accompanied by the condition �En�
1/4m�, which excludes systematically the undesirable
values of the number n, so there is now a ground state with
finite energy. In the case of a weakly attractive potential
�4��1/4�, Eq. �80� has no solution.

These results are confirmed by the examination of the
exact eigenvalue equation �79�. We have plotted the hyper-
geometric function in Eq. �79� as a function of �=−2m�E
for fixed �=m� /2�2. The energy eigenvalues are the zeros
of the function; Figs. 1 and 2 show that the energy of the
ground state ��1� is finite; for �=3/4, �1�0.07 and for �
=2, �1�0.37. As in ordinary quantum mechanics, there are
many, almost identical, excited states with ��0 �accumula-
tion point�. The energy levels increase as we increase the
coupling constant. In Fig. 2, we can see the energy of the
first excited state. Figure 3 shows that there are no bound
states for �=1/20; we find that a critical coupling constant
�*, below which there are no bound states, has the same
value as in ordinary quantum mechanics, i.e., �*=1/16.

An interesting feature of the expression of the energy �82�
is that it is inversely proportional to the deformation param-
eter �; thus if � is a very small parameter the energy of the
ground state is very large. Consequently, in the case of the
inverse square potential, the minimal length could be viewed
as an intrinsic dimension of a system, as argued by Kempf
�see, for instance, �5��. However, if this minimal length is
obtained from calculations connected with the harmonic os-
cillator and the hydrogen atom, as in �12,16�, namely,
�0.1 fm, the energy of the ground state would be so large,
and thus it would not be in the energy scale where nonrela-
tivistic quantum mechanics is valid.

3. Generalization to the case �Å��

Let us return to the general solution �75�

	��� = A�1 − ��H��0,q,a,b,c,d;�� .

It can be written in the form �51�

	��� = A�1 − ��H	 1

�0
,

q

�0
,a,b,c,e;

�

�0

 . �83�

As in the case �=�� we impose the boundary condition
�41�, and obtain the following quantization condition:

H	2� − 1

2�
,
2� − 1

2�
q,a,b,c,e;

2� − 1

2�

 = 0. �84�

In the case where �1, we set

� =
2� − 1

2�
�

− 1

2�
→ �

by means of the following transformation �51�:

H��,�q,a,b,c,e;�� =
�→�

F�� + ��2 + q,� − ��2 + q,c;�� ,

c � 0,− 1,− 2, . . . , �85�

where

� =
a + b − e

2
.

Equation �84� reads

F	5

4
− i

�

2
,
5

4
+ i

�

2
,
3

2
;
− 1

2�

 =

�=−��+���mE1

0. �86�

Obviously, we get the same expression of the energy spec-
trum as in the case �=��. It is sufficient to replace in Eq.
�82� 2� by �+��.

V. SUMMARY AND CONCLUSION

We have solved exactly the problem of the singular in-
verse square potential in the framework of quantum mechan-
ics with a generalized uncertainty relation implying the
existence of a minimal length. In the momentum representa-
tion, the wave function is a Heun function, which reduces to
a hypergeometric function for E=0 and for �=��. The po-
tential is regularized in a natural way by this minimal length,
so that the energy spectrum is bounded from below. The
results of ordinary quantum mechanics with a regularizing
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FIG. 1. h�F�a ,b ,c ; 2�−1
2�

� as a function of �, for �=3/4. All
quantities a ,b ,c ,� ,� are dimensionless.
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FIG. 2. h�F�a ,b ,c ; 2�−1
2�

� as a function of �, for �=2. All
quantities a ,b ,c ,� ,� are dimensionless.
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FIG. 3. h�F�a ,b ,c ; 2�−1
2�

� as a function of �, for �=1/20. All
quantities a ,b ,c ,� ,� are dimensionless.
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cutoff ��� are recovered in the limit � ,��1; the parameter
�+�� plays the role of the inverse square of �.

In conclusion, this study shows that the idea of the intro-
duction of a minimal length, first proposed in high energy
physics, could also apply to nonrelativistic quantum mechan-
ics. In the new formalism based on the deformed Heisenberg
algebra, the treatment of the singular 1 /R2 potential is simi-
lar to that of regular potentials: we do not need to introduce
any arbitrary parameters because � and �� are physical pa-
rameters of the formalism, and describe the short distance
behavior of the interaction. The formalism includes a natural
“cutoff” and modifies the potential at short distances, so that
the energy spectrum is computed without imposing any extra
condition. The latter result leads us to conclude with Kempf
�4,5� that this elementary length should rather be viewed as
an intrinsic dimension of a system, at least for the problem
considered here.
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APPENDIX A: LIMIT � ,��™1

We write the wave function in the form given by Eq. �83�,

	��� = A�1 − ��H	 1

�0
,

q

�0
,a,b,c,e;

�

�0

 . �A1�

In the limit � ,��1, we have

� =
�1p2

1 + �1p2 � �1p2, where �1 = �� + ��� ,

�0 =
2�

2� − 1
� − 2�, where � = − m�1E ,

�

�0
�

p2

2mE
and 1 − � � 1,

hence

	�y� �
�,��1

H��,�q̃, ã, b̃,c,e;y� , �A2�

where we have used the notations �= 1
2m�1E , y= p2

2mE and

ã , b̃ , q̃ are the limits of the parameters a ,b ,q when � ,��
1.

By means of the transformation �85�, Heun’s function is
transformed to a hypergeometric function, given by

H��,�q̃, ã, b̃,c,e;y� =
�→�

F�� + ��2 + q̃,� − ��2 + q̃,c;y� ,

c � 0,− 1,− 2, . . . , �A3�

where

� =
ã + b̃ − e

2
.

After a direct calculation we get

	�p� �
�,��1

F	5

4
+ i

�

2
,
5

4
− i

�

2
,
3

2
;

p2

2mE

 .

It is exactly the wave function in momentum representa-
tion for the attractive −� /R2 potential in ordinary quantum
mechanics �see Eq. �5��.

APPENDIX B: LIMIT p\�

To examine the behavior of 	���, when p→� ��→1�, we
use the well-known relation �51,52�

H��0,q,a,b,c,d;�� = C1H�1 − �0,− q − ab,a,b,e,d;1 − ��

+ C2�1 − ��1−eH�1 − �0,q2,c + d − a,

c + d − b,2 − e,d;1 − �� , �B1�

where

C1 = H��0,q,a,b,c,d;1� ,

C2 = H��0,q − �0c�1 − e�,c + d − a,c + d − b,c,d;1� ,

q2 = − q − ab − �1 − e��d + c�1 − �0�� .

By adopting the Heun normalization H��0 ,q ,a ,b ,c ,d ;0�
=1, the wave function �75�, in the limit p→�, behaves as
follows:

	��� �
�→1

C1�1 − �� + C2�1 − ��2−e,

and since

1 − � �
p→�

p−2, 2 − e =
3

2
+ �4,

then, the asymptotic behavior of 	�p� in this region is

	�p� �
p→�

C1p−2 + C2p−�3+2�4�. �B2�

This behavior is identical to that of the zero energy solu-
tion �see Eqs. �63� and �64�� because Schrödinger equations
do not depend on the energy in the limit p→�.

APPENDIX C: LIMIT E\0

We show, here, that the zero energy solution �58� can be
obtained from the full solution �75� in the limit E→0. For
this purpose, let us return to the transformation �B1�. By
taking into account that �0→0 and �→0 when E→0, the
wave function �75� can be written as
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	��� =
E→0

A�1 − ���C1H�1,q1,a1,b1,c1,d1;1 − ��

+ C2�1 − ���1/2�+�4H�1,q2,a2,b2,c2,d2;1 − ��� ,

�C1�

with the parameters

q1 = −
1

2
+ �4, q2 = −

9

4
+

5�4

2
,

a1 =
1

2
�3 − �4 − �̃0�, a2 = 2 +

�4

2
+

�̃0

2
,

b1 =
1

2
�3 − �4 + �̃0�, b2 = 2 +

�4

2
−

�̃0

2
,

c1 =
1

2
− �4, c2 =

3

2
+ �4,

d1 = 2, d2 = 2,

where

�̃0 � �̃�� = 0� = ���4 − 1�2 − 4� .

We use once again another transformation of the Heun
functions �51�,

H�1,q,a,b,c,d;��

= �1 − ����c−a−b�/2�+�F	 c + a − b

2
+ �,

c − a + b

2
+ �,c;�
 ,

where

� = ±�	 c − a − b

2

2

− ab − q, if c � 0,− 1,− 2, . . . .

For the two Heun’s functions in Eq. �C1�, a direct calculation
gives the following result:

�1 = �2 = ±� 1

16
− � = ± i

�

2
.

By choosing, for convenience, the sign ���, the wave func-
tion �C1� reads as follows:

	��� =
E→0

A�1 − ���−�5/4�−i��/2��C1F�ã1, b̃1, c̃1;1 − ��

+ C2�1 − ���1/2�+�4F�ã2, b̃2, c̃2;1 − ��� , �C2�

with the following parameters:

ã1 =
1

4
−

�4

2
−

�

2
− i

�

2
, ã2 =

3

4
+

�4

2
+

�

2
− i

�

2
,

b̃1 =
1

4
−

�4

2
+

�

2
− i

�

2
, b̃2 =

3

4
+

�4

2
−

�

2
− i

�

2
,

c̃1 =
1

2
− �4, c̃2 =

3

2
+ �4,

where

� = ���4 − 1�2 − 4�, � = m�/2�2.

It is easily seen that the expression between brackets in Eq.
�C2� is exactly a linear combination of the two solutions �61�
and �62�, in the vicinity of �=1, of the hypergeometric equa-
tion �54�, with the parameters a ,b ,c, given by �45�

a = ã1,

b = b̃1,

c = 1 − i� .

Obviously, in the neighborhood of �=0, we have the solution
�58�.
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