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Quantum properties of the probes used to estimate a classical parameter can be used to attain accuracies that
beat the standard quantum limit. When qubits are used to construct a quantum probe, it is known that initial-
izing n qubits in an entangled state, rather than in a separable state, can improve the measurement uncertainty
by a factor of 1 /�n. We investigate how the measurement uncertainty is affected when the individual qubits in
a probe are subjected to decoherence. In the face of such decoherence, we regard the rate R at which qubits can
be generated and the total duration � of a measurement as fixed resources, and we determine the optimal use
of entanglement among the qubits and the resulting optimal measurement uncertainty as functions of R and �.
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I. INTRODUCTION

This paper considers the question of quantum limits on
estimating the value of a parameter that influences the state
of a physical system �1–9�. We call this system, which is
intrinsically quantum mechanical, a “probe” because it is
used to probe the value of the parameter. The accuracy with
which the parameter can be estimated is determined by the
initial quantum state of the probe, the type of interaction by
which the parameter influences the state of the probe, and the
readout measurement that is used to extract information from
the probe.

In this paper the probe is always a collection of n qubits.
We assume that there is sufficient control over the probe
qubits to initialize the probe in any separable or entangled
pure state. We let g denote the parameter we are estimating.
The effect of g on the jth probe qubit is described by the
Hamiltonian

Hj�g� =
1

2
g�z;j . �1.1�

Here �z;j denotes the Pauli z operator for the jth qubit; simi-
larly, �x;j and �y;j denote the other two Pauli operators. The
parameter g, which has units of frequency �we choose �=1�,
is a coupling strength. The Hamiltonian �1.1� generates a
rotation about the z axis of the qubit’s Bloch sphere. The
overall influence of the parameter on the probe is given by
the Hamiltonian

H = �
j=1

n

Hj�g� =
1

2
g�

j=1

n

�z;j . �1.2�

The value of g is to be deduced from the change in the state
of the probe. For simplicity, we assume that the probe qubits
do not have any free Hamiltonian evolution.

Giovannetti, Lloyd, and Maccone �9� have analyzed a
general scheme of this type. Their theoretical framework in-
volves estimating a dimensionless parameter �, introduced
on the probe through a unitary transformation U=e−ih�, with
h=� j=1

n hj. They do not identify h as a Hamiltonian; rather it
is treated as an arbitrary operator that is the generator of
translations in the variable �. The connection between our

scheme and theirs is established by identifying h=H /g, �hj

=Hj /g�, and �=gT, where T is the time for which the Hamil-
tonian �1.2� acts on the probe.

The chief objective of our analysis, following Ref. �10�, is
to expand the discussion in Ref. �9� by investigating how
decoherence impacts the accuracy with which the parameter
can be determined. Thus we assume that in addition to the
Hamiltonians Hj�g�, the probe qubits are subject to other
influences that can lead to decoherence. For the decoherence
models we consider, the effects of decoherence manifest
themselves at a readily identifiable rate, which we denote as
�. To make the analysis meaningful, we must impose addi-
tional constraints on the probes, since we can always make
decoherence irrelevant by estimating g using a procedure
that is completed in a time much shorter than the time �−1

over which decoherence has a significant effect. Thus we
assume that qubits are made available and initialized into
probes at a rate R. What we have in mind is that each probe
is assembled in a time n /R and is then sent immediately
through a quantum channel, where it is subjected to the
Hamiltonian �1.2� for a time T. If we use � probes to estimate
g, so that the total number of qubits is

N = �n , �1.3�

the total time required is

� = �n/R + T �1.4�

provided that the quantum channel can accommodate more
than one probe at a time. In our analysis, we assume that the
parameter must be determined in the fixed time � ��−1 can be
thought of roughly as the bandwidth over which a time-
varying g is estimated�, that the qubit supply rate R is a fixed
resource, and that the decoherence rate � is a constant. We
vary the interaction time T and the number of qubits in each
probe n=R��−T� /� to achieve the best accuracy in determin-
ing g.

A measurement scheme of the sort discussed here appears
in slightly modified forms in several problems of practical
importance, such as clock synchronization �11–16�,
reference-frame alignment �17,18�, phase estimation
�19–21�, frequency measurements �10,22,23�, and position
measurements �24,25�. The effect of decoherence on some of

PHYSICAL REVIEW A 76, 032111 �2007�

1050-2947/2007/76�3�/032111�13� ©2007 The American Physical Society032111-1

http://dx.doi.org/10.1103/PhysRevA.76.032111


these phase estimation and frequency measurement schemes
has been previously investigated �10,26�. Here we present a
general analysis of the effect of decoherence on qubit me-
trology.

The accuracy with which g can be estimated is closely
connected to the distinguishability of neighboring states of
the quantum probe. This connection is quantified by the gen-
eralized uncertainty relations formulated by Braunstein,
Caves, and Milburn �6�. As in Ref. �9�, we use these gener-
alized uncertainty relations to describe the optimal accuracy
of parameter estimation.

In Sec. II, we review the formalism of generalized uncer-
tainty relations in the forms suitable for our analysis and
discuss briefly aspects of the assumptions we make about
resources and time scales in our measurement protocol. Sec-
tion III reviews the accuracy that can be achieved in the
absence of decoherence and Sec. IV investigates how the
achievable accuracies are affected by a general qubit deco-
herence process. The final section provides a short discussion
of our results.

II. GENERALIZED UNCERTAINTY RELATIONS

As a consequence of spending a time T in the quantum
channel, the quantum state of the probe changes from an
initial state �0 to a final state

��g,T� = e−iHTAT��0�eiHT = e−ihgTAT��0�eihgT, �2.1�

where AT is the superoperator that describes the cumulative
effect of decoherence in the channel. The final state can al-
ways be written in the form �2.1�, by going to an interaction
picture relative to the Hamiltonian �1.2�, but in doing so, the
decoherence superoperator AT generally becomes dependent
on g. In our analysis, however, we assume all decoherence
processes to be invariant under rotations about the z axis �we
also assume that the decoherence is independent and identi-
cal from one qubit to the next�, which implies that AT is
independent of g and also means that AT commutes with
e−ihgT, i.e., ��g ,T�=AT�e−ihgT�0eihgT�. The final state contains
the information about the value of g. The accuracy with
which we can distinguish the state ��g ,T� from neighboring
states on the one-parameter path parametrized by g controls
the accuracy in the estimate of g.

From the results of measurements on a set of � probes, we
obtain an estimate gest for the value of g. We can quantify the
statistical deviation of the estimate from the true value of g
by the units-corrected deviation from the actual value

	g ��	 gest


d�gest�g/dg

− g2�1/2

�2.2�

introduced in Refs. �3,6�. A lower bound on 	g is given by
the generalized uncertainty relation �1–6�

	g 

1

���ds/dg�
, �2.3�

where ds is the “statistical distance” between neighboring
quantum states along the trajectory parametrized by g. The
statistical distance is given in terms of the change

d� =
d��g,T�

dg
dg � ��dg �2.4�

in �=��g ,T� due to a small change dg in the value of g:

	 ds

dg
2

= tr���L������ . �2.5�

In the basis �
��� that diagonalizes ��g ,T�=��p�
����
, the
superoperator L� takes the form

L��O� = �
�
�,�
p�+p��0�

2

p� + p�

O��
����
 . �2.6�

The operator L����� is called the “symmetric logarithmic
derivative” �2� because

�� =
1

2
��L����� + L������� . �2.7�

The quantity �ds /dg�2=tr���L������ is often called the
“quantum Fisher information” �2�.

The generalized uncertainty relations are derived using a
quantum version of the Cramer-Rao bound �3,6,27�. Gener-
ally, this bound can be achieved only in the case of an opti-
mal measurement on each probe and, even then, only asymp-
totically for a large number � of probes, as emphasized by
Braunstein �28�. In our analysis, we explicitly exhibit an op-
timal measurement, and we let �min denote the number of
probes required to approach the bound within some fixed
fractional error.

Consider now the continuous path in the space of states of
the probe parametrized by g. Nearby points on this path are
related by the derivative

�� = − iT�h,�� = − iT�ĥ,�� = iT�
�,�

�p� − p��ĥ��
����
 ,

�2.8�

where here and throughout a hat denotes the difference be-

tween a quantity and its mean value, i.e., ĥ=h− �h�. Plugged
into Eq. �2.6�, this gives

L����� = 2iT�
�,�

p� − p�

p� + p�

ĥ��
����
 �2.9�

and

	 ds

dg
2

= 4T22 � 4T2�h�2, �2.10�

where

2 �
1

2�
�,�

�p� − p��2

p� + p�


ĥ��
2 �2.11�

and

�h�2 � �ĥ2� =
1

2�
�,�

�p� + p��
ĥ��
2 �2.12�

is the variance of h with respect to ��g ,T�. Notice that in
Eqs. �2.9� and �2.11�, we can remove the hat from h without
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changing anything, whereas in the variance �2.12�, we cannot
do so. From Eqs. �2.3� and �2.10�, we obtain

	g 

1

��2T



1
��2Th

. �2.13�

These are the generalized uncertainty relations in the forms
we will use. Notice that when ��g ,T� is a pure state, we have
=h, and thus equality holds in Eq. �2.10� and in the sec-
ond inequality in Eq. �2.13�. Notice also that in the absence
of decoherence �i.e., when AT is the unit superoperator�, a
pure initial state stays pure, and h is independent of T.

The second �weaker� inequality in Eq. �2.13� is generally
easier to work with than the first �stronger� inequality, be-
cause computing the uncertainty h is usually easier than
computing the corresponding term in the first inequality. In
the case of an initial pure state in the absence of decoher-
ence, the two inequalities are equivalent. In this case, to
minimize the uncertainty in g, we should initialize the probe
in a state in which h is maximal. We show in Sec. IV that
when there is decoherence in the probe qubits, which
changes an initial pure state to a mixed state, the weaker
inequality is not very useful, and we are forced to work with
the stronger inequality.

For non-Gaussian statistics, the quantum Cramer-Rao
bound is saturated only in the limit �→�, i.e., when the
measurement process involving an n-qubit probe is repeated
many times. We let �min denote the minimum number of
iterations that are required for the measurement accuracy to
approach the quantum Cramer-Rao bound within some fixed
fractional error. For the qubit protocols we analyze, �min is
essentially independent of protocol, as we discuss further
below when we consider measurements that achieve the
bound �2.13�; a typical value might be, say, 50. The need to
do at least �min iterations places a constraint, �
�min. To-
gether with the constraint that each probe must contain at
least one qubit, this gives us the following constraints on n:

1 � n = N/� � N/�min. �2.14�

For these constraints to be consistent, it must be true that

R�� − T� = N 
 �min. �2.15�

As we discussed in the Introduction, we assume in our analy-
sis that the parameter must be determined in a fixed time �
=�n /R+T and that the qubit supply rate R is a fixed re-
source. For a particular kind of decoherence, we vary the
interaction time T and the number of qubits in each probe
n=R��−T� /� to achieve the best accuracy in determining g.

A different sort of resource that is dependent on the way
the probe is initialized is the magnitude of . If we assume
that the energy spread for each of the qubits is fixed, then a
way of getting a large value for  is to initialize the n qubits
in each probe in an appropriate entangled state. In a sense, 
is itself a measure of the entanglement or quantum coherence
available for improving the ability to determine g.

III. MEASUREMENT ACCURACY IN THE ABSENCE
OF DECOHERENCE

In this section we review the limits on the accuracy of
estimating g in the case where there is no decoherence. From
the generalized uncertainty relation, we see that the initial
state of the probe has a direct bearing on the optimal accu-
racy. We look at two very different initial pure states of the
probe. In the first case the n probe qubits are initialized in a
product state, and in the second case they are in a collective
entangled state. For both cases we compute the limit on the
precision with which g can be estimated. Since there is no
decoherence, the probe state remains pure, and the two in-
equalities in Eq. �2.13� are equivalent, because =h. Thus
in this section we only need to consider h. This section also
serves to establish our notation and to summarize the results
in Ref. �9�.

A. Initial pure product state

If the probe is initialized in a pure product state �p of the
n qubits, we have

dsp

dg
=��

j=1

n 	dsj

dg
2

�3.1�

as shown in Appendix A �see also Ref. �6��. Here and in the
following, the subscript p stands for “product state.” The line
element dsp is in the space of n-qubit density operators,
while dsj are line elements in the space of states of each the
n probe qubits. From Eq. �2.13� we see that the best choice
of initial probe state is one that maximizes

 = h =��
j=1

n

�hj�2, �3.2�

where �hj�2 is the variance of hj for the jth qubit. Thus we
have to maximize hj for each of the n qubits, and we do so
by initializing each of the n qubits in a pure state lying in the
equatorial plane of the Bloch sphere of states for each qubit.
Here we choose initial state


� j� =
1
�2

�
0 j� + 
1 j�� or � j =
1

2
�1 j + �x;j� . �3.3�

The vectors 
0 j� and 
1 j� denote the eigenstates of �z;j for the
jth qubit. The initial state of the probe is

�p = �
j=1

n

� j =
1

2n �
j=1

n

�1 j + �x;j� . �3.4�

The effect of the coupling to the parameter is to rotate the
Bloch vector of each of the qubits around the �z axis. At time
T, after passage through the channel, the state of each qubit
has rotated through an angle gT, giving a probe state

�p�g,T� = �
j=1

n

� j�g,T� =
1

2n �
j=1

n

�1 j + �x;j cos gT + �y;j sin gT� .

�3.5�

We use the evolved state �3.5� in our discussion of achieving
the optimal measurement accuracy in Sec. III C. For the
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present, however, since the variance of hj is unchanged by
the evolution, we can evaluate it using the initial state �3.3�.
This gives a variance �hj�2=1/4 for each qubit and thus

�h�2 = n�hj�2 =
n

4
. �3.6�

The generalized-uncertainty bound on the estimate of g be-
comes

	g 
 	gp =
1

T��n
=

1

T�N
=

1

T�R�� − T�
, �3.7�

where N is the total number of qubits used in the measure-
ment scheme and 	gp is the bound for pure product inputs.

Since the bound depends only on N, and not separately on
n and �, we can always choose n=1 without affecting the
optimal measurement accuracy. This, of course, is the state-
ment that for product-state inputs, the measurement accuracy
is indifferent to whether we regard the qubits as gathered
together into multiqubit probes. To find the optimal bound,
all that is left is to adjust the interaction time T to minimize
	gp. Doing so gives

T =
2

3
� �3.8�

and thus

N = � =
1

3
R� . �3.9�

That there be enough probes to satisfy �
�min requires that
1
3R�
�min. When 1

3R���min, the measurement bound is op-
timized by the choices n=1 and �=�min. This gives an inter-
action time T=�−�min/R that decreases with � until R�
=�min, at which point it is impossible to obtain and use �min
probes within the overall duration �. This interaction time
occurs in every situation we consider, when the measurement
protocol is starved of qubits, so we abbreviate it as

Ts � � − �min/R . �3.10�

The optimal bound on measurement accuracy thus takes
the form

	gp =�
1

Ts
��min

, 1 � R� � 3�min,

3�3/2

��R�
, 3�min � R� . � �3.11�

In our resource-based analysis, in which the overall measure-
ment time � and the rate R at which qubits can be supplied
are the resources, the 1/�R�3 scaling is the signature of the
standard quantum limit. The behavior of the bound for
1�R��3�min is included for completeness in our subse-
quent analysis, but is not so important since it expresses what
happens when the measurement protocol is starved of qubits.

B. Initial pure entangled state

If the probe can be initialized in an entangled state, we
can obtain bigger values of h. The maximum value is ob-

tained by superposing two n-qubit eigenstates of h corre-
sponding to the lowest and highest eigenvalues. Thus we
initialize the probe in the n-qubit Greenberger-Horne-
Zeilinger state �29�, which is often referred to as the “cat”
state:


�c� =
1
�2

�
00 ¯ 0� + 
11 ¯ 1�� . �3.12�

Here we denote the cat state by the subscript c. The initial
density operator �c= 
�c���c
 can be written in the form

�c =
1

2n+1	�
j=1

n

�1 j + �z;j� + �
j=1

n

�1 j − �z;j�

+ �
j=1

n

��x;j + i�y;j� + �
j=1

n

��x;j − i�y;j� . �3.13�

After passage through the quantum channel, the state of
the probe becomes

�c�g,T� =
1

2n+1	�
j=1

n

�1 j + �z;j� + �
j=1

n

�1 j − �z;j�

+ e−ingT
�
j=1

n

��x;j + i�y;j� + eingT
�
j=1

n

��x;j − i�y;j� .

�3.14�

We use this form in our discussion of achievability in Sec.
III C. Since h does not change under the quantum evolu-
tion, we can evaluate it using the initial cat state, which gives

�h�2 =
n2

4
. �3.15�

The generalized-uncertainty bound becomes

	g 
 	gc =
1

Tn��
=

1

T�Nn
=

��

TR�� − T�
. �3.16�

By letting the probe qubits be in a collective entangled state,
the accuracy in our estimate is enhanced by a factor of 1 /�n.

For the cat-state input with no decoherence, it is optimal
to make � as small as possible, i.e., �=�min. This puts as
many qubits as possible into each probe consistent with the
constraint �2.14�, i.e., n=N /�min, which is clearly optimal in
the absence of any decoherence to degrade the entanglement.
To find the optimal bound on the measurement accuracy, we
adjust the interaction time T to minimize 	gc, giving

T =
1

2
� �3.17�

and

N = n�min =
1

2
R� . �3.18�

In order that �
�min, we require 1
2R�
�min. When 1

2R�
��min, we choose n=1 and �=�min, which gives T=Ts and
an optimal bound that is the same as for product-state inputs.

The optimal bound on measurement accuracy thus be-
comes
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	gc = �
1

Ts
��min

, 1 � R� � 2�min,

4��min

R�2 , R� 
 2�min. � �3.19�

The 1/R�2 scaling of the cat-state bound is the signature of
the so-called “Heisenberg limit”; it is to be contrasted with
the corresponding 1/�R�3 scaling available from product
states. The enhancement available from entanglement is
roughly a factor of ��min/R�. Just as for product states, the
behavior of the bound for 1�R��2�min is not so important,
as it expresses what happens when the measurement protocol
is starved of qubits.

C. Achieving the optimal measurement accuracy

Estimating g involves making measurements on the probe
qubits. A strategy that gives an optimal estimate of g is to
measure �x on all the probe qubits. This provides a means of
estimating gT, from which g can be calculated provided we
know the interaction time T accurately.

In the case of an initial pure product state, we can spe-
cialize to having just one qubit in each probe �n=1�, pre-
pared in the state �3.3�. We measure �x on each qubit. The
results are averaged over � trials to get an accurate estimate
for g �9�. The expectation value and variance of �x with
respect to the evolved state in Eq. �3.5� are

��x� = cos gT, ��x�2 = 1 − cos2 gT = sin2 gT .

�3.20�

The average of the results over � trials, which we denote �̄x,
has the same expectation value, but its variance decreases by
a statistical factor of 1 /�, i.e., �̄x= 
sin gT
 /��.

We estimate g as gest=T−1 arccos �̄x. When the uncer-
tainty in �̄x is small enough, we can approximate �gest�
=T−1 arccos��̄x�=g and

	g = gest =
�̄x


d��̄x�/dg

=

1

T��
. �3.21�

The approximation here is that the datum �̄x must be likely
to lie close enough to the expected value ��̄x� that a linear
approximation to the arccos function at the operating point is
valid. This requires that � be large enough that 1��̄x

=�x /���1/��. That � must be large is the expression, in
the context of this particular measurement, of the general fact
that the quantum Cramer-Rao can only be achieved asymp-
totically; it leads to our requirement that �
�min�1.

When the probe is initialized in the cat state, an optimal
measurement strategy is to measure �x on all n qubits simul-
taneously and to multiply all the results together �9�. For-
mally, this corresponds to measuring

�x = �
j=1

n

�x;j . �3.22�

The expectation value and variance of �x with respect to the
evolved state �3.14� are

��x� = cos ngT, ��x�2 = 1 − cos2 ngT = sin2 ngT .

�3.23�

The average of the results over � probes has the same expec-
tation value, but its variance decreases by a statistical factor
of 1 /�.

We estimate g in the same way as above for product in-
puts. The only difference is the additional factor of n in the
rotation angle due to the coherent rotation of the entangled
qubits in each probe. The resulting uncertainty in our esti-
mate of g is

	g =
1

Tn��
, �3.24�

thus saturating the bound �3.16�. Notice that the condition for
making a linear approximation to the arccos function is the

same as for product inputs, i.e., 1��̄x=�x /���1/��,
showing that we can take �min to have the same value for
product and cat-state protocols.

There are technical questions associated with how one
resolves the fringes in Eqs. �3.20� and �3.23� in order to zero
in on the actual value of g. These questions are well under-
stood, however, and are irrelevant to our goal of understand-
ing the effects of decoherence, so we do not consider them
further.

IV. MEASUREMENT ACCURACY IN THE PRESENCE
OF DECOHERENCE

The previous section reviewed, within the context of our
resource-based analysis, the measurement accuracies that can
be obtained in the absence of decoherence. In this section we
introduce decoherence to see how it affects the accuracy of
parameter estimation. We consider a general model for deco-
herence of the probe qubits, subject to the restrictions that
the decoherence �i� is independent and identical from one
probe qubit to the next, �ii� is continuously differentiable and
time stationary, and �iii� commutes with rotations about the
�z axis. Since the interaction Hamiltonian that connects the
probe qubits to the parameter generates rotations about the
�z axis of each of the qubits, the effect of the third restriction
is to separate cleanly the effect of the parameter from the
effects of decoherence.

Decoherence can be described in terms of trace-
preserving quantum operations �completely positive maps�
on density operators �30–35�. A quantum operation on
single-qubit states is completely specified by the transforma-
tions of the operator basis set consisting of 1, �x, �y, and �z.
A general time-dependent trace-preserving map At on one-
qubit states, which commutes with rotations about the �z
axis, has the form

At�1� = 1 + f�t��z,

At��z� = g�t��z,

At��x ± i�y� = h±�t���x ± i�y� , �4.1�

where f�t�, g�t�, and h+�t�=h−
��t� are arbitrary functions of

time t. The requirement that the evolution described by At be
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continuously differentiable and time stationary implies that
the derivatives of the quantities on the left of Eq. �4.1� be
linear combinations with constant coefficients of these same
quantities. Thus we have

dAt�1�
dt

= ��1At��z� ,

dAt��z�
dt

= − �1At��z� ,

dAt��x ± i�y�
dt

= − ��2 ± i��At��x ± i�y� , �4.2�

where �, �1, �2, and � are real constants.
The solution of Eqs. �4.2�, with A0=I, gives the most

general single-qubit decoherence model that satisfies restric-
tions �ii� and �iii� above:

At�1� = 1 + ��1 − e−�1t��z,

At��z� = e−�1t�z,

At��x ± i�y� = e−�2te�i�t��x ± i�y� . �4.3�

The dissipation in this model is that of the standard qubit
decoherence model, involving a longitudinal decay time
T1=1/�1 and a transverse dephasing time T2=1/�2. In the
limit t→�, every single-qubit state decays to the state 1

2 �1
+��z�, which means that we must have −1���1. Com-
plete positivity requires that T2�2T1.

In addition to the dissipation, there is a coherent rotation
about the �z axis by an angle �t. If a decoherence process
does introduce such a coherent rotation, it cannot be distin-
guished from the rotation produced by the parameter g; any
procedure for estimating g would actually estimate g+�.
Throughout the following, we assume that the decoherence
model does not include any coherent rotation, but for conve-
nience, we incorporate the rotation due to g into At by as-
suming that �=g and omitting the further coherent rotation
in Eq. �2.1�. The mapping of the Bloch sphere induced by At
�with �=g� is illustrated in Fig. 1.

A. Initial pure product state

We are now prepared to investigate how decoherence af-
fects the theoretical minimum for 	g when the probe is ini-
tialized in a product state. At time t after entering the quan-

tum channel, the state of a probe is given by applying the
map �4.3� to the initial state of each qubit in the pure product
state �3.4�:

�p�g,t� =
1

2n �
j=1

n

�1 j + ��1 − e−�1t��z;j

+ e−�2t��x;j cos gt + �y;j sin gt�� . �4.4�

We first look at the weaker inequality in Eq. �2.13�. At the
time t=T when the probe leaves the quantum channel, we
have �hj�T= 1

2 tr��p�g ,T��z;j�=��1−e−�1T� /2 and �hj
2�T=1/4,

giving a variance

�h�2 = n�ĥj
2�T =

n

4
�1 − �2�1 − e−�1T�2� . �4.5�

The resulting weaker uncertainty-principle bound from Eq.
�2.13� is thus

	g 
 	gp
�w���1� =

1

T�N

1
�1 − �2�1 − e−�1T�2

. �4.6�

Decoherence in the transverse ��x;j-�y;j� plane does not ap-
pear explicitly in the bound 	gp

�w���1�. This is because the
weaker inequality in Eq. �2.13� is determined by the variance
of h, which depends only on the decoherence along the lon-
gitudinal �z;j direction.

Our conclusion is that we should not rely on the weaker
inequality in Eq. �2.13� to provide a good bound on the
maximum achievable measurement accuracy when there is
decoherence. For instance, in the case where there is only
transverse decoherence, i.e., �1=0, the bound 	gp

�w���1� re-
mains constant at 1 /T�N, even though the transverse deco-
herence ultimately leaves the probe qubits in a state along
the �z axis where the rotation produced by the parameter has
no effect. To see the dependence of the measurement accu-
racy on the transverse decoherence, we have to use the stron-
ger inequality in Eq. �2.13�.

Turning to that stronger inequality, we need to evaluate 
as in Eq. �2.11�, and for that purpose, we first write the state
of each probe qubit after passage through the channel in
diagonal form

� j�g,T� =
1

2
�1 + �d1

2 + d2
2�
 + ��+ 
 +

1

2
�1 − �d1

2 + d2
2�
− ��− 
 ,

�4.7�

where

d1 � ��1 − e−�1T�, d2 � e−�2T �4.8�

and


 + � � cos��/2�
0� + eigT sin��/2�
1� ,


− � � sin��/2�
0� − eigT cos��/2�
1� �4.9�

are the eigenstates of � j�g ,T�, with

FIG. 1. �Color online� The transformation of the Bloch sphere
under the map At of Eq. �4.3� at �2t=0, � /4, and � /2, with �
=3/4 and �1=3�2 /4. The dotted lines show the unit sphere. The
coherent rotation due to �=g cannot be seen in these diagrams.
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sin � =
d2

�d1
2 + d2

2
. �4.10�

To evaluate  j for the jth qubit, we need the off-diagonal
matrix element of hj =

1
2�z;j in this eigenbasis:

�hj�+− = �hj�−+
� =

1

2
�+ 
�z;j
− � =

1

2
sin � . �4.11�

Plugging Eqs. �4.7� and �4.11� into Eq. �2.11�, we find that

2 = n j
2 =

n

4
d2

2 =
n

4
e−2�2T, �4.12�

from which follows a stronger uncertainty-principle bound

	g 
 	gp
�s���2� =

e�2T

T�N
=

e�2T

T�R�� − T�
, �4.13�

for � uses of the quantum probe. This is a much more rea-
sonable bound on measurement accuracy, since it depends
explicitly on the transverse decoherence that we expect to
make a difference in the measurement; moreover, the depen-
dence simply degrades the measurement accuracy exponen-
tially with the number of T2 times for which each probe is in
the quantum channel.

We can show that directly that the bound �4.6� is weaker
than that of Eq. �4.13� through the following chain of in-
equalities:

�1 − �2�1 − e−�1T�2 
 �1 − �1 − e−�1T�2

= �e−�1T�2 − e−�1T� 
 e−�1T/2 
 e−�2T,

�4.14�

the last of which requires the complete-positivity condition
�2
�1 /2. Since the probe state is separable at all times, we
can choose n=1 without affecting the optimal measurement.
What remains is to choose the interaction time T, within the
range 0�T��, so as to minimize the bound 	gp

�s���2�. There
is a single minimum at T=Tp, determined by the equation
��2Tp�2− �3/2+�2���2Tp+�2�=0 to occur at

�2Tp =
3/2 + �2� − ��3/2 + �2��2 − 4�2�

2
. �4.15�

We cannot use this interaction time when it becomes so short
that the measurement protocol is starved of qubits, i.e., when
R��−Tp���min. In this situation, we choose n=1 and �
=�min, which gives the interaction time Ts of Eq. �3.10�.

Plugged into Eq. �4.13�, these interaction times give the
optimal value of the bound 	gp

�s���2�, which can be written in
the dimensionless form

� R

�2

	gp
�s���2�
�2

=��
R

�2

e�2Ts

�2Ts
��min

,
�min�2

R
� �2� � �2	Tp +

�min

R
 ,

e�2Tp

�2Tp
��2�� − Tp�

, �2� 
 �2	Tp +
�min

R
 . �

�4.16�

We plot the dimensionless optimal interaction time �2Tp and
the resulting dimensionless optimal bound �4.16� as func-
tions of �2� in Fig. 2.

There are two important limits. When the transverse de-
coherence has little effect during the overall time �, i.e.,
�2��1, we find Tp=2� /3 and an optimal bound that reduces
to the optimal measurement accuracy �3.11� in the absence of
decoherence. In contrast, for large transverse decoherence,
i.e., �2��1, the optimal interaction time is Tp=T2, and the
optimal bound becomes 	gp

�s���2�=e /T2
�R� or, in terms of

the dimensionless optimal bound, �R /�2	gp
�s� /�2=e /��2�. In

this case, it is optimal to have each qubit scoot through the
quantum channel in a dephasing time, before the dephasing
can destroy the effect of the parameter-induced rotation;
roughly speaking, each qubit determines g with accuracy
e /T2, which is improved by the statistical factor 1 /�R� cor-
responding to the number of qubits used in time �.

B. Initial pure entangled state

We now look at the case in which the probe is initialized
in an entangled cat state. The density operator of the probe,

10 20 30 40
Γ2Τ

2

4

6

8

������
R ∆gp

�s� �Γ2 ��Γ2
3�2

10 20 30 40
Γ2Τ

0.2

0.4

0.6

0.8

1
Γ2 Tp

FIG. 2. �Color online� Dimensionless optimal interaction time
�2Tp of Eq. �4.15�, and dimensionless optimal bound �4.16�, plotted
as functions of dimensionless interaction time �2�. In these plots we
assume that R is big enough that we do not encounter the situation
where the protocol is starved of qubits, since this situation is of
little interest.
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after a time t in the channel, is obtained by applying the map
�4.3� to the initial cat state �3.13�:

�c�g,t� =
1

2n+1��
j=1

n

�1 j + �e−�1t + ��1 − e−�1t���z;j�

+ �
j=1

n

�1 j − �e−�1t − ��1 − e−�1t���z;j�

+ e−n�2t−ingt
�
j=1

n

��x;j + i�y;j�

+ e−n�2t+ingt
�
j=1

n

��x;j − i�y;j�� . �4.17�

To evaluate the weaker inequality in Eq. �2.13�, we need to
evaluate the variance of h. Using Eqs. �B1�–�B3� from Ap-
pendix B, we find that at the time t=T when the probe exits
the quantum channel, �h�T=nd1 /2 and

�h2�T =
n

4
�1 + �n − 1��e−2�1T + d1

2�� . �4.18�

From these we obtain the variance of h at the time T when
the probe exits the quantum channel:

�h�2 = �ĥ2�T =
n

4
�1 + �n − 1�e−2�1t − d1

2� . �4.19�

The weaker bound in Eq. �2.13� on the accuracy of estimat-
ing g thus becomes

	g 
 	gc
�w���1� =

1

T�N

1
�1 + �n − 1�e−2�1t − �2�1 − e−�1t�2

.

�4.20�

We do not expect this bound on 	gc��� to be particularly
useful because, as for the case of an initial product state, the
decoherence in the transverse directions for the qubits does
not come into the bound at all.

We now look at the bound on measurement accuracy
placed by the stronger inequality in Eq. �2.13�. The density
operator �c�g , t� is diagonal in the tensor-product basis
formed by the eigenvectors of �z;j, except in the two-
dimensional subspace spanned by the vectors 
00¯0��
0�
and 
11¯1��
1�. We denote this subspace of the n-qubit
Hilbert space H by K. The operator h is diagonal in the
tensor-product basis formed by eigenvectors of �z;j. From
Eq. �2.11�, we see that there is no contribution to 2 from the
subspace in which �c�g , t� and h are simultaneously diagonal.
Thus, for computing 2, we can work with the operators
�̄c�g , t� and h that are obtained by projecting �c�g , t� and h
down to the subspace K, i.e.,

�̄c�g,T� =
1

2
�d+
0��0
 + d−
1��1


+ d2
ne−ingT
0��1
 + d2

neingT
1��0
� �4.21�

and

h̄ =
n

2
�
0��0
 − 
1��1
� , �4.22�

with

d± � 	1 + e−�1T ± d1

2
n

+ 	1 − e−�1T ± d1

2
n

. �4.23�

The next step is to write �̄c�g ,T� in diagonal form

�̄c�g,T� = p+
 + ��+ 
 + p−
− ��− 
 , �4.24�

where

p± =
1

4
�d+ + d− ± ��d+ − d−�2 + 4d2

2n� �4.25�

are the eigenvalues of �̄c and


 + � � cos��/2�
0� + eingT sin��/2�
1� ,


− � � sin��/2�
0� − eingT cos��/2�
1� , �4.26�

are the eigenstates, with

sin � =
2d2

n

��d+ − d−�2 + 4d2
2n

. �4.27�

To evaluate , we need the off-diagonal matrix element of h
in this eigenbasis:

h̄+− = h̄−+
� = �+ 
h̄
− � =

n

2
sin � . �4.28�

The resulting value of 2 is

2 = �p+ − p−�2
h̄+−
2 =
n2

4
e−2n�2T, �4.29�

from which follows the stronger uncertainty-principle bound
for a cat-state input,

	g 
 	gc
�s���2� =

en�2T

Tn��
=

en�2T

T�nR�� − T�
=

��e�2RT��−T�/�

RT�� − T�
.

�4.30�

Aside from being stronger than the bound �4.20�, this is a
more sensible bound, since it depends explicitly on the trans-
verse decoherence. When �2=0, this bound simplifies to the
cat-state bound in the absence of decoherence, Eq. �3.16�.
Moreover, by comparing with the bound for a product input,
Eq. �4.13�, one sees that this bound retains the 1/�n advan-
tage purchased by using an entangled input, but at the price
of a decoherence rate that is n times faster.

We have assumed that both n and T are controllable pa-
rameters in the estimation scheme we are considering, with �
determined by Eq. �1.4�. To minimize the bound �4.20�, we
use the second form, from which � has been eliminated. The
values for n and T that minimize 	gc

�s� can then be found by
solving simultaneously the two equations

0 =
�	gc

�s�

�n
=

en�2T

2nT�nR�� − T�
�2n�2T − 1� ,
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0 =
�	gc

�s�

�T
=

en�2T

2T2�� − T��nR�� − T�
�3T + 2n�2T�� − T� − 2�� ,

�4.31�

which give n=1/�2� and T=� /2. The determinant and trace
of the Hessian of 	gc

�s�, with respect to n and T, evaluated at
this point, are both positive, showing that it is indeed a mini-
mum. The minimum value of the bound is

	gc
�s���2� =

2�2e

��R/�2

. �4.32�

This minimum cannot always be attained, however, because
we have the additional constraints of Eq. �2.14�, i.e., 1�n
�N /�min=R��−T� /�min=R� /2�min, which do not always al-
low us to choose n equal to the optimal value 1/�2�. If �2�
does not lie between 2�min/R� and 1, we have to choose a
value for n that lies on the boundary of allowed values.
There are two cases to consider. If the decoherence rate is
high, i.e., �2�
1, we choose n=1, thus using probes con-
sisting of individual qubits to estimate g, in which case the
analysis reduces to that of the preceding subsection. Notice
that �2�=1 gives �2�Tp+�min/R�=1/2+�min�2 /R. Thus if
2�min�2 /R�1, the second case in Eq. �4.16� applies when-
ever �2�
1. If, however, 2�min�2 /R�1, the protocol begins
to be starved of qubits for some �2��1, and there is no
situation where cat states offer any advantage. Throughout
the following, therefore, we assume that 2�min�2 /R�1.

If the decoherence is small, i.e.,

�2� � 2�min/R� ⇔ �2 � 2�min/�2R , �4.33�

we use the largest cat state that can be constructed from the
available resources, thus choosing �=�min. Using the last

form in Eq. �4.30�, with �=�min, we find that 	gc
�s� has ex-

trema for T��−T�=�min/�2R and T=� /2. We discard the first
possibility because it is inconsistent with the constraint
�4.33�, i.e., �min/�2R=T��−T���2 /4��min/2�2R. More-
over, the second derivative of 	gc

�s� with respect to T, evalu-
ated at T=� /2, is strictly positive when Eq. �4.33� is satis-
fied, showing that T=� /2 gives a minimum. The optimal
interaction time is again T=� /2 �n=R� /2�min�, and the mini-
mum value of the bound becomes

	gc
�s���2� =

4��min

R�2 e�2R�2/4�min. �4.34�

Notice that Eq. �4.34� reduces to the second case in Eq.
�3.19� when there is no decoherence, i.e., when �2=0.

The first case in Eq. �3.19� reminds us that one further
case occurs at very short times, when the protocol is starved
of qubits. In particular, when R� /2�min�1, we must choose
n=1 and �=�min, leading to the familiar interaction time Ts
of Eq. �3.10�.

We can now piece together the various regions that gov-
ern the optimal bound on the estimate of g using cat-state
probes with the available resources deployed in the optimal
fashion. The results are summarized in Table I. The top row
is the case where the protocol is starved of qubits; the second
row is the case of low decoherence, for which the probes are
prepared in cat states containing as many qubits as allowed
by the need to have at least �min probes; the bottom row is
the case of high decoherence, for which the probes are indi-
vidual qubits; and the middle row describes the transition
from high decoherence to low decoherence. The two regions
where cat states play a role exist when 2�min�2 /R�1. The
dimensionless bound introduced in Eq. �4.16� is given by

� R

�2

	gc
�s���2�
�2

=�
� R

�2

e�2Ts

�2Ts
��min

,
�min�2

R
� �2� �

2�min�2

R
,

��2

R

4��min

��2��2 e�R/�2���2��2/4�min,
2�min�2

R
� �2� ��2�min�2

R
,

2�2e

�2�
, �2�min�2

R
� �2� � 1,

e�2Tp

�2Tp
��2�� − Tp�

, �2� 
 1.

� �4.35�

TABLE I. Minimum value of bound on estimating g using cat-state probes with available resources
deployed optimally. The table assumes that 2�min�2 /R�1.

Range of �2� T n � N 	gc
�s���2�

�min�2�R ��2�� 2�min�2�R Ts of Eq. �3.10� 1 �min �min e�2Ts�Ts
��min

2�min�2�R ��2���2�min�2�R � /2 R� /2�min �min R� /2 4��min�R�2e�2R�2/4�min

�2�min�2�R ��2��1 � /2 1 /�2� �2R�2 /2 R� /2 2�2e� ��R /�2

�2�
1 Tp of Eq. �4.15� 1 R��−Tp� R��−Tp� e�2Tp�Tp�R��−Tp�
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This dimensionless optimal bound is plotted in Fig. 3 for the
choice �min=50 and for several values of �R /�2.

The conclusion to be reached from the results summarized
in Table I and Fig. 3 is that cat-state entanglement is only
useful for improving the estimate of g when one wants to
estimate g on a time scale that is shorter than the time scale
over which decoherence acts.

C. Achieving the optimal measurement accuracy

We now examine the effectiveness of the measurement
strategies described in Sec. III C in the presence of decoher-
ence in the probe qubits. When the input state is a product
state, we can again specialize to the case where there is only
one qubit in each probe �n=1� and �=N. We measure �x on
each qubit and average over the results of � trials to obtain
the estimate of g. After an interaction time t=T, the expec-
tation value and variance of �x for a single qubit in the
evolved state �4.4� are

��x� = e−�2T cos gT, ��x�2 = 1 − e−2�2T cos2 gT .

�4.36�

Averaging over the results of � trials yields the quantity �̄x,
which has the same expectation value as �x, but has variance

reduced to ��̄x�2= ��x�2 /�, and we estimate g as g=gest

=T−1 arccos�e�2T�̄x�. After many trials, the variance of �̄x

becomes small enough that we can approximate �gest�
=T−1 arccos�e�2T��̄x��=g and

	g = gest =
�̄x


d��̄x�/dg

=

e�2T

T��

�1 − e−2�2T cos2 gT


sin gT

.

�4.37�

If we use this straightforward method of estimating g by
averaging measurements of �x on all qubits, achieving the
bound �4.13� for determining g, with the interaction time
adjusted to the optimal value T=Tp, requires 
sin gTp
=1.
Even though g is not known, this can be accomplished by
using feedback onto the rotation of the qubits to find this
sweet spot on the fringe pattern. An alternative to feeding
back onto the rotation of the qubits is feedback to rotate the
quantity measured in the equatorial plane of the Bloch sphere
until the desired operating point is achieved.

When the probe is initialized in a cat state, we have seen
that the optimal strategy, in the absence of decoherence, is to
measure �x on all n qubits simultaneously. The same mea-
surement works when there is decoherence. Using Eqs.
�3.22� and �4.17�, we find that after an interaction time t=T,

��x� = e−n�2T cos ngT, ��x�2 = 1 − e−2n�2� cos2 ngT .

�4.38�

We can convert the results for product-state inputs to this
case by the substitution T→nT, so the average over � probes
leads to

	g =
en�2T

Tn��

�1 − e−2n�2T cos2 ngT


sin ngT

. �4.39�

We can saturate the bound �4.30� on estimating g, for the
appropriate interaction time T, by using feedback to operate
at a point where 
sin ngT
=1.

One last point concerns the question of making a linear
approximation to the arccos function, which allows us to
relate the mean and variance of gest directly to the mean and

variance of �̄x. This approximation requires that � be large

enough that 1�en�2T�̄x=en�2T�x /��. The results sum-
marized in Table I show that for the optimal choices of n and
T, it is always true that n�2T�1, showing that the require-
ment is that � be large in a way that is independent of the
details of the protocol.

V. DISCUSSION

In this paper we have studied quantum limits on determin-
ing a frequency g that controls the rate at which qubits rotate
about the z axis of the Bloch sphere. The question of deter-
mining g is the same as the problem of distinguishing qubit
states that differ by having been subjected to different rota-
tions. The quantum limits on determining g are well known
�9�: if n qubits are prepared in product states, the uncertainty
in determining g scales as 1 /�n, the standard quantum limit
or shot-noise limit, whereas if the same n qubits are prepared

1 �10�6 0.0001 0.01 1
Γ2 Τ1

100

10000

81 �10

61 �10

������
R ∆gc,p

�s� �Γ2 ��Γ2
3�2

�a��b��c��d�

FIG. 3. �Color online� The four thick lines labeled �a�, �b�, �c�,
and �d� show the dimensionless optimal bound �4.35� for cat-state
inputs, plotted as a function of dimensionless interaction time �2�,
for �min=50 and �R /2�min�2=1, 10, 100, and 1000, i.e., �R /�2

=10, 100, 1000, and 10000, respectively. Note that both axes use a
logarithmic scale. The use of cat states provides no advantage for
�2�
1. The two regions where cat states provide an advantage
�second and third rows of Table I� are absent for �R /2�min�2=1,
but become apparent for the other three values of �R /2�min�2. In
terms of the dimensionless bound, the transition region between
high and low decoherence �third row in Table I� has a form inde-
pendent of R /�2, but extends to smaller values of �2� as R /�2

increases. For small enough �2�, the protocol is starved of qubits,
and cat states again provide no advantage over product states. The
thin dotted lines show the dimensionless product-state bound �4.16�
for the same four values of �R /2�min�2. The product-state bound
agrees with the cat-state bound in the high-decoherence region
��2�
1� and with the corresponding cat-state bound in the region
where the protocol is starved of qubits ��min�2 /R��2�
�2�min�2 /R�; in between, where cat states provide an advantage,
the product-state bound is independent of R /�2.
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in an entangled cat state, the uncertainty scales as 1 /n, which
is called the Heisenberg limit. Our purpose in this paper has
been to investigate, following Ref. �10�, how these scalings
change when the qubits are subjected to independent, but
identical decoherence processes during the measurement.

The decoherence model we consider is the most general
continuous-time process that is invariant under rotations
about the z axis. This results in a standard qubit decoherence
model in which qubits decay with a time constant T1 and lose
phase coherence with a time constant T2. It is the phase-
coherence time T2 that is important for efforts to estimate g;
cat-state entanglement is only useful for times of order or
smaller than T2.

To make the analysis meaningful, we introduce as re-
sources the rate R at which qubits are supplied and the over-
all time � that one has available for estimating g. If one does
not introduce these resources, one can achieve any desired
accuracy in estimating g by assuming that one can assemble
an arbitrarily large number of qubits in a cat state in a time
much shorter than T2 or, more easily, by assuming that one
can take as long as desired to determine g using an arbitrarily
large number of qubits prepared in a product state. Once
decoherence becomes a consideration, the uncertainty in es-
timating g should be written in terms of the decoherence
time T2 and the relevant resources R and � not directly in
terms of the number of qubits used.

The results of our analysis, summarized in Table I and
Fig. 3, show that cat-state entanglement is useless if �
T2.
When T2 is much larger than �, the results show that one
should put as many qubits as possible in each cat-state probe.
For intermediate decoherence, it is not that cat-state en-
tanglement is useless, but rather that one should make a ju-
dicious, optimal choice of how many qubits to include in
each cat-state probe. The overall conclusion is that entangle-
ment is only useful when one can make the effects of deco-
herence small on the time scale over which one must esti-
mate g. While this conclusion is reached here for a special
model of measurements on qubits, it is generally true for
quantum-limited measurements in the face of decoherence.

Our analysis highlights one further point, having to do
with using the quantum Cramer-Rao bound to determine
quantum limits. As long as one is interested only in measure-
ments involving pure states, the form of the Cramer-Rao
bound as a generalized uncertainty principle is sufficient for
investigating bounds on measurement accuracy. Once deco-
herence is introduced, however, inevitably leading to mea-
surements on mixed states, one must use the stronger form of
the Cramer-Rao bound involving the Fisher information to
obtain meaningful bounds on measurement accuracy.
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APPENDIX A: GENERALIZED UNCERTAINTY
RELATIONS FOR PRODUCT STATES

Consider a continuous trajectory in the space of product
states of n qubits parametrized by X,

�p�X� = �
j=1

n

� j�X� . �A1�

If the value of X changes by a small amount dX, the change
in � j can be written as

� j → � j + dX� j� = �
�j

dp�j

� j��� j
 + e−ihjdX� je

ihjdX. �A2�

The vectors �
� j�� make up the eigenbasis of � j, with eigen-
values p�j

, i.e.,

� j = �
�j

p�j

� j��� j
 . �A3�

The operators hj are the generators of translations in X for
each of the n systems, while dp�j

are small changes in the
eigenvalues of � j due to the small change in X. Notice that in
the presentation of Sec. II, the fact that AT is independent of
the parameter g means that the eigenvalues of ��g ,T� do not
change with g; thus the terms having to do with eigenvalue
changes do not appear in that discussion.

Keeping terms to linear order in dX, we have

� j� = �
�j

dp�j

dX

� j��� j
 − i�hj,� j� . �A4�

The corresponding change in the overall state

�p → �p + dX�p� = �p + dX�
j=1

n

� j� �
k�j

�k �A5�

gives us

�p� = �
j=1

n ��
�j

dp�j

dX

� j��� j
 − i�hj,� j�� �

k�j
�k. �A6�

Our objective is to obtain an expression for a line element
dsp

2 in the space of density operators �p that measures the
distinguishability of neighboring quantum states. Following
Eq. �2.5�, we have

	dsp

dX
2

= tr��p�L�p
��p��� . �A7�

We start by computing L�p
��p�� using the definition in Eq.

�2.6�. Noting that �p is diagonal in the tensor product basis
furnished by �
� j�� for each of the systems and using Eq.
�A6� we obtain

L�p
��p�� = �

�1,�2,. . .,�n

�
	1,	2,. . .,	n

2

p�1
¯ p�n

+ p	1
¯ p	n

� ��1 ¯ �n
�
j=1

n ��
�j

dp�j

dX

� j��� j
 − i�hj,� j��

�
k�j

�k
	1 ¯ 	n�
�1 ¯ �n��	1 ¯ 	n
 . �A8�

Simplifying this expression gives
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L�p
��p�� = �

j=1

n ��
�j

�dp�j
/dX�

p�j


� j��� j


+ 2i �
�j,�j

p�j
− p�j

p�j
+ p�j

�hj��j�j

� j��� j
� �

k�j
1k

= �
�=1

n

L�j
�� j�� �

k�j
1k, �A9�

which leads to

	dsp

dX
2

= �
j=1

n

tr�� j�L�j
�� j��� � �

k�j

tr �k

= �
j=1

n

tr�� j�L�j
�� j��� = �

j=1

n 	dsj

dX
2

, �A10�

where we use tr � j�=0. In the special case where all � j are
identical and equal to � and when changes in X affect all the
systems in the same way, we have

dsp

dX
= �n

ds

dX
, where 	 ds

dX
2

= tr���L������ .

�A11�

APPENDIX B: USEFUL IDENTITIES INVOLVING
PAULI OPERATORS

A few identities involving products of Pauli operators that
are used in our calculations are listed below:

	�
j=1

n

�z;j �
j�k

1k�
j=1

n

�1 j ± �z;j� = ± n �
j=1

n

�1 j ± �z;j� ,

	�
j=1

n

�z;j �
j�k

1k�
j=1

n

��x;j ± i�y;j� = ± n �
j=1

n

��x;j ± i�y;j� ,

	 �
j�k=1

n

�z;j � �z;k �
l�j,k

1l�
j=1

n

�1 j ± �z;j� = �n2 − n� �
j=1

n

�1 j ± �z;j� ,

	 �
j�k=1

n

�z;j � �z;k �
l�j,k

1l�
j=1

n

��x;j ± i�y;j�

= �n2 − n� �
j=1

n

��x;j ± i�y;j� , �B1�

	�
j=1

n

�z;j �
j�k

1k�
j=1

n

�1 j ± A�z;j�

= ± A�
j=1

n

�1 j ± A−1�z;j� �
j�k=1

n

�1k ± A�z;k� , �B2�

	 �
j�k=1

n

�z;j � �z;k �
l�j,k

1l�
j=1

n

�1 j ± A�z;j�

= A2 �
j�k=1

n

�1 j ± A−1�z;j� � �1k ± A−1�z;k� �
l�j,k

�1l ± A�z;l� .

�B3�
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