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I. INTRODUCTION

Higher-derivative theories were introduced quite early in
an attempt to regularize the ultraviolet divergencies of quan-
tum field theories �1�.

Another context in which higher-derivative and nonlocal
theories appear naturally is the description of the low-energy
phenomena in terms of effective action which is nonlocal as
a result of integrating out high energy degrees of freedom
�2�. Moreover, theories with infinite degree derivatives do
appear in the framework of string theory �3,4� and as modi-
fied theories of gravity �5�.

In recent years, the emergence of noncommutative field
theories �6� has revived discussion concerning higher-
derivative theories. Apart from their string-theoretical origin
noncommutative field theories can be viewed as an attempt
to describe the dynamics at the scales where the very notion
of space-time point lacks its meaning. Such theories, when
modeled with the help of commutative space-time endowed
with star product, lead at once to nonlocal Lagrangians. If
noncommutativity involves time variables the theory be-
comes nonlocal in time and is plagued with unitarity and
causality problems, at least when quantized with the help of
naive Feynman rules �7�. There exist alternative quantization
schemes which seem to cure the unitarity problems �8�; how-
ever, they are claimed to lead to new troubles �9�.

In view of this state of the art it seems necessary to re-
consider the quantization problem starting from first prin-
ciples. The first step is to put the theory in Hamiltonian form.
The relevant framework is provided by Ostrogradski formal-
ism �10� for higher derivative theories and its sophisticated
version �11� for nonlocal ones. The main problem with such
procedures is that the resulting Hamiltonians are necessarily
unbounded from below due to their behavior at the infinity of
phase space. This implies that the quantum theory, if it ex-
ists, has no stable ground state.

Still, some hope exists because, in most interesting cases,
the nonlocality enters only through the interaction term.
Then one can pose the problem of quantizing the perturba-
tive sector of the theory �4,12�. The initial value problem for
perturbative solutions involves basic variables and their first
time derivatives so the phase space for such solutions re-
sembles the standard one. Moreover, for perturbation theory
only the vicinity of the phase space is relevant, and we can
hope that the Hamiltonian is bounded here from below lead-
ing to a stable perturbative vacuum.

In the present paper, inspired by Refs. �4� and �12�, we
study in some detail the Hamiltonian formalism and quanti-
zation for a simple system described by the Lagrangian con-
taining a second time derivative in the interaction term. In
Sec. II we show in full generality that the perturbative sector
of our theory can be described with the help of the Dirac
method. There are two constraints of the second kind which
allow one to eliminate perturbatively Ostrogradski momenta
in favor of coordinates q and q̇. The Dirac bracket �q , q̇�D
can then be perturbatively computed to arbitrary order in
coupling constant. It is, however, rather complicated. There-
fore in Sec. III we analyze the possibility of simplifying the
form of the Dirac bracket and the Hamiltonian. We show that
it is indeed possible to define perturbatively, order by order,
the variables x , ẋ such that: �i� the Dirac bracket takes the
standard form �x , ẋ�=1, and �ii� the Hamiltonian is the sum
of kinetic and potential energy. We show that there is a large
freedom in defining x and ẋ obeying �i� and �ii�; in fact, at
any order of perturbative expansion for x one can add many
terms with new, also dimensional, constants. These constants
are spurious in the sense that they disappear after coming
back to the original dynamical variables. However, this
might be not the case in quantum theory as we explain in
Sec. VI. Section IV is devoted to the special case of homo-
geneous �monomial� potentials. The form of the transforma-
tion �q , q̇�→ �x , ẋ� is studied in some detail. In particular, it is
shown that if the degree of homogeneity is odd the above
transformation can be chosen such that the resulting Hamil-
tonian is parity invariant. This implies that the initial theory,
when restricted to the perturbative sector, posseses some
complicated discrete symmetry. The form of symmetry trans-
formation can be determined, order by order; however, we
would like to have a simpler and more straightforward ex-
planation of its emergence. In Sec. V, we study the simplest
example of homogeneous potential of the third degree, con-
sidered already in Refs. �4� and �12�. We find explicitly, up to
fourth order, the transformation relating q and x as well as
the Hamiltonian to this order, expressed in terms of x , ẋ vari-
ables. It appears that the resulting parity invariant potential is
positive term by term, up to fourth order. On the other hand,
the initial Hamiltonian, considered to the same order, is not
positively definite. There is no contradiction here because
our expansions are at best asymptotic and valid at the vicin-
ity of phase space. Moreover, we do not know whether the
property of positivity of parity invariant potential persists in
higher orders. If this is the case, the theory is perturbatively
stable.
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Finally, in Sec. VI we study the quantum theory of the
system described in Sec. V. To this end we consider �up to
the second order� the transformation converting the Dirac
bracket and the Hamiltonian into the standard form. As it has
been already stressed such a transformation is not uniquely
defined. We consider a one-parameter family of transforma-
tions and show that for different values of the parameter the
resulting quantum theories are not equivalent. Specifically,
the energy eigenvalues differ by an overall constant. There-
fore the additional parameter, spurious in the classical case,
becomes meaningful when quantum corrections are taken
into account. This shows that the quantization is a subtle and
ambiguous procedure.

II. HAMILTONIAN FORMALISM FOR THE
PERTURBATIVE SECTOR

Let us consider the following Lagrangian

L =
1

2
q̇2 −

�2

2
q2 − gV�q, q̇, q̈�,

�2V

� q̈2 � 0. �1�

It depends on second derivative q̈; however, q̈ enters L only
through V which, in turn, is multiplied by the coupling con-
stant g.

The corresponding Euler-Lagrange equation reads

q̈ + �2q + g� �V

�q
−

d

dt
� �V

� q̇
� +

d2

dt2� �V

� q̈
�� = 0. �2�

This is a fourth-order differential equation. In order to obtain
a unique solution one has to impose the initial conditions
involving q and its first three derivatives. Correspondingly,
the phase space of the system must be four dimensional.

The canonical formalism for our system can be introduced
according to the Ostrogradski prescription �10�. To this end
we define the canonical variables

q1 = q, q2 = q̇ , �3�

p1 =
�L

�q̇
	

�L

� q̇
−

d

dt
� �L

� q̈
� = q̇ + g�−

�V

� q̇
+

d

dt
� �V

� q̈
��

	 p1�q, q̇, q̈,q�� ,

p2 =
�L

�q̈
	

�L

� q̈
= − g

�V

� q̈
	 p2�q, q̇, q̈� ,

and the Hamiltonian

H 	 p1q2 + p2q̈�q1,q2,p2� − L„q1,q2, q̈�q1,q2,p2�… , �4�

where q̈�q1 ,q2 , p2� is the solution to the last Eq. �3�.
The main disadvantage of H is that p1 enters it linearly so

it is unbounded from below; the system is unstable. One can
try to cure this by imposing constraints confining the system
to some submanifold of phase space. A natural choice is to
consider only perturbative solutions to Eq. �2�. Due to the
fact that third and fourth derivatives enter only the terms
multiplied by the coupling constant, the perturbative solution
is uniquely determined by imposing the initial conditions on

q and q̇. In particular, higher derivatives can be expressed in
terms of q and q̇. In fact, one can write �12�

q̈ = f�q, q̇� ,

q� = �q̇
�

�q
+ f�q, q̇�

�

� q̇
� f 	 Df �5�




q�n� = Dn−2f .

The form of f�q , q̇� is determined by demanding that it is
consistent with Euler-Lagrange equations. Let
F�q , q̇ , q̈ , . . . ,q�n�� be any function. Define �12�

�F��q, q̇� 	 F�q, q̇,Df , . . . ,Dn−2f� . �6�

Some properties of the bracket �·� are discussed in the Ap-
pendix.

The consistency condition for f reads

�q̈ + �2q + g� �V

�q
−

d

dt
� �V

� q̇
� +

d2

dt2� �V

� q̈
�� = 0. �7�

Assume now that we have found some f�q , q̇� obeying Eq.
�7�. The definitions of p1,2 can be now converted into con-
straints

�1 	 p1 − �p1�q, q̇, q̈,q����q1,q2� = 0, �8�

�2 	 p2 − �p2�q, q̇, q̈���q1,q2� = 0.

Differentiating �1 ,�2 with respect to time and using Eqs. �7�
and �8� we find that there are no secondary constraints.

The constraints �1 ,�2 are second class ones:

��1,�2� = − g
�

�q1
� �V

� q̈
� − g

�

�q2
�−

�V

� q̇
+

d

dt
� �V

� q̈
�� . �9�

Due to the form of constraints �i, the momenta pi can be
expressed in terms of q1 and q2 which parametrize the re-
duced phase space. The Dirac bracket reads

�A,B�D = �A,B� + �A,�1���1,�2�−1��2,B�

− �A,�2���1,�2�−1��1,B� . �10�

In particular

�q1,q2�D = − ��1,�2�−1. �11�

The same result is obtained by considering the symplectic
form

� = dp1 ∧ dq1 + dp2 ∧ dq2 �12�

reduced to our submanifold. Indeed, we find

�red = � ��p1�
�q2

−
��p2�
�q1

�dq2 ∧ dq1 �13�

so that
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�q1,q2�red = � ��p1�
�q2

−
��p2�
�q1

�−1

�14�

which, by Eq. �9�, coincides with Eq. �11�. One can also
check the validity of the Hamiltonian equations. It is conve-
nient to come back to initial notation q1=q , q2= q̇. Simple
computation gives

��H�
�q

= − f�q, q̇��q, q̇�D
−1, �15�

��H�
� q̇

= q̇�q, q̇�D
−1,

where Eq. �7� has been used. Now, the first Hamiltonian
equation

q̇ = �q,�H��D �16�

gives the identity q̇= q̇ while the second one

q̈ = �q̇,�H��D �17�

leads to the constraint equation

q̈ = f�q, q̇� . �18�

III. SIMPLIFYING DYNAMICS

The form of reduced dynamics presented above is rather
complicated; in particular, due to the nontrivial form of the
basic Poisson �Dirac� bracket �11� the quantization poses a
nontrivial ordering problem. In order to avoid this problem
one can adopt the following strategy �4,12�: instead of direct
quantization one first makes the Darboux transformation
which simplifies �red , �red=dẋ∧dx. Such a transformation
is not unique; in fact, it is defined up to a canonical transfor-
mation. The question arises whether this freedom can be
used to simplify also the Hamiltonian or even to put it in
standard form: kinetic plus potential energy.

In order to analyze this problem we start with the lowest
order approximation. Let us first note that for the Lagrangian
�1� the zeroth-order approximation to f�q , q̇� reads

f0�q, q̇� = − �2q . �19�

The corresponding approximation to the time-derivative op-
erator D will be denoted by D0,

D0 	 q̇
�

�q
− �2q

�

� q̇
. �20�

Finally, �·�0 denotes �·� given by Eq. �6� with D replaced by
D0.

Our aim is to define the transformation �q , q̇�→ �x , ẋ� sim-
plifying both the Dirac bracket and Hamiltonian. To the first
order in g one can write

q = x + gm�x, ẋ� �21�

or

x = q − gm�q, q̇� . �22�

To this order we have also

ẋ = q̇ − gD0m�q, q̇� �23�

or

q̇ = ẋ + gD0m�x, ẋ� , �24�

where D0 on the right-hand side of Eq. �24� is given by Eq.
�20� with q replaced by x.

We start by writing the reduced symplectic form to the
first order in g:

�red�1� = �1 + g� �

� q̇
�− � �V

� q̇
�

0

+ � d

dt
� �V

� q̈
��

0
�

+
�

�q
� �V

� q̈
�

0
�dq̇ ∧ dq . �25�

We are looking for m�x , ẋ� such that the transformations �21�
and �24� lead to �red�1�=dẋ∧dx. As a result of simple com-
putation we obtain the following equation for m�x , ẋ�:

��D0m�
� ẋ

+
�m

�x
+

�

� ẋ
�− � �V

� ẋ
�

0

+ � d

dt
� �V

� ẍ
��

0
�

+
�

�x
�� �V

� ẍ
�

0
� = 0, �26�

which we rewrite as

�

� ẋ
�D0�m + � �V

� ẍ
�

0
� − � �V

� ẋ
�

0
� +

�

�x
�m + � �V

� ẍ
�

0
� = 0.

�27�

Equation �27� implies that

m + � �V

� ẍ
�

0

=
���x, ẋ�

� ẋ
,

D0�m + � �V

� ẍ
�

0
� − � �V

� ẋ
�

0

= −
���x, ẋ�

�x
�28�

for some function �. By virtue of Eq. �28�, � obeys

��D0��
� ẋ

= � �V

� ẋ
�

0

=
��V�0

� ẋ
�29�

or

D0� = �V�0 − Ṽ�x� , �30�

Ṽ�x� being an arbitrary �up to now� function of x alone.
In order to answer the question whether we can always

find, to the first order in g, the transformation which puts
�red�1� in Darboux form let us note that we are looking for a
transformation which, up to a given order, is defined globally
in the phase space �optimally, m�x , ẋ� is some polynomial
provided V is�.

Let us introduce the polar coordinates

x = r cos � , �31�

ẋ = �r sin � .

In terms of new coordinates Eq. �30� reads
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��

��
= − ���V�0�r cos �,�r sin �� − Ṽ�r cos ��� �32�

The right-hand side is some periodic function of �. There-
fore, one has

��

��
= �

n�0
�an�r�ein� + an�r�e−in�� + a0�r� �33�

and � is globally defined �periodic� provided a0�r�=0. Con-
sider the first term on the right-hand side �rhs� of Eq. �32�. It
is easy to see that the �-independent term must be a function
of r2. Consider the particular contribution of the form 	kr

2k;

it can be canceled by the term 	k
22k

�2k

k �
x2k entering Ṽ�x�. We

conclude that Ṽ�x� can be chosen in such a way that no
�-independent term appears on the rhs of Eq. �32�. With
such a choice m�x , ẋ�, defined first by Eq. �28�, defines the
transformation leading to standard symplectic form. Let us
note that there is a considerable freedom in the choice of

Ṽ�x�.
In order to find the meaning of Ṽ�x� let us note that Eqs.

�28� and �30� imply the following identity:

�D0
2 + �2�m + � �V

�x
�

0
− � d

dt
� �V

� ẋ
��

0

+ � d2

dt2� �V

� ẍ
��

0

=
�Ṽ

�x
.

�34�

Now, by computing ẍ from Eq. �23�, keeping terms up to the
first order and using Eq. �33� we arrive at the equation of
motion for x:

ẍ = − �2x − g
�Ṽ�x�

�x
. �35�

Therefore due to �x , ẋ�=1, the Hamiltonian computed to the
first order in g has the form

H = �1

2
ẋ2 +

�2x2

2
� + gṼ�x� . �36�

Let us generalize our analysis to arbitrary order in g. To this
end we write

x = q − �
n=1




gnmn�q, q̇� 	 q − M�q, q̇� , �37�

ẋ = q̇ − �
n=1




gnDmn�q, q̇� 	 q̇ − DM�q, q̇� ,

Let us note that the second formula does not represent an
explicit expansion in powers of coupling constant g. This is
due to the fact that D itself contains f�q , q̇� which is also
given as a power series in g.

Now, assuming that �red takes the standard form when
expressed in terms of x and ẋ, we can write

�red = dẋ ∧ dx = �1 −
�DM

� q̇
−

�M

�q
+

�DM

� q̇

�M

�q

−
�DM

�q

�M

� q̇
�dq̇ ∧ dq . �38�

By virtue of Eqs. �3�, �13�, and �38� we find that M obeys

�DM

� q̇
+

�M

�q
− � �DM

� q̇

�M

�q
−

�DM

�q

�M

� q̇
�

= g� �

� q̇
� �V

� q̇
−

d

dt
� �V

� q̈
�� −

�

�q
� �V

� q̈
�� . �39�

We want to solve Eq. �39� perturbatively in g. Assume it
holds up to nth order and consider the n+1 order. Note that
the expression in the parentheses is to be computed to nth
order only. Moreover, noting that M and DM are both at least
0�g� we conclude that the equation for the n+1 order contri-
bution to M reads

��D0mn+1�
� q̇

+
�mn+1

�q
= sum of known terms 	

�2Rn+1

� q̇2 ,

�40�

where the known rhs we have rewritten for further conve-
nience as a second derivative with respect to q̇ �which is
always possible�.

Equation �40� can be written in the form

�

� q̇
�D0mn+1 −

�Rn+1

� q̇
� +

�mn+1

�q
= 0. �41�

Again we conclude that

mn+1 =
��n+1

� q̇
, �42�

D0mn+1 −
�Rn+1

� q̇
= −

��n+1

�q
,

for some �n+1�q , q̇�. Equation �42� leads to the consistency
condition for �n+1.

D0
��n+1

� q̇
+

��n+1

�q
=

�Rn+1

� q̇
�43�

or

D0�n+1�q, q̇� = Rn+1�q, q̇� + Sn+1�q� . �44�

One can repeat the arguments used in the case of first-order
approximation. Namely, �n+1 is globally well- defined pro-
vided Sn+1 is chosen in such a way that no �-independent
term �cf. Eqs. �31�� appear on the rhs. This is always possible
so we conclude that one can construct the standard canonical
variables defined globally to arbitrary order in g.

Let us further note that the transformation �q , q̇�→ �x , ẋ�
of the phase space is defined in such a way that the second
canonical variable continues to be the time derivative of the
first one �for a given perturbative dynamics�. Therefore the
first Hamilton equation is an identity which, due to �x , ẋ�
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=1, leads to the standard form of the Hamiltonian,

H =
1

2
ẋ2 +

1

2
�2x2 + Ṽ�x;g� . �45�

This can be also checked explicitly. We have shown that,
order by order, one can reduce to the standard form the per-
turbative sector of the dynamics defined by the Lagrangian
�1�.

IV. HOMOGENEOUS POTENTIALS

Let us now consider the special case of homogeneous
monomial potentials,

V�q, q̇, q̈� = qkq̇lq̈m, m � 2; �46�

let us denote a=k+ l+m. For dimensional reasons one can
write

f�q, q̇� = �
n=0




gnfn�q, q̇� , �47�

where fn�q , q̇� are homogeneous polynomials of degree n�a
−2�+1.

Also, one can write the perturbative expansions for other
relevant quantities. First, we have

�red = �1 + �
n=1




gn�n�q, q̇��dq̇ ∧ dq , �48�

where �n�q , q̇� are homogeneous polynomials of degree
n�a−2�. On the other hand, we have seen in the last section
that there is large freedom in the choice of the functions
mn�q , q̇�. Indeed, they are determined by the choice of Sn�q�
�cf. Eq. �44��. There is only one condition restricting the
admitted form of Sn�q�: the sum on the rhs should not con-
tain the �-independent term. This is a rather weak condition
which allows one to add many terms �say, any homogeneous
polynomial of odd degree� containing new �also dimen-
sional� parameters. However, one can show that it is always
possible to choose the “minimal” Sn�s in the sense that the
only constants entering them are g and �. Assuming this is

the case up to the order n we conclude that
�2Rn+1

�q̇2 is a homo-
geneous polynomial of degree �n+1��a−2� depending only
on one constant �. Therefore Rn+1 can be also chosen as a
homogeneous polynomial of degree �n+1��a−2�+2 contain-
ing only one dimensional constant �. As a result, the
�-independent term in Rn+1 must be of the form r�n+1��a−2�+2

times a dimensionless constant. Then we can choose Sn+1�q�
as proportional to q�n+1��a−2�+2, and �n+1 obeying Eq. �44�
can be taken as a homogeneous polynomial of the same de-
gree depending only on �. So, by Eq. �42� mn+1 is homoge-
neous of degree n�a−2�+1. This concludes the inductive
proof.

With the minimal choice of the transformation �37� one

can easily write out the general form of the potential Ṽ�x ;g�
entering the Hamiltonian �45�; it reads

Ṽ�x;g� = �
n=1




vngn��l+2m−2�n+2x�a−2�n+2. �49�

Let us now consider the particular case of odd a. Notice that
Rn is of degree n�a−2�+2 which is odd for n odd. Therefore
Rn is then a homogeneous polynomial of odd degree so it
does not contain a �-independent term. So Sn can be chosen
as 	nqn�a−2�+2 with 	n arbitrary �in particular, one can take
	n=0�. It is not difficult to see that 	n can be chosen pertur-
batively order by order so that the odd terms in the expansion
�49� vanish. Indeed, let

Sn = 	qn�a−2�+2. �50�

Once Sn is selected, one can define, via Eqs. �37�, �42�, and
�44�, the variables x	 , ẋ	 to nth order. It is easy to see that the
relation between x0 , ẋ0 �corresponding to the choice 	=0�
and x	 , ẋ	, to the same order, reads

x0 = x	 + gn�m	�x	, ẋ	� , �51�

ẋ0 = ẋ	 + gnD0�m	�x	, ẋ	� ,

with

�m	 =
���n

� ẋ
, D0�m	 =

− ���n

�x
,

D0��n = 	xn�a−2�+2. �52�

Therefore adding the term �50� amounts to the following
change of the Hamiltonian:

H =
1

2
ẋ0

2 +
1

2
�2x0

2 + Ṽn�x0,g�

�
1

2
ẋ	

2 +
1

2
�2x	

2 + Ṽn�x	,g� + gnẋ	D0�m	 + gn�2x	�m	

=
1

2
ẋ	

2 +
1

2
�2x	

2

+ Ṽn�x	,g� − gn�ẋ	

�

�x	

− �2x	

�

� ẋ	
���n

= �1

2
ẋ	

2 +
1

2
�2x	

2 + Ṽn�x	,g�� − 	gnx	
n�a−2�+2. �53�

Adjusting properly 	 one can cancel, order by order, all odd

terms in Ṽ�x ,g�.
Concluding, we find that for odd monomial V�q , q̇ , q̈� one

can reduce, order by order, the perturbative potential Ṽ�x ;g�
to the form

Ṽ�x;g� = �
k=1




v2kg
2k�2�l+2m−2�k+2x2�a−2�k+2. �54�

Note that in this case the perturbative sector exhibits some
discrete nonlinear symmetry. In fact, the resulting standard
Hamiltonian is parity invariant: x→−x , ẋ→−ẋ is a symme-
try. Then, expressed back in original variables, the parity
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transformation produces nonlinear symmetry defined order
by order in coupling constant g.

V. SIMPLE EXAMPLE

Let us consider a simple model studied already in Refs.
�4,12�:

L =
1

2
q̇2 −

1

2
�2q2 − gqq̈2. �55�

It belongs to the class of models studied in the last section.
Equation �55� leads to the following equation of motion:

q̈ + �2q + g�3q̈2 + 4q̇q� + 2qq�IV�� = 0. �56�

The canonical variables read

q1 = q, q2 = q̇ ,

P1 = q̇ + 2g�q̇q̈ + qq�� , �57�

P2 = − 2gqq̈ .

It is also straightforward to write out the Hamiltonian

H = P1q2 −
P2

2

4gq1
−

1

2
q2

2 +
1

2
�2q1

2. �58�

In order to perform the reduction to the perturbative sector
we impose the constraint

q̈ = f�q, q̇� . �59�

Then, by virtue of Eq. �56�, f�q , q̇� obeys

f + �2q + g�3f2 + 4q̇�q̇
� f

�q
+ f

� f

� q̇
�� + 2q�q̇2 �2f

�q2 + q̇
� f

�q

� f

� q̇

+ f
� f

�q
+ 2q̇ f

�2f

�q � q̇
+ f� � f

� q̇
�2

+ f2 �2f

� q̇2� = 0. �60�

This equation, although quite complicated, can be solved
perturbatively order by order in g. For example, to the third
order in g one finds

f = − �2q − g�5�4q2 − 4�2q̇2� + g2�− 76�6q3 + 140�4qq̇2�

− g3�1959�8q4 − 6800�6q2q̇2 + 736�4q̇4� . �61�

The constraints �8� take the form

P1 − q̇ − 2g�q̇ ḟ + qq̇
� f

�q
+ qf

� f

� q̇
� � 0,

P2 + 2gqf � 0, �62�

while �red is given by

�red = �1 + 4gf + 4gq
� f

�q
+ 2gq̇

� f

� q̇
+ 2gqq̇

�2f

�q�q̇
+ 2gq� � f

� q̇
�2

+ 2gqf
�2f

� q̇2�dq̇ ∧ dq . �63�

Finally, the reduced Hamiltonian reads

�H� =
1

2
q̇2 +

1

2
�2q2 + g�− qf2 + 2q̇2f + 2qq̇2 � f

�q
+ 2qq̇f

� f

� q̇
� .

�64�

Now, one can try to find perturbatively the “normal” coordi-
nates x , ẋ. Following the method outlined in previous sec-
tions we found that, to the fourth order,

q = x + g��2x2 − 2ẋ2� + g2�50

3
�4x3 − 18�2xẋ2�

+ g3�760

3
�6x4 − 716�4x2ẋ2 − 84�2ẋ4�

+ g4�111 422

15
�8x5 − 25 928�6x3ẋ2 + 3030�4xẋ4�

+ O�g5� �65�

and

�H� =
1

2
ẋ2 +

1

2
�2x2 +

25

6
g2�6x4 +

30 136

45
g4�10x6 + O�g6� .

�66�

We see that our perturbative Hamiltonian, when put in nor-
mal form, becomes positively defined, at least up to fourth
order in g. We do not know whether this property persists in
higher orders. Let us note that our reduced Hamiltonian �64�
is not positive. For example, to the first order in g one finds
from Eqs. �61� and �64�

�H� =
1

2
q̇2 +

1

2
�2q2 − g�2��2q3 + 4qq̇2� , �67�

which is negative for large q , q̇.
On the other hand, to the same order �H�, when expressed

in terms of new coordinates, is simply the energy of the
harmonic oscillator. We conclude that, at best, we can expect
that our series defining new coordinates are asymptotic �note
that �H�, as given by Eq. �67�, becomes negative for q , q̇ of
order 1

g �.

VI. QUANTUM THEORY

Our ultimate goal is to quantize the higher derivative dy-
namical system. The main disadvantage of the Hamiltonian
formalism introduced by Ostrogradski is that some momenta
enter the Hamiltonian linearly. Therefore it is unbounded
from below. Contrary to the case where the Hamiltonian is
unbounded in small regions of phase space, this kind of un-
boundedness cannot be cured with the help of the uncertainty
principle. As a result, no stable ground state can exist.

However, one can ask whether it is possible to quantize
consistently the higher-derivative theory in the perturbative
sector. The first trouble is related here with the complicated
form of reduced symplectic structure. It is by far not sure
whether one can find the proper ordering procedure which
allows one to convert complicated Poisson brackets into
commutators obeying Jacobi identity.

The simplest way to define the perturbative quantum
theory seems to be the following. First, we construct on the
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classical level the transformation in reduced phase space
leading to the standard form of the Poisson bracket and the
Hamiltonian. Then the quantization can be performed in a
straightforward way. Moreover, if the classical Hamiltonian
appears to be bounded from below, the quantum theory pos-
sesses perturbatively the stable ground state. Once the theory
is quantized in “standard” coordinates one defines the quan-
tum counterparts of initial variables by inverting �perturba-
tively� the classical map and choosing a definite ordering �for
example, the Weyl one�.

The main problem here is that such a procedure is by far
not unique. In fact, we have seen in the previous section that
there is a large freedom in defining the classical transforma-
tion to standard coordinates. One can hardly believe that the
quantum theories resulting from different choices of such
transformations are equivalent. Moreover, in the process of
defining the perturbative transformation from q to x variables
one can introduce new �also dimensional� constants. On the
classical level they are spurious and disappear after coming
back to the original dynamical variables. This may not be the
case after quantization has been performed and the additional
parameters may appear to be relevant.

In order to illustrate this phenomenon let us go back to
our simple model. Consider the transformation

x = q + g��2q2 + �2 + 4�q̇2� + g2��− 2 −
50

3
��4q3

+ �− 32 − 22 − 24��2qq̇2� ,

ẋ = q̇ − 2g� + 4��2qq̇ + g2��42 + 22 − 26��4q̇q2

− 2�2 + 4��2q̇3� �68�

depending on one real parameter . In terms of new vari-
ables the Hamiltonian takes the form

�H� =
1

2
ẋ2 +

1

2
�2x2 − g� + 1��4x3

+ 5g2�1

2
2 +  +

4

3
��6x4 + O�g3� . �69�

For =−1 we obtain the parity invariant form.
Let us now compute the energies to the second order in g.

Standard perturbation theory gives

En = ���n +
1

2
� +

25

8
g2�2�4�n2 + �n + 1�2�

+
1

2
g2�2�4� + 1�2. �70�

We see that the energy eigenvalues depend on , although it
is only an overall shift. It is interesting to note that the ener-
gies take minimal values in the parity-invariant case.

The ambiguity considered above is rather mild. We could
add other terms, much more complicated and containing new
dimensional constants. Let us remind that the only condition
imposed, order by order, on new Sn �cf. Eq. �44�� is that the
rhs contain no �-independent terms. Keeping this in mind
one can easily understand that the resulting form of the stan-
dard Hamiltonian can vary considerably depending on the
particular transformation chosen. This may have a strong im-
pact on the form of energy spectrum. The resulting quantum
theories become nonequivalent. This effect can be ultimately
ascribed to the ordering problem.
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APPENDIX

The main property of the symbol �·� introduced in Sec. II
is expressed by the equation �12�

�d�F�
dt

� = D�F� = �dF

dt
� . �A1�

To see this let us note that �12�

d�F�
dt

= �dF

dt
� +

��F�
� q̇

�q̈ − f� .

Due to �q̈− f�=0 we find

�d�F�
dt

� = �dF

dt
� .

Also D�F�= �D�F�� and D�F�= �D�F��=� d�F�

dt
�=� dF

dt
�.

Iterating Eq. �A1� one obtains

�d2F

dt2 � = � d

dt
�dF

dt
�� = � d

dt
�d�F�

dt
�� = �d2�F�

dt2 �
and

D2�F� = D�D�F�� = � d

dt
�D�F��� = �d2�F�

dt2 � .

Therefore

�dn�F�
dtn � = Dn�F� = �dnF

dtn � .
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