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We consider quantum fluctuations of the Casimir-Polder force between a neutral atom and a perfectly
conducting wall in the ground state of the system. In order to obtain the atom-wall force fluctuation we first
define an operator directly associated with the force experienced by the atom considered as a polarizable body
in an electromagnetic field and we use a time-averaged force operator in order to avoid ultraviolet divergences
appearing in the fluctuation of the force. This time-averaged force operator takes into account that any mea-
surement involves a finite time. We also calculate the Casimir-Polder force fluctuation for an atom between two
conducting walls. Experimental observability of these Casimir-Polder force fluctuations is also discussed, as
well as the dependence of the relative force fluctuation on the duration of the measurement.
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I. INTRODUCTION

A striking consequence of quantum electrodynamics is
that the radiation field, even in its ground state, has fluctua-
tions of the electric and magnetic fields around the zero
value �1,2�. This theoretical prediction has many remarkable
observable consequences. One of them is the prediction of
the existence of electromagnetic forces between two or more
uncharged objects in the vacuum. The existence of these
forces was first predicted in two papers by Casimir �3� and
by Casimir and Polder �4� in 1948, and, from then onwards,
interest in this subject has grown exponentially. Many ex-
periments have definitively proved these effects with remark-
able precision, measuring the Casimir force between a lens
and a wall �5,6�, between a neutral atom and a wall �7–9�,
between a surface and a Bose-Einstein condensate �10,11�,
and between two metallic neutral parallel plates �12,13�.

One aspect of Casimir-Polder forces has not received, in
our opinion, enough attention: the value calculated for the
force is actually an average value, and it may in principle
exhibit quantum fluctuations. The study of fluctuations
of Casimir-Polder forces could be relevant for the stability
of micro- and nanoelectromechanical systems �MEMS and
NEMS�, which are devices based on controlling the move-
ment of metallic objects separated by distances of the order
of micrometers or nanometers, where Casimir forces may be
relevant �14,15�.

Casimir and Casimir-Polder force fluctuations have been
studied, with different approaches, by Barton �16–18�,
Eberlein �19,20�, Jaekel and Reynaud �21�, and Wu et al.
�22,23�. Our approach follows that of Barton, with the dif-
ference that, whereas Barton studied only entirely macro-
scopical systems, we apply his method of time-averaged op-
erators to the study of systems with also one atom present.

In this paper we calculate the fluctuations of the Casimir-
Polder force between a neutral atom and a perfectly conduct-
ing wall in the ground state of the system. We first introduce
an operator directly associated with the force experienced by

a polarizable body in an electromagnetic field. Since the qua-
dratic mean value of the force proves to be divergent, we
make use of the method of time-averaged operators intro-
duced and widely used by Barton in his papers about fluc-
tuations of Casimir forces for macroscopic bodies �16–18�.
The analytical techniques used are introduced in Sec. II,
whereas a detailed calculation is given in Sec. III. In Sec. IV
the Casimir-Polder force fluctuation is obtained in the case of
an atom between two parallel walls: this permits us to spe-
cialize our results to a system for which the atom-wall
Casimir-Polder force has been measured with precision �7,8�.
In the Conclusions, we make further remarks on our results
and outline possible future developments.

II. FORCE OPERATOR AND THE METHOD
OF TIME-AVERAGED OPERATORS

Let us first briefly review the method often used to calcu-
late the average Casimir-Polder force between an atom and a
neutral conducting wall. The calculation is carried out by
considering the interaction energy of the atom with the ra-
diation field in the vacuum state. A convenient choice is to
use the effective interaction Hamiltonian given by �24�

W = −
1

2 �
kk�j j�

��k�Ekj�rA� · Ek�j��rA� , �1�

where

E�r� = �
kj

Ekj�r� = i�
kj

�2���k

V
�akj − akj

† �f�kj,r� , �2�

��k� being the dynamical polarizability of the atom and
f�kj ,r� the mode functions used for the quantization of the
electromagnetic field in the presence of the wall. This Hamil-
tonian is correct up to order ��e2, e being the electron
charge. This effective Hamiltonian allows considerable sim-
plification in the calculation of Casimir-Polder potentials, in
both stationary and dynamical cases �25–27�. The presence
of the wall is taken into account by considering a conducting
cubic cavity defined by*roberto.passante@fisica.unipa.it
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where L is the side of the cavity and V=L3 its volume. The
mode functions for this box have components �1,28�

fx�kj,r� = �8�ekj�x cos�kx	x +
L

2

�sin�ky	y +

L

2

�sin�kzz� ,

fy�kj,r� = �8�ekj�y sin�kx	x +
L

2

�cos�ky	y +

L

2

�sin�kzz� ,

fz�kj,r� = �8�ekj�z sin�kx	x +
L

2

�sin�ky	y +

L

2

�cos�kzz� ,

�4�

where ekj are polarization unit vectors and the allowed val-
ues of k have components

kx =
l�

L
, ky =

m�

L
, kz =

n�

L
, l,m,n = 0,1,2, . . . .

�5�

We obtain a correct description of a conducting wall located
in z=0 by taking the limit L→ +�.

We now calculate the quantum average of the operator �1�
on the ground state �0
 of the electromagnetic field. If we
consider the atom located in rA= �0,0 ,d�, with d�0, we
obtain

E�d� = �0�W�0
 = −
��c

V
�
kj

k��k��f�kj,rA� · f�k�j�,rA�� .

Because this interaction energy depends on the z coordinate
of the atom, in a quasistationary approach the atom experi-
ences a force given by

FA�d� = −
�

�d
E�d� . �6�

Using the explicit expression of the mode functions
f�kj ,r� it is easy to get the result

FA�d� = −
3�c�

2�d5 , �7�

where d is the atom-wall distance, � is the static polarizabil-
ity of the atom, and the minus sign indicates that the force is
attractive. The expression �7� is valid in the so-called far
zone defined by the condition d�c /�0, �0 being a typical
atomic transition frequency. This result coincides with that
obtained by Casimir and Polder �4�. Effects related to a pos-
sible motion of the atom have been recently considered in
the literature by inclusion of the atomic translational degrees
of freedom �29,30�.

This method provides a physically transparent way for
calculating the average force on the atom but it does not
enable one to easily obtain the quadratic average value of the
force, necessary for the fluctuation. Thus we introduce a new
operator associated with the force on the atom. In order to
define such an operator we formally take minus the deriva-

tive of the operator �1� with respect to the z coordinate of the
atom d, treated as a parameter. So we take the following
quantity as the force operator:

FA = −
�

�d
W = −

��c

V
�

kk�j j�

�kk���k��akj − akj
† ��ak�j� − ak�j�

† �

	FA�kj,k�j�,d� , �8�

where

FA�kj,k�j�,d� =
�

�d
�f�kj,rA� · f�k�j�,rA�� . �9�

It is easy to show that the quantum average of the opera-
tor �8� on the vacuum state �0
 gives back the expression �7�
of the force, since the derivation with respect to d commutes
with the quantum average. This force operator is correct up
to order �. We can now consider the operator corresponding
to the square of the force—that is,

FA
2 = 	��c

V

2

�
kk�j j�

pp�ll�

�kk�pp���k���p��akj − akj
† ��ak�j� − ak�j�

† �

	 �apl − apl
† ��ap�l� − ap�l�

† �FA�kj,k�j�,d�FA�pl,p�l�,d� .

�10�

Using this operator, however, we find that the average
squared value of the force has an ultraviolet divergence that
cannot be regularized by a cutoff function. An analogous
problem was encountered by Barton in his works on force
fluctuations for macroscopic bodies �16–18�. In order to
solve this problem, he proposed to consider explicitly that
every real measurement must involve a finite time T and thus
considered a temporal average of the force. The basic idea is
to integrate on time the quantum average value with a re-
sponse function f�t� describing the measurement process.
Then, FA being the force operator in the Schrödinger repre-
sentation and H the Hamiltonian of the system, the time-
averaged force with an instrument characterized by a normal-
ized response function f�t� is given by

FA�d� = �
−�

+�

dtf�t��0�F�t��0


= �
−�

+�

dtf�t��0�e�i/��HtFe−�i/��Ht�0
 . �11�

Expression �11� can be thought of as the quantum average
on the state �0
 of the time-averaged operator

FA = �
−�

+�

dtf�t�e�i/��HtFAe−�i/��Ht, �12�

which is a time-independent operator whose definition de-
pends on the properties of the instrument used for the mea-
surement.

The choice of using the operator FA does not change our
results for the average force, whereas it introduces, as we
will show in the next section, a natural frequency cutoff in
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the average squared value of the force, such as e−�T. This is
indeed reasonable since an instrument with an integration
time T does not resolve processes with frequencies larger
than T−1.

It is worth saying a few words on the idealized assump-
tion of a perfectly conducting wall and considering if this
assumption could be somehow related to the ultraviolet di-
vergence of the force fluctuation. In order to address this
point, we can compare the average of the squared force �10�
with the analogous expression that is obtained in free
space—i.e., in the absence of a wall. For an atom in free
space the average force acting on it is zero, of course, but
there are force fluctuations around the zero value, due to
vacuum field fluctuations. Also in this case the force fluctua-
tion is ultraviolet divergent, and it is given by an expression
similar to Eq. �10�, with the free-space field modes. Thus it
seems evident that the divergence of the force fluctuation
cannot be directly related to the assumption of a perfect mir-
ror, because similar divergent fluctuations occur also in the
absence of a wall. These divergences seem rather related to
the well-known ultraviolet divergences of vacuum field fluc-
tuations. However, it is likely that when the average value of
Eq. �10� is evaluated, the actual result may depend on the
properties of the mirror at high frequencies, in particular on
its conductivity. Thus it can be relevant to consider the role
of the finite conductivity of a real mirror, quite apart from the
problem of divergences. This point will be discussed in the
next section, in particular by comparing the finite duration of
the force measurement with the inverse of the mirror’s
plasma frequency.

III. FLUCTUATION OF THE CASIMIR-POLDER FORCE
BETWEEN AN ATOM AND A WALL

We now use Eq. �12� to define the time-averaged operator
associated to the square of the force, which is

�FA�2 = �
−�

+�

dtf�t��
−�

+�

dt�f�t��e�i/��HtFAe−�i/��H�t−t��

	FAe−�i/��Ht�. �13�

In this equation, H is the total Hamiltonian of the system—
i.e., H=HF+HA+W, where HF and HA are, respectively, the
Hamiltonian of the free electromagnetic field and of the
atom, and W is the interaction term introduced in the previ-
ous section. We have obtained, for the mean force, a result
correct to the first order in the polarizability � of the atom.
As a consequence, a coherent result for the average value of
the square of the force should contain the second power of �.
Since FA is an operator of order �, it is clear from Eq. �13�
that we must retain only HF+HA instead of H in the expo-
nentials, in order to have a mean quadratic value of FA pro-
portional to �2. Besides, as the state �0
 does not contain
atomic variables, it is sufficient to put H=HF in Eq. �13�.

Thus, taking the response function f�t� as a Lorentzian of
width T given by

f�t� =
1

�

T

t2 + T2 , �14�

we obtain the following expression for the fluctuation 
FA
= ��FA

2
− �FA
2�1/2 of the Casimir-Polder force on the atom:

�
FA�2 =
1

2 �
kk�j j�

��0�FA�1kj1k�j�
�
2�g�� + ����2, �15�

where

g��� = �
−�

+�

dtf�t�e−i�t = e−���T �16�

is the Fourier transform of the response function f�t�. Ex-
pression �15� is valid both in the near and far zone. From this
expression we obtain the final result for the force fluctuation,
approximated to the far zone,


FA =
�c�

4�

1

c5T5�1 + 	 cT

d

2�4�5 + 40	 cT

d

2

+ 145	 cT

d

4

+ 317	 cT

d

6

+ 400	 cT

d

8

+ 285	 cT

d

10

+ 10	 cT

d

12

+ 86	 cT

d

14�1/2

. �17�

It is evident from Eq. �15� that the use of the time-averaged
operator introduces a frequency cutoff e−c�k+k��T, where T is
the duration of the measurement, which makes finite the
force fluctuation.

When the high-frequency finite conductivity of a real mir-
ror is taken into account, the mirror becomes transparent for
frequencies larger than its plasma frequency:

�P =�4�Ne2

m
, �18�

N being the density of free electrons, and e and m the elec-
tron charge and mass, respectively. The importance of this on
the atom-wall force fluctuation depends on the ratio between
T−1 �the cutoff due to the finite measurement time� and �P. If
the plasma frequency is larger than T−1, the finite conductiv-
ity of the mirror should not give relevant effects; on the
contrary, it can yield relevant effects if �P�T−1. A typical
value of the plasma frequency is �1016 Hz, and thus we can
neglect finite-conductivity corrections for force measure-
ments lasting more than 10−16 s. In the cases we shall con-
sider in the next section, in particular when parameters from
the experiment in Ref. �8� are considered, measurement
times are much larger than this value and thus the corrections
due to the finite conductivity of the mirror can be neglected.

We can easily study the behavior of the relative fluctua-
tion, which is the standard deviation of the force divided by
the absolute value of the average force, in two different lim-
iting cases. When d�cT we get
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FA

��0�FA�0
�
=

1

3
�43

2
	 d

cT

6

, �19�

whereas in the case d�cT we have


FA

��0�FA�0
�
=

�5

6
	 d

cT

5

. �20�

In the first case, the force fluctuation seems to be negligible
compared to the average force, while in the second case it
would result much larger than the average force, thus experi-
mentally observable. Similar conclusions concerning the ex-
perimental observability of the fluctuations of the atom-wall
Casimir-Polder force have been obtained in Ref. �22� �only
in the far zone�, using a quite different approach based on the
Langevin equation for the Brownian motion of a test particle
due to field fluctuations in the presence of the wall. They also
find that force fluctuations are negligible in experiments that
measure the force averaged on a large time �compared to
d /c�, while they can be significant for shorter time scales.

When the atom-wall distance is of the order of d
�1 �m �typical distance in actual experimental setups �5��
the time scale which separates the two regimes is T
�10−14 s, which is a very short time scale but probably no
longer impossible nowadays. According to our previous dis-
cussion on corrections due the properties of a real mirror at
frequencies larger than its plasma frequency �P, the high-
frequency finite conductivity of a typical mirror should not
play a significant role even for such a short time scale �which
is larger than the inverse of a typical plasma frequency�.
Hence, to evaluate the experimental observability of the fluc-
tuations we need a reasonable value of the measurement time
T. In order to compare our theoretical predictions for the
force fluctuations with actual precision measurements of the
atom-wall Casimir-Polder force in the far zone, we have ex-
tended our calculations to the system of one atom between
two parallel metallic walls. In fact, for this system well-
established precision measuements exist �8�.

IV. FLUCTUATIONS OF THE CASIMIR-POLDER
FORCE ON AN ATOM BETWEEN TWO

CONDUCTING WALLS

In order to take into account the presence of the two par-
allel walls separated by a distance L, we make use of the
mode functions associated to a conducting parallelepiped
cavity defined by

−
L1

2
� x �

L1

2
, −

L1

2
� y �

L1

2
, −

L

2
� z �

L

2
,

�21�

which are easily found to be

fx�kj,r� = �8�ekj�x cos�kx	x +
L1

2

�

	sin�ky	y +
L1

2

�sin�kz	z +

L

2

� ,

fy�kj,r� = �8�ekj�y sin�kx	x +
L1

2

�

	cos�ky	y +
L1

2

�sin�kz	z +

L

2

� ,

fz�kj,r� = �8�ekj�z sin�kx	x +
L1

2

�

	sin�ky	y +
L1

2

�cos�kz	z +

L

2

� . �22�

In the limit L1→ +� we obtain two infinite conducting walls
located in z= ±L /2. Following the same steps of Secs. II and
III we obtain the following expression for the average force
on the atom:

FA�d� = −
�4�c�

8L5

sin	3�d

L

 − 11 sin	�d

L



cos5	�d

L

 , �23�

where L is the distance between the two walls and −L /2
�d�L /2 is the distance of the atom from the plane in the
middle of the plates. This force vanishes for d=0 for sym-
metry reasons. This result coincides with a result already
obtained by Barton �31�. We have then calculated, using the
time-averaged operator method described in Sec. II, the
value of the relative fluctuation of the force. We find that also
in this case the relative fluctuation depends on the measure-
ment time. Since the experiment in �8� consists in the pas-
sage of a beam of atoms between the two walls, an estimate
of the integration time T can be obtained from the length of
the cavity �8 mm in the mentioned experiment� and the av-
erage speed of the atoms. This average velocity can be easily
obtained from the Maxwell-Boltzmann distribution of the at-
oms, and thus we get T�10−5 s. In this case the expression
of the relative fluctuation can be simplified, yielding


FA

��0�FA�0
�
�

e−�cT/L

	2�cT

L

5/2

	
cos6�106�d �m−1��

�sin�3 	 106�d �m−1�� − 11 sin�106�d �m−1���
,

�24�

where we have used the fact that L=1 �m and units for the
distance d have been excplicitly specified. This function di-
verges for d→0 �since the average force vanishes for d=0�,
but is already negligible for d�10−10 m—that is, at a dis-
tance of the order of the Bohr radius. Consequently, we can
conclude that in this experimental setup the fluctuation of the
force is so small to be hardly observable. This does not ex-
clude observability of the fluctuation of the Casimir-Polder
force in future experimental setups characterized by shorter
measurement times, of course.
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V. CONCLUSIONS

In this paper we have considered the fluctuation of the
Casimir-Polder force experienced by a neutral atom in front
of an uncharged conducting wall or between two parallel
uncharged walls. We have first introduced a quantum opera-
tor directly associated with the force on the atom, considered
as a microscopic polarizable body, due to the electromag-
netic field. This operator has been obtained by taking minus
the derivative of the operator corresponding to the atom-field
effective interaction energy with respect to the coordinate of
the atom normal to the plate�s�. This operator has been used
to calculate the mean force in both configurations. As for the
quadratic mean value, in order to go beyond the nonregular-
izable ultraviolet divergences encountered, we have used the
method of time-averaged operators, previously used by Bar-
ton for the Casimir force fluctuation between macroscopic
bodies. We have obtained the relative fluctuation both in the
cases of one and two walls. In the case of one wall, the value
of the relative force fluctuation strongly depends on the ratio
between the atom-wall distance d and the distance cT trav-
eled by the light during the measurement time T. Fluctua-

tions are larger the smaller is the duration of the force mea-
surement. In the case of two walls, we have been also able to
estimate the experimental observability of this fluctuation in
a recent precision experiment on the atom-wall Casimir-
Polder force in the far zone �8�, concluding that in this ex-
periment the fluctuations are very small and hardly observ-
able. Our results show that force fluctuations should,
however, be observable in experiments in which the force is
measured in much shorter time scales. Future extensions of
this work involve the calculation of the Casimir-Polder force
between two atoms �retarded van der Waals force�, where
one may expect that the relative fluctuation of the force
could be significantly larger because only microscopic ob-
jects are involved.
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