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A nonadiabatic change of the control field or the low-frequency coherence allows for an almost instanta-
neous change of the signal field propagating in a thick resonant absorber where electromagnetically induced
transparency is realized. This finding is applied for the storage, retrieval, and splitting of the signal into two
parts separated by a time interval that is as long as the lifetime of the low-frequency coherence. Pulse shaping
is also possible.
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A seminal idea of storage and retrieval of light pulses
�SRLP� using a medium with electromagnetically induced
transparency �EIT� was proposed in Ref. �1� by Fleischhauer
and Lukin. Shortly after the proposal, SRLP was experimen-
tally demonstrated in ultracold Na, in hot Rb vapor, and in a
solid �Pr:YSO� �2�. Later, SRLP received much attention in
the framework of quantum computing and quantum memory
�see, for example, Ref. �3��. The core idea of such a storage
is the dark-state polariton �DSP�, which is a particular super-
position of the signal pulse amplitude and the low-frequency
atomic coherence �1�. The latter is created in a two-quantum
process by the signal pulse, driving the transition from the
ground state �g� to an excited state �e�, together with the cw
control field, driving the transition between �e� and a meta-
stable state �m� �see inset in Fig. 1�. Reducing adiabatically
the amplitude of the control field to zero, one can stop this
polariton in a state that has zero amplitude for the signal
pulse component and a nonzero amplitude for the component
containing the coherence g−m. This coherence resembles a
standstill “spin wave” whose spatial shape coincides with the
spatial shape of the signal pulse if it were to have zero group
velocity V=0. An adiabatic increase of the control field am-
plitude from zero back to its initial value retrieves the signal
pulse from the spin wave, both propagating with group ve-
locity V�0. This simple picture is applicable since the DSP
is an eigenstate of the atom-field system and, hence, any
adiabatic change of its parameters keeps the system in the
changing DSP state. Later, it was shown �4� that an abrupt
change of the control field gives almost the same result.

In this paper we show that the coincidence of the adia-
batic and nonadiabatic regimes of switch off and on is not
accidental. We show that any instantaneous change of the
control field amplitude to an arbitrary value does not affect
the spin wave amplitude but changes proportionally the sig-
nal field amplitude. This is because for the slow DSP an
atom-field coupling constant gc, multiplied by the square root
of a macroscopic number of atoms, N, is much greater than
the Rabi frequency of the control field �. Therefore, gc

�N is
always much greater than any reasonable variation of �.
This secures the adiabatic change of the DSP state for an
arbitrary change of the control field. On the contrary, any
change of the spin wave amplitude—for example, by rf
pulses—causes a proportional change of the signal field am-
plitude. This is because the spin wave component is the

backbone of the DSP, specifying all its properties. Our find-
ings give opportunities to coherently control the radiation
field and to pulse shaping.

First, we give qualitative arguments based on the DSP
properties. Then, we prove our speculations by an analytical
solution of the atom-field equations for two examples of the
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FIG. 1. Three-dimensional plot showing the spatial-temporal
evolution of the signal field. Coordinates z, t, and amplitude � of
the signal field are in arbitrary units. The instances of the control, t1,
t2, and t4, are indicated by arrows, as well as the end of the sample
z= ls. By step �� we show the abrupt change of the coupling field,
and by two bars we show rf pulses. The excitation scheme of the
four-level atom is shown in the inset �see the text for details�.
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abrupt changes of the coupling field and the spin wave. The
DSP has the form �1�

��z,t� = cos ��t�Ê�z,t� − sin ��t��N�̂gm�z,t� , �1�

where Ê�z , t� is the signal field operator, �̂gm is the g−m
coherence operator for the atomic ensemble, and tan ��t�
=gc

�N /�. The DSP propagates with group velocity V
=c cos ��t�. If the control field creates a transparency win-
dow for the signal field and V�c, then we have ��� /2
and, hence, �Ngc��. Therefore, an arbitrary change of �
almost does not change sin ��t��1 and the spin wave keeps
its spatial shape, while cos ��t� changes proportionally to
��t� and, hence, the group velocity of the DSP changes. It is
well known that EIT appears due to population trapping in
the dark state �5�: �d�=cos �1 �g�−sin �1 �m�, where tan �1
=� /� and � is the Rabi frequency of the signal field
�����. We remind the reader that the g−m coherence
	g � �̂gm �m��−� /� specifies the spin wave amplitude. If the
population trapping is not destroyed by the change of the
control field, the amplitude of the signal field should change
proportionally to conserve the ratio � /�. Thus, an arbitrary
change of � is immediately followed by a change of �,
conserving the spin wave amplitude, and an arbitrary change
of the spin wave �for example, by an rf field� produces a
change of � for the same reason. A nonadiabatic change of
the spin wave by short rf pulses is of interest since it allows
storage and splitting of quantum information �6,7�.

We consider a simplified excitation protocol to prove the
arguments given above. First, we double the intensity of the
signal pulse by an instantaneous doubling of the intensity of
the control field. This operation doubles the group velocity of
the signal pulse. Then by a short rf pulse we transfer half of
the population of the metastable state �m� to another hyper-
fine level �M� of the ground-state atom, also metastable. This
imprints a snapshot of the spatial shape of the spin wave to
state �M� �7�. Since state �M� is supposed to be not coupled
to the other atomic states by the driving fields, this part of the
spin wave comes to a standstill. But what is left in state �m�
continues propagating with group velocity 2V. Its probability
amplitude reduces by a factor of 1 /�2 and, therefore, the
intensity of the signal pulse drops back to its initial value.
After some delay time, which is long enough to ensure that
the signal pulse has left the medium, we apply an rf pulse to
bring back the atomic population from state �M� to state �m�,
which has been emptied by this time. The control field acts
on the appearing standstill spin wave in state �m� such that
the signal pulse is produced again and both the spin wave
and the signal pulse travel with group velocity 2V.

Initially, two ground-state levels m and M are depopulated
by optical pumping and only state g is populated. The control
field �cw� and the signal pulse, which enters the sample at
t0=0, propagate along coordinate z. The spectral width of the
pulse �� is smaller than the width of the transparency win-
dow, �T=2�2 /	, where 	 is the decay rate of the coherence
g−e, which is fast, 	
2�2�. Since the signal pulse is weak,
we can apply the linear response approximation for a solu-
tion of the Schrödinger equation for the atomic state:

��� = Cg�g� + Cm�m� + CM�M� + Ce�e� , �2�

where CM =0. State �M� need only be considered when the rf
pulse is applied. In this approach it is sufficient to consider
only the evolution of the amplitudes Cm and Ce, which are
described by the equations

�X�z,t�/�t = ��z,t�Y�z,t� , �3�

�Y�z,t�/�t = − 	Y�z,t� − ��z,t�X�z,t� − ��z,t� , �4�

where X=Cm and Y = iCe. Here it is assumed that Cg�1
holds with a small deviation of the order of �� /��2�1. If
the condition of the adiabatic following of the dark state,
����T, is satisfied, an approximate solution of Eqs. �3� and
�4� can be easily found �8�:

X�z,t� = − ��z,t�/� + ¯ , �5�

Y�z,t� = − �t�z,t�/�2 + ¯ , �6�

where �t�z , t�=���z , t� /�t and the ellipses stand for terms
that are at least �� /�T times smaller. The wave equation for
� is

L̂c��z,t� = i�Cg
*Ce � �Y�z,t� , �7�

where � is the coupling constant �8� and L̂c is the differential

operator L̂c=�z+c−1�t, where the subscript c stands for the
group velocity of the wave. Substitution of the solution �6�
into Eq. �7� gives L̂c��z , t�=−�� /�2��t�z , t�, which can be

transformed to L̂V1
��z , t�=0, where V1= �c−1+� /2�2�−1 is

the new group velocity. The solution of this equation is
��z , t�=�0�t−z /V1�, where �0�t� is the amplitude of the sig-
nal field at the input.

At time t1
0, when the pulse is in the sample, we
abruptly change the amplitude of the control field,
��z , t�=��1+h�t− t1−z /c��, where �t� is the Heaviside
step function, and we choose h=�2−1 to double its intensity.
This stepwise change of the control field amplitude propa-
gates in the sample with velocity c. Before it arrives at the
atoms with coordinate z—i.e., for t� tz= t1+z /c—their am-
plitudes X�z , t� and Y�z , t� are described by Eqs. �5� and �6�.
After tz, the solution of Eqs. �3� and �4� gives the amplitudes

X�z,t� � −
��z,t�
�2�

−
Kx�t − tz�

�2�
�0�tz − z/V1� , �8�

Y�z,t� � −
�t�z,t�

2�2 + Ky�t − tz��0�tz − z/V1� , �9�

where

Kx��� = h
	+e−	−� − 	−e−	+�

	+ − 	−
��� , �10�

Ky��� = h
e−	−� − e−	+�

	+ − 	−
��� , �11�
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	± =
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4
− 2�2. �12�

Here, the first and second terms in the solution �8� and �9�
represent the main contributions originating from the nonho-
mogeneous term −��z , t� in Eq. �4� and from the initial con-
dition at tz. The omitted terms are at least �� /�T times
smaller.

Before tz, the atomic state ��� was close to the dark state
�d� with tan �1=�0 /�, the state that is uncoupled from the
signal and control fields. The abrupt change of the control
field amplitude from � to �2� makes this state coupled
since it acquires a particular component, which is the bright
state �b�=sin �2 �g�+cos �2 �m�, coupled to the signal and
control fields �5�, where tan �2=�0 /�2�. The probability
amplitude of �b� is proportional to the signal field amplitude
�0. Therefore, the amplitudes of the transient part of the
solution—i.e., the second terms in Eqs. �8� and �9�—are pro-
portional to the signal field amplitude �0. Because of the fast
decay of the excited state, the atom terminates its evolution
in a new dark state with the mixing angle �2 �see Eq. �8��.

With the solution �9�, the propagation equation �7� can be
transformed to

L̂c��z,t� = − A�z,t��t�z,t� + �Ky�t − tz��0�tz − z/V1� ,

�13�

where A�z , t�=�1+ ��2−�1��t− tz�, �1,2=V1,2
−1 −c−1, and

V2= �c−1+� /4�2�−1 is the new group velocity of the signal
field after the jump of the amplitude ��z , t�. The solution of
Eq. �13� for t� tz is ��z , t�=�0�t−z /V1�. For t
 tz this so-
lution changes to

��z,t� = �0�T� + F�z,t� , �14�

F�z,t� = �

0

z

Ky�t − tz� −
z − z�

V2
��0�tz� − z�/V1�dz�,

�15�

where T=��V2 /V1��t− tc− �z−zc� /V2�, �= �c−V1� / �c−V2�,
and tz�= t1+z� /c. zc=V1tc is a coordinate where at time
tc= t1c / �c−V1� the central part of the signal pulse changes its
velocity from V1 to V2. Taking the integral �15� by parts and
retaining only the two main terms, we obtain

F�z,t� = �h�0�T� − �Kx�t − tz��0�tz − z/V1� , �16�

where �= �c−V2� /c. After a short time t− tz=�	1/	, the
function Kx�t− tz� decays to zero. If c�V1 ,V2, then V2

=2V1, ����1, and zc�V1t1, and hence, for t
 tz+�	 we
have ��z , t�= �1+h��0�T� where T=2�t− t1− �z−zc� /V2�.
This means that after an abrupt change of the amplitude of
the control field the amplitude of the signal field also
changes by the same factor �1+h�. In such a way the
ratio ��z , t� /��z , t� is conserved. Since Cm�z , t�
�−��z , t� /��z , t�, the spin wave also conserves its ampli-
tude and length. The latter coincides with the spatial length
of the signal pulse in the sample before the change of the
control field. This length is lp=V1tp1

, where tp1
=1/�� is the

duration of the signal pulse at the input. Meanwhile, the spin
wave and the signal field alter their group velocity from V1 to
V2. Therefore, the duration of the signal pulse shortens to
tp2

= tp1
V1 /V2= tp1

/2 such that the spatial length lp of the
pulse and the spin wave is conserved.

At time t2= t1+�	+ lp /c, all spatial components of the spin
wave and the signal pulse complete such a transformation.
Following our scheme of the signal field processing, at time
t2 we apply a short, rectangular-shaped rf pulse, which drives
resonantly the transition m−M �see inset in Fig. 1�. The
wavelength of the rf pulse is much greater than the spatial
length lp of the signal pulse. Therefore, we disregard its spa-
tial dependence. The evolution of the probability amplitudes
Cm and CM of the atomic state ���, Eq. �2�, is described by
the equations

�Cm/�t = iPCM + i�Ce, �17�

�CM/�t = iPCm. �18�

where P is the amplitude of the coupling m−M with the
resonant rf pulse. We take P�� and choose the duration of
this pulse, �rf, such that it forms a so-called � /2 pulse:
P�rf =� /4. Before the rf pulse, we have CM =0 and
Cm=−�0 /�. Since �rf��1, we can disregard the interac-
tion with the control field during the rf pulse. Then, at the
end of the pulse, t3= t2+�rf, we have Cm=−�0 cos�P�rf� /�
=−�0 /�2� and CM =−i�0 sin�P�rf� /�=−i�0 /�2�. To
simplify our consideration, we assume that the transition
M −e is not allowed or far from resonance. Therefore the
presence of the coherence m−M does not influence the
signal and the control fields. Only the change of the
probability amplitude Cm introduces transients. They are de-
scribed by Eqs. �3� and �4�, where ��z , t� and ��z , t� are
replaced by �2�0 and �2� �these amplitudes were present
before the rf at t2� t3�. At the end of the rf pulse, t3,
the initial condition for an atom with coordinate z is
X�z , t3�=−�0�T3� /�2� and Y�z , t3�=−�t

0�T��t=t3
/�2�2,

where T3= �V2 /V1��t3− t1− �z−zc� /V2�. After these modifica-
tions the solution of Eqs. �3� and �4� is

Y�z,t� � −
�t�z,t�

2�2 − Ky�t − t3��0�T3� , �19�

with the initial condition �t�z , t3�=�2�t
0�T��t=t3

.
The solution of the wave equation �7� for t� t3 is

��z , t�=�2�0�T�. For t
 t3, the right-hand side of this equa-
tion changes to Eq. �19�. Then its solution transforms to
��z , t�=�2�0�T�−F1�z , t�, where F1�z , t� coincides with the
function F�z , t� in Eq. �15�, if tz� and V1 are replaced by t3

and V2, respectively. Within the same approximation adopted
for F�z , t�, we obtain F1�z , t�=h��0�T�−�Kx�t− t3��0�T3�.
Thus, after a short time �	—i.e., for t
 t3+�	—and if
��1, we have ��z , t�=�0�T�. This means that after the
switch off of the rf pulse the signal field changes its ampli-
tude to its original value, which was at the input of the
sample.

We allow the signal field, having resumed its original am-
plitude, to leave the sample. The spin wave Cm�z , t� accom-
panying the signal field and propagating with group velocity
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V2 vanishes at the sample end, z= ls. Meanwhile, the snap-
shot of the signal field at time t2 was imprinted by the rf
pulse to the probability amplitude CM�z , t3�=−i�0�T3� /�2�
of state �M�. This amplitude can be considered as another
spin wave with zero group velocity �standstill wave�. Fol-
lowing the procedure described in the beginning of the paper,
we apply a second rf pulse at time t4 when the signal field
has already left the sample. The second rf pulse lasts 6 times
longer than the first rf pulse—i.e., 6�rf—such that it forms a
3� pulse: P6�rf =3� /2. The initial condition for this pulse is
Cm�z , t4�=0 and CM�z , t4�=−i�0�T3� /�2�. According to
Eqs. �17� and �18�, at the end of this rf pulse, t5= t4+6�rf,
we have Cm=�0�T3�sin�P6�rf� /�2�=−�0�T3� /�2� and
CM =−i�0�T3�cos�P6�rf� /�2�=0. The extra 2� rotation of
the pseudospin 1/2, corresponding to the transition m-M, is
necessary to obtain the proper sign for the final value of Cm.
Otherwise, if an rf pulse with � area were to be applied, the
CmCg

* coherence would generate a signal field with a phase
that is opposite to the initial one. In our case this coherence
generates a field � with the same phase as before. To show
this we solve Eqs. �3� and �4� with an arbitrary function
��z , t� and ��z , t�=�2� for the initial condition Y�z , t5�=0,
X�z , t5�=−�0�T3� /�2�, and ��z , t5�=0. The solution for
Y�z , t� is

Y�z,t� � −
�t�z,t�

2�2 +
Ky�t − t5�

h
�0�T3� . �20�

Substituting Y�z , t� into the wave equation �7�, we obtain the
solution

��z,t� =
�

h



0

z

Ky�t − t5 −
z − z�

V2
��0�T3��dz�, �21�

where T3�= �V2 /V1��t3− t1− �z�−zc� /V2�. Approximately this
integral is ��z , t�=���0�T3−5��t− t5�−�0�T3�Kx�t− t5� /h�,
where T3−5= �V2 /V1��t− t1+ t3− t5− �z−zc� /V2�. If ��1, then
for t
 t5+�	 we have ��z , t�=�0�T3−5� and the signal field is
retrieved from the spin coherence. Now we have a copy of
the signal field in the sample and the signal field outside the
sample, both with the same amplitude and duration. Figure 1

shows a three-dimensional plot of the signal field evolution
controlled by the amplitude change of the control field and rf
pulses. By numerical simulations we verified our approxi-
mate solution and obtained a fair agreement. It becomes al-
most perfect if our idealized solution is convoluted with a
Gaussian function, described in �8�, which takes into account
a pulse broadening due to the narrowing of the EIT window
with distance.

Since the DSP changes adiabatically for an arbitrary
change of the coupling field we can assume that the
general solution for the signal field is ��t ,z�
= ���t� /��t0���0��c�t0

t d� cos2����−z� /V1�. We showed also
that an arbitrary change of the spin wave amplitude by short
rf pulses causes an instantaneous, proportional change of the
signal field amplitude. While the first finding follows directly
from the DSP concept, the second does not. One can assume
that the fast decay 	 of the excited state gives a natural
explanation of the second finding. We verified numerically
the case of 	=0 and found that an instantaneous change of
the spin wave also causes an instantaneous, proportional
change of the signal without visible transients. This result is
not obvious and does not follow directly from the simple
picture of the dark and bright states.

Summarizing, we found that an instantaneous change of
the amplitude of the control field produces an almost instan-
taneous change of the amplitude of the signal field and it
does not affect the amplitude of the spin wave. This change
also results in the variation of the group velocity and of the
duration of the signal pulse. However, their product, which is
the spatial length of the pulse and the spin wave, does not
change if both are in the EIT sample when the change hap-
pens. The instantaneous change of the spin-wave amplitude
by a short rf pulse produces an instantaneous change of the
amplitude of the signal field without changing its group ve-
locity and duration. By a train of rf pulses the signal field can
be split into two parts, one of which can be temporarily
stored in the sample. These findings can be applied to infor-
mation processing and storage, the creation of a new type of
entangled states, if the signal field contains only one photon.
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