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Two-photon double ionization of helium above and below the threshold for sequential ionization
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We present accurate cross sections for two-photon double ionization of helium at photon energies above and
below the threshold for sequential double ionization. Above this threshold (54.4 V), sequential ionization
competes with nonsequential ionization. Remarkably, even below 54.4 eV, sequential ionization leaves a clear

signature in the magnitude and shape of both the total and energy-sharing cross sections—even though at these

energies it is only a virtual process.
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Double ionization of the helium atom by two extreme
ultraviolet (xuv) photons in the range of 40 to 50 eV has
recently become the subject of intense theoretical interest
[1-10] as well as the target of new experiments with high-
harmonic-generation sources [11] and experiments under
way at the free-electron laser source (FLASH) in Hamburg.
Even in the intensity regime where second-order perturbation
theory is expected to be valid, recent calculated cross sec-
tions vary over more than an order of magnitude. We present
accurate, time-independent calculations of this process well
beyond the energy regimes of earlier treatments, using meth-
ods that have produced benchmark results for double ioniza-
tion of atoms [12] and molecules [13]. These methods pro-
vide grid-based, numerical solutions of the Schrodinger
equation with no appeal to approximate asymptotic forms
nor to ansatz wave functions. We predict a rapid rise in the
total cross section considerably below the threshold for se-
quential ionization, as well as dramatic changes in the shape
of the singly differential cross section caused by this virtual
process. These calculations should influence planned experi-
ments on multiphoton ionization with new xuv sources.

The cross section for two-photon double ionization from
lowest-order perturbation theory (LOPT) in the velocity
gauge, differential in the energy sharing and angular depen-
dence of the ejected photoelectrons, is given by the expres-
sion
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where k; and k, are the momenta of the photoelectrons, w is
the photon frequency, m is the electron mass, and « is the
fine-structure constant. The amplitude f(k;,k,,) is in turn
given by

flk Ky, 0) = (Py g [W(Eg+ho—H+in)™ ul®g), (2)

where H is the atomic Hamiltonian, ®, is the initial state of
the atom with corresponding energy E, ‘I’;l’kz is the full
momentum-normalized scattering wave function, with in-
coming boundary conditions corresponding to two free elec-
trons, and the dipole operator u is defined in terms of the
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momentum operators p; for the two electrons, u=pu;+u,
=€ P t+e€E P

There are a number of obstacles associated with an accu-
rate evaluation of the amplitude in Eq. (2). One of those is
coping with the infinite sum over intermediate states that
follows from making a spectral expansion of the resolvent
operator (Ey+#hw—H+in)~'. However, the major obstacle is
the calculation of the double-continuum state \Ifil’kz and the
difficult boundary conditions associated with three-body
Coulomb breakup.

We address these problems by beginning with the coupled
(Dalgarno-Lewis) driven equations that describe two-photon
absorption in LOPT,

(Ey+how— H)W(r,r;) = ud, (3)

(Ey+ 2hw — H)YWY(r,,ry) = u¥Y, (4)

both of which must be solved with purely outgoing-wave
boundary conditions, and the second of which describes two-
photon absorption. We then choose a large (in the present
case six-dimensional) but finite volume beyond which the
electron-electron interaction can be safely ignored and solve
Egs. (3) and (4) on that finite volume to arbitrary accuracy.
The problem of the boundary conditions for both of these
equations is addressed in our approach by making use of the
method of exterior complex scaling (ECS) [14], which scales
the electron coordinates by a phase factor, but only outside
our chosen finite volume, thereby inducing an exponential
falloff in the outgoing-wave part of the continuum wave
function beyond the finite volume. By expanding W{° and

5 in a truncated product basis of spherical harmonics, Egs.
(3) and (4) can be converted into a set of coupled two-
dimensional radial equations that can be solved on parallel
computers with sparse matrix methods.

Having solved the coupled equations, we must devise a
strategy for calculating the amplitude for double ionization,
which is formally contained (to within an overall phase) in
the asymptotic behavior of the solution for ¥,
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where p:\e"r%+ r%, the energy shared by the outgoing elec-
trons is K?/2=k>/2+k3/2, and the angle-dependent coeffi-
cient of the logarithmic phase is {=Z/k,+Z/k,~1/|k;=k,|.
As we have previously shown [14], in the contexts of both
double photoionization and electron impact ionization, the
amplitude can be extracted (to within an irrelevant volume-
dependent overall phase) using a surface integral that in-
volves a pair of testing functions i(r), which are
momentum-normalized, one-electron Coulomb functions
with nuclear charge Z=2, in the case of helium:

1 . X
[k, Ky, 0) = 5 f [lﬂi;(rl)lﬁﬂé(rz) v ‘1’30(1'1,1'2)
- ‘I’Zc(rl’rz) v lﬂ;?(rl)l@:(rz)] -dS.  (6)

We must emphasize that the functions l/lil(l’l) and z/ziz(rz) do

not describe the final state of the system, but are merely the
testing functions that extract the necessary amplitude from
‘I’;‘ No ansatz has been made concerning the final state, and
electron correlation is treated completely in the final outgo-
ing wave function W5 as well as in the initial state @ in this
approach.

But there is another problem that must be addressed be-
fore we can proceed. For photon energies greater than the
first ionization potential of the atom, Wi°, the solution of Eq.
(3), will have single-ionization terms that behave, at large
real values of the electron coordinates, as the (symmetrized)
product of a bound state of He* times an undamped outgoing
wave in the other electron coordinate. This fact means that
pW, which is the driving term for Eq. (4), will not vanish
as ry,r,— % along the real axis. Since the dipole operator
is a one-body operator, Eq. (4) will be ill conditioned, irre-
spective of the gauge being used, and the ionization ampli-
tudes extracted from W3 will not converge with increasing
volume. We can circumvent this problem by adding a small,
positive imaginary part to w in Eq. (3) only, which will pro-
duce a solution Wi with an exponential falloff for real r
values. With this procedure, we have a valid driving term for
the solution of Eq. (4), which can then be solved directly
under ECS for real w. As we will see, this procedure yields
convergent amplitudes that can then be numerically extrapo-
lated to purely real photon energies.

For the present calculations, we used partial waves up to
[=4 to expand the initial state and up to /=5 in the interme-
diate and final states, including all product pairs allowed by
symmetry. The coupled Dalgarno-Lewis equations were
solved using our finite-element discrete-variable representa-
tion (DVR) method [15]. We used a 15th-order Gauss-
Lobatto DVR with the first element boundary at 5.0 bohr and
subsequent element boundaries spaced 10.0 bohr apart. Cal-
culations were performed with different real grids ranging
from 85.0 to 255.0 bohr on a side; the complex portion of
the grid was always 30.0 bohr in length. We computed the
singly differential cross section (SDCS), which is the quan-
tity defined in Eq. (1) integrated over the angles (), and (),,
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FIG. 1. (Color online) Upper panel: Dependence of the SDCS at
45 and 50 eV and 25% and 50% energy sharing, respectively, on
the imaginary part of w used in solving Eq. (3). Lower panel: De-
pendence of the total cross section at 45 eV photon energy on
Im(w). SDCS in units of 1072 cm*s eV~'; total cross section in
units of 1072 cm*s.

over a range of complex photon energies in Eq. (3) and ex-
trapolated the results to real photon energies, i.e., to Im(w)
=0.

The SDCS is a relatively flat function of energy sharing
for photon energies between 40 and 50 eV. In this energy
range, we can integrate the SDCS over energy sharing and
then extrapolate the results to get the total cross section. The
upper panel of Fig. 1 shows the dependence of the SDCS on
Im(w) at two different photon energies and energy sharings,
while the lower panel shows the corresponding dependence
for the total cross section at 45 eV. Above 51 eV, where the
SDCS begins to rise at the extremes of energy sharing, i.e.,
near £;/E=0.0 and 1.0, a pointwise extrapolation of the
SDCS is needed to compute total cross sections. Above
54.4 eV, which is the threshold for sequential double ioniza-
tion (SI) (see Fig. 2), the SDCS has clearly defined peaks at
E,=hw-54.4 eV and E,=hw-24.6 eV, as seen in Fig. 3.
Before we can discuss these results, it is important to under-

E +E,
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79.01 eV He(1s)

FIG. 2. (Color online) Schematic represention of sequential and
nonsequential two-photon double ionization of He.
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FIG. 3. (Color online) Upper panel: SDCS at 58 eV; solid
curves labeled by minumum Im(w) used in extrapolating the data;
short-dashed curve, results of the simplified model. Lower left
panel: Extrapolated SDCSs at energies below the SI threshold along
with results of Ref. [9] at 45 eV and the simplified model at 53 eV.
Lower right panel: Extrapolation of SDCS at 54.2 eV with curves
labeled by minumum Im(w) used.

stand the origin of the peaks and their consequences for the
extrapolations near the sequential ionization threshold.

We can understand the origin of the peaks in the SDCS
using a simple model that ignores both correlation and
screening in the final and intermediate states, following the
logic of Proulx, Pont, and Shakeshaft [ 10]. We begin with the
exact spectral representation of the Green’s function in the
definition of the amplitude in Eq. (2),

<\I’K1,k2|M(E0 +hw—H+in)™ u|dp)

<\I'El,k2|ﬂ|v><v|ﬂ|‘bo>

= ) 7
%: Ey+hw—-E,+in @

We first make the approximation that the sum and integral
over intermediate states |[v) includes only the integral over
the lowest singly ionized continuum ¢ ;) of the helium
atom. To approximate <\If§1,k2|ﬂ|¢ﬂ,1s>’ we then ignore
screening and correlation in both the intermediate and prop-
erly symmetrized final states by using Coulomb functions
with Z=2 for all free electrons.

With these approximations a pair of momentum-
conserving & functions pick out two terms in the integral
over intermediate states that correspond to the sequential
process. Ignoring the phases of (i |ul®Py) and
(Wi, 1, |4l 1) substituting the result into Eq. (1), and inte-
grating over the ejection directions d€}; and d(), allows us to
write an approximate expression for the SDCS in terms of
the single-photoionization cross sections of He and He*,
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dot_ i( Vo' () (E) Vo™ (E)d™(E) )2
dEl dar E0+ﬁ0)—615—E1 E0+ﬁw—615—E2 ’
(8)

with E|+E,=K?/2. In Eq. (8) o™(E) is the single-
photoionization cross section of the neutral helium atom, and
o"'(E) is the single-photoionization cross section of He*.
The singularities in Eq. (8) corresponding to the SI process
are separated in the SDCS by the difference between the
ionization potential of He™ and the first ionization potential
of He. We believe these singularities to be a fundamental
feature of LOPT and not the consequence of the simplifying
approximations made in deriving Eq. (8).

The lower left panel of Fig. 3 shows the calculated SDCS,
extrapolated to real w, for several energies between 45 and
53 eV. Results from the simple model at 53 eV (using
single-photoionization cross sections from an earlier calcula-
tion [16]) are also plotted for comparison. One sees that, by
52 eV, the SDCS already begins to develop wings near ex-
treme energy sharing, showing the signature of the sequential
process whose energy threshold is at 54.4 eV. At 54.2 eV, as
shown in the lower right panel of Fig. 3, the extrapolation
scheme becomes unreliable at extreme energy sharing, where
the SDCS shows a residual dependence on the smallest value
of Im(w) used in the extrapolation. The final estimate of the
SDCS shown in the figure was therefore obtained by ex-
trapolating the calculated SDCS using a functional form that
included singularities as in Eq. (8).

The upper panel of Fig. 3 shows results for calculations at
58 eV, along with the simple model prediction. The calcula-
tions show that the extrapolated peaks in the SCDS at ener-
gies corresponding to sequential ionization increase with de-
creasing Im(w). These peaks would become singularities in
the limit of an infinite-size box. In the model results, there
are sharp peaks outside the singularities which arise from the
contribution of the first doubly excited (252p,'P) state of
He" in oM. It is worth noting that the ab initio SDCS data for
58 eV photon energy do show a slight asymmetry about the
sequential peaks, with a modest broadening in the regions
corresponding to excitation of doubly excited states (see Fig.
3 inset). One would expect postcollision interaction to sig-
nificantly broaden such states, but whether these states are
causing the asymmetry in the peaks is difficult to say.

Figure 4 shows our total cross sections, along with the
results of earlier studies. The cross sections have been ob-
tained (i) by extrapolating the total cross section, as in Fig.
1(b) (open circles from 40 to 51 eV) and (ii) by extrapolat-
ing the SDCS as shown in the lower right panel of Fig. 3 and
then integrating (solid squares from 50 to 54.4 V), yielding
identical results at 50 and 51 eV. We note that, at lower
energies, where we can compare with the results of other
calculations, our cross sections compare favorably with the
results of several other methods, but are significantly smaller
than the most recent studies published by Foumouo er al. [3]
and by Nikolopoulos and Lambropoulos [1,8]. The inflection
in the total cross section at about 49 eV can be understood
from the behavior of the SDCS in Fig. 3 as follows. As the
nonsequential background portion of the SDCS begins to
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FIG. 4. (Color online) Calculated two-photon double-ionization
total cross sections compared with those of previous calculations.
The vertical lines label the DI and SI thresholds.

decrease, the contribution from the wings due to the energeti-
cally closed sequential process increases, and the total cross
section again begins to increase.

In summary, we have carried out accurate calculations of
two-photon double ionization in LOPT for the helium atom.
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Since these calculations treat electron correlation in the ini-
tial, virtual intermediate, and final states essentially exactly,
our results show that the large degree by which previous
theoretical calculations disagree is not necessarily due to the
various levels at which correlation was previously treated.
Rather, it appears that numerical approximations made using
either time-independent or time-dependent descriptions of
this process are to blame. We have shown that, below the
threshold for the sequential process, the signature of SI is
prominently revealed in the singly differential cross section,
even at energies where it is less apparent in the total cross
section. Above the threshold for sequential ionization, that
process competes with nonsequential double ionization and
both processes appear in LOPT. Although the SDCS is well
defined at all energies, its apparently singular behavior at the
sequential double-ionization peaks means that the rofal cross
section is not well defined in LOPT above that threshold.
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