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We show that the usefulness of a state as an activator in teleportation protocols is equivalent to the robust-
ness of its entanglement to noise. The robustness of entanglement of a bipartite state � is linked to the
maximum increase in the fidelity of teleportation of any other state when � is used as an extra resource. On the
one hand, this connection gives an operational meaning to the robustness of entanglement. On the other hand,
it shows that the activation capability—which has a central role as an operational way of quantifying bound
entangled states—can be estimated experimentally by measuring entanglement witnesses.
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The use of quantum mechanical systems to send and pro-
cess information in a different, and sometimes more efficient,
way than is possible by classical means has attracted a lot of
interest recently �see, e.g., �1��. Among many applications—
such as quantum computing, dense coding, and quantum
cryptography �1�—quantum teleportation �2� stands out as a
radically new manner of transmitting quantum information:
by using preestablished entanglement, Alice can send a pos-
sibly unknown quantum state to Bob by merely communicat-
ing classical bits. Fundamental in this process is the en-
tanglement shared by the parties. As such, considerable effort
has been devoted to finding the precise connection between
bipartite entanglement and quantum teleportation �2–12�.

In the simplest case, Alice and Bob share a single copy of
a quantum state �, which is used to teleport a state from
Alice to Bob. It is clear that, if � is not entangled, the best
that Bob can do is to guess what was the state of Alice’s
system. It turns out that this is also the case for some en-
tangled states �7�. For other states, better than classical tele-
portation is possible, although the fidelity of the teleported
state to the initial one might be smaller than unity: there is a
threshold for the maximal attainable fidelity of teleportation
�7�. An interesting phenomenon in this setting is the one in
which an entangled state—which by itself cannot be used to
perform teleportation better than by classical means—can be
employed to increase the teleportation threshold of another
state �6,8,10�. In this way, the entanglement of the former
state, which is said to be activated, can be used after all,
although in an indirect manner. Recently, it was proven that
any bipartite entangled state, including all bound entangled
states �5�, can be used as an activator �10�.

In this work, we address the question of how to quantify
the usefelness of a bipartite state � as an activator. We intro-
duce a figure of merit which naturally quantifies the maxi-
mum increase in the fidelity of teleportation of any bipartite
state when � is used as an extra resource. Somewhat surpris-
ingly, we find that this figure of merit turns out to be equal to
the robustness of entanglement of � �13�, a well-studied en-
tanglement measure with a clear physical interpretation as
the minimum amount of separable noise necessary to com-
pletely wash out the entanglement of � �13�. Hence, a quan-

titative relation is established between entanglement activa-
tion and the endurance to noise of quantum correlations, two
well-studied properties of entanglement which a priori do
not seem to be connected.

This connection has interesting consequences both for the
theory of entanglement measures and for the experimental
estimation of entanglement �14�. On one side, we find an
operational meaning—in the sense of quantifying the useful-
ness of entanglement in a particular protocol—for the robust-
ness of entanglement �13�, an entanglement measure which
has found many applications in the study of entanglement
�13,15–20�. In particular, the robustness becomes the only
known operational entanglement measure having a nonzero
value in every entangled state. On the other side, using a
recently established connection �15,20� between the robust-
ness of entanglement and entanglement witnesses �14�, the
expectation value of the latter is given an operational mean-
ing: it is a lower bound to the activation capacity of the
measured state. This connection implies that it is possible to
derive tight bounds for the usefulness of a bipartite state in
quantum-information processing even if the state in question
is completely unknown.

Consider any teleportation protocol where a bipartite state
��D�H� �the set of density matrices acting on the Hilbert
space HªCm � Cm� is used as a d-dimensional quantum
channel between Alice and Bob. The most general teleporta-
tion protocol that they can implement consists of several
rounds of local operations and classical communication
�LOCC�, and can be represented as a trace-preserving com-
pletely positive map � mapping the state to be teleported
����Cd held by Alice and the entangled state used as a re-
source � into the final teleported state in Bob’s possession.1

One can quantify the usefulness of the state � and protocol �
for teleporting states ����Cd using the average fidelity of the
output and input states:

fd��,�� ª� d������������ � ����� , �1�

where the integral is performed with respect to the Haar mea-
sure d� over all pure states in Cd �7�.
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1We adopt the convention of calling a trace-preserving LOCC
operation simply a LOCC map. We reserve the term SLOCC for
non-trace-preserving LOCC operations.
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In Ref. �7� it was shown that without loss of generality we
can restrict ourselves to the class of protocols formed by the
following steps: �1� a LOCC map � :B�Cm � Cm�→B�Cd

� Cd� is applied to the shared state �; �2� the output state
���� is twirled by LOCC into a d�d isotropic state �7� �I

having the same fidelity as ���� with the d�d maximally
entangled state; �3� the standard teleportation protocol �2� is
performed using �I. In this case, the fidelity of teleportation
is given by �7�

fd��,�� =
Fd��,��d + 1

d + 1
, �2�

where

Fd��,�� ª tr������d� , �3�

and �dª ��d���d�, with ��d�= �1/	d�
k=1
d �d ,d�, is the projec-

tor onto the d�d maximally entangled state. It can be shown
that the best fidelity achievable by a separable stata is
fclass=2/ �d+1� �7�.

In the entanglement activation setting, we have two states
� and �, and a LOCC map � mapping � � � into a d�d
state. The state �, which is assumed to be finite dimensional,
is such that fd�� ,��� fclass for every LOCC map �: it is
useless for teleportation by itself. For later use, we denote the
set of all such states by M. A natural figure of merit showing
how good � is as an activator is the amount by which the
quantity fd�� � � ,�� exceeds the classical threshold fclass. Of
course, this increase strongly depends also on the LOCC
map � and on the state � chosen. Hence, we consider instead
the ratio of this difference with

Gd��,�� ª max
	�S

�fclass − fd�� � 	,��� , �4�

where S denotes the set of all finite-dimensional separable
states. This quantity expresses how spread the fidelity is,
when an arbitrary separable state is used in place of �, and
gives an estimate of how hard it is to increase the fidelity of
teleportation of the specific state � above the classical limit.

The activation capacity of � is defined as

Ed��� ª sup
��LOCC

sup
��M

fd�� � �,�� − fclass

Gd��,��
. �5�

That is, we are interested in the largest increase possible over
all LOCC maps � and states ��M.

The robustness of � relative to 	, R�� �	�, is defined as
the smallest non-negative number s such that the state

1

1 + s
� +

s

1 + s
	 �6�

is separable �13�. The robustness of entanglement of a bipar-
tite state � is given by

R��� = min
	�S�H�

R���	� . �7�

It can be interpreted as the minimum amount of separable
noise necessary to wash out all the quantum correlations
originally contained in � �13�. As is the case of all other
entanglement measures with a geometric character, the ro-

bustness of entanglement lacks an operational meaning in the
sense of quantifying the usefulness of � for some quantum
information task. The main result of this Rapid Communica-
tion is the following.

Theorem 1. For every bipartite entangled state � and ev-
ery natural number d
2,

Ed��� = R��� . �8�

For the case of two qubits, a linear relation between the
maximum fidelity of teleportation and the generalized ro-
bustness of entanglement �19� was derived in Ref. �9�. Such
an expression involving directly the maximum fidelity of
teleportation, albeit remarkable, cannot be extended to
higher-dimensional systems, as attested by the existence of
bound entangled states, which have nonzero generalized ro-
bustness �13�, but achieve only the classical threshold for the
maximum fidelity �7�.

Proof of Theorem 1. Throughout the proof we consider
that ��B�HA1

� HB1
� and ��B�HA2

� HA3
� HB2

� HB3
�,

with HA1
=HB1

=HA2
=HB2

=Cm and HA3
=HB3

=Cd. We are
interested in the entanglement with respect to the partition
AB. The reason for partitioning � into four parties will be-
come clear in the following. For the sake of clarity we will
break the proof into several parts.

The first step is to rewrite Eq. �5� as

Ed��� = − inf
��LOCC

inf
��M

tr�W�,��� , �9�

with

W�,� ª
I − dtrA1B1

�I � ��†��d��

�d + 1�Gd��,��
, �10�

where trA1B1
is the partial trace with respect to subsystems A1

and B1. From the fact that ��M, we have that tr�W�,�	�

0 for every separable state 	. Thus W�,� is an entangle-
ment witness. On the other hand, from the definition of
Gd�� ,��, we easily find that for every separable state 	,
tr�W�,�	��1.

It was shown in Ref. �15� that the robustness of entangle-
ment can be written as

R��� = − min
W�W

tr�W�� , �11�

where W is the set of all entanglement witnesses acting on
HA1

� HB1
such that tr�W	��1 for every separable state 	.

From the previous paragraph we have that W�,��W and
hence

Ed��� � R��� . �12�

To complete the proof, we must show the converse in-
equality. In order to do so, we need the following lemma,
which is an adaptation of the results presented in Ref. �10�.
Let M�H� be the subset of M containing every state �
�M which acts on the Hilbert space HªHA2

� HA3
� HB2

� HB3
.

Lemma 1. There is a LOCC map � such that for every
entangled state �, there is a ��M�H� such that

tr�W�,��� � 0. �13�
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Proof. Following Ref. �10�, consider the following
SLOCC operation:

� � � � A � B�� � ��A†
� B†, �14�

where

A = ��A1A2
� � IA3

, B = ��B1B2
� � IB3

. �15�

Here ��A1A2
� is the maximally entangled state acting on the

Hilbert space HA1
� HA2

and IA3
is the identy matrix acting

on the Hilbert space H3. It can be easily checked that

tr�A � B�� � ��A†
� B†Z� � tr����T

� Z�� �16�

for every matrix Z�B�HA3
� HB3

�.
We then form the LOCC operation � as follows: we try to

implement the SLOCC map defined above. This happens
with probability tr�A � B�� � ��A† � B†�. If we fail in apply-
ing it, something that happens with probability 1−tr�A
� B�� � ��A† � B†�, we throw away the state obtained and
prepare by LOCC a separable state ��� such that ��� ��d��2
=1/d. From Eq. �10� we see that Eq. �13� is equivalent to the
condition tr���� � ���d�
1/d, which in turn can be written
as

1/d − tr�� � ��†���� = tr�� � ��†�I/d − ��� � 0, �17�

where we have used that �† is unital. In turn, from Eq. �16�
one finds that Eq. �17� is equivalent to

tr
���T
� �I/d − �d��� � 0. �18�

The lemma then follows from Ref. �10�, where it was shown
that for every entangled state �, there is a ��M�H� satis-
fying the above inequality. �

It is clear that it suffices to show that, for every entangled
state �,

R��� � − inf
��M�H�

tr�W�,��� , �19�

where � from now on will denote the LOCC map defined in
the proof of Lemma 1. Define the set

A ª 
W:W = I − dtrA1B1
�I � ��†��d��, � � M�H�� ,

�20�

and its associated cone,

cone�A� = �W:W = 

i

�iWi, �i 
 0, Wi � A� . �21�

From Lemma 1, we find that, for every entangled state �,
there is a W�A such that tr�W���0.

Consider the following optimization problem:

inf
W�B

tr�W�� , �22�

where Bª 
W�cone�A� : tr�W	��1, ∀ 	�S�. From the
convexity of the set M�H�, it follows that

cone�A� = 
W:W = �W�,�,� 
 0,� � M�H�� . �23�

Moreover, from the definition of G�� ,��, we have for every
�

max
	�S

tr�W�,�	� = 1. �24�

Hence, we find that the optimization problem given by Eq.
�22� is equivalent to the one defined on the right-hand-side
�RHS� of Eq. �19�.

In order to complete the proof, we show the following
lemma.

Lemma 2

R��� � − inf
W�B

tr�W�� . �25�

Proof. The quantity in the RHS of Eq. �25� is a convex
optimization problem in the variable W, as it consists of the
minimization of a linear functional subject to the following
two convex constraints:

tr�W	� � 1, ∀ 	 � S and tr�WX� 
 0 ∀ X � A*.

Here, A* is the dual cone of A, defined as A*= 
X : tr�XY�

0 ∀ Y �A�. Following Ref. �21�, let us form the Lagrang-
ian of the problem:

L„W,g�X�, f�	�… = Tr�W�� − �
	�S

f�	�Tr��I − W�	�d	

− �
X�A*

g�X�Tr�WX�dX ,

where f�	� and g�X� are the Lagrange multipliers �in this
case given by functions or, more precisely, generalized func-
tions�. The dual problem is then to

maximize − tr��
	�S

f�	�	 d	� ,

subject to f�	� 
 0, ∀ 	 � S ,

g�X� 
 0, ∀ X � A*,

� + �
	�S

f�	�	 d	 = �
X�A*

g�X�X dX . �26�

As f�	�
0 and g�X�
0, we have that

	� ª �
	�S

f�	�	 d	 �27�

is a non-normalized separable state and that

X� ª �
X�A*

g�X�X dX � A*. �28�

It then follows that the optimal solution of Eq. �26� is −s,
where s is the minimal number such that

� + s	 = �1 + s�X , �29�

where 	ª	� / tr�	�� and XªX� / tr�X��. As � and 	 are
positive semidefinite, we find that X is a state. Since, by
Lemma 1, every entangled state is detected by an entangle-
ment witness belonging to A, it follows that X is a separable
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state. This in turn implies that s is larger than or equal to
R���. It is easy to check that Slater’s conditions �21� apply to
the optimization problem �26�, so that the primal problem
�given by the RHS of Eq. �25�� and its dual �described by Eq.
�26�� have the same optimal solutions. This finishes the proof
of this lemma and of Theorem 1. �

In this work we considered how to quantify the activation
capacity of bipartite entangled states. It was show that this
capacity, when quantified by a particular figure of merit,
turns out to be the robustness of entanglement of the state in
question. This connection between activation properties and
the robustness of the quantum correlations contained in the
state, interesting on its own, gives insights into a number of
questions in the theory of entanglement. In particular, we
find the robustness as the first geometric entanglement mea-
sure with an operational meaning and the only known opra-
tional entanglement measure that is nonzero on every en-
tangled state. This, taken together with fact that the

robustness can be systematically approximately calculated
from both the top and botton by efficient precedures
�15,22–25�, indicates that the robustness might be a very
suitable measure in the study of entanglement, and in paricu-
lar in the elucidation of the properties of bound entanglement
�5�. Finally, the expectation values of entanglement wit-
nesses are given a new interpretation as lower bounds to the
performance of the measured state in a particular quantum-
information task—more precisely, a lower bound to its acti-
vation capacity.
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