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We propose a scheme for implementing unconventional geometric quantum computation by using the
interaction of two atoms with a two-mode cavity field. The evolution of the system results in a nontrivial
two-qubit phase gate. The operation of the proposed gate involves only metastable states of the atom and hence
is not affected by spontaneous emission. The effect of cavity decay on the gate is investigated. It is shown that
the evolution time of the gate in the two-mode case is less than that in the single-mode case proposed by Feng
et al. �Phys. Rev. A 75, 052312 �2007��. Thus the gate can be more decay tolerant than the previous one. The
scheme can also be generalized to a system consisting of two atoms interacting with an N-mode cavity field.
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Decoherence plays a bothersome role in the realization of
quantum gates for a quantum processor, since physical qubits
inevitably interact with external systems. Thus, it is essential
to consider fault-tolerant systems. One possible way to
achieve fault-tolerant quantum gates is through the geometric
phase. Geometric phases depend only on the solid angle en-
closed by the parameter path �1� and generally not on the
dynamics of the evolution. Thus geometric phases can be
rendered very robust for computation. However, in practice,
geometric phases are often accompanied by dynamic phases.
These dynamic phases may destroy the potential robustness
of the computation scheme. Hence, an important consider-
ation of geometric quantum computation is the removal or
avoidance of the dynamic phase.

One simple method to remove dynamic phases involves
the choice of dark states as the qubit space. In this scheme,
the dynamic phase is always zero �2�. In another method, one
removes the dynamic phase by canceling the dynamic phases
accumulated in different loops �3–5�. We refer to the latter
method for canceling the dynamic phase as conventional
geometric quantum computation.

Recently, there is another kind of scheme �6� in which one
ensures that the dynamic phase �d is proportional to the geo-
metric phase �g as �d=��g with ��0,−1. Thus, the total
phase is proportional to the geometric phase. This realization
is sometimes called unconventional geometric quantum com-
putation �UQC�. To date, UQC has been proposed to be re-
alized in many systems, such as cavity QED �6–9� and
trapped ions �10�.

The existing cavity QED schemes �8,9� involve only a
single cavity mode; to the best of our knowledge, an UQC
scheme utilizing two or more cavity modes has never been
proposed. In this paper, we present a two-mode UQC
scheme. In our scheme the atomic states act as the quantum
computational basis, and the phases acquired by the atomic
states to realize a certain phase gate are due to the cyclic

evolution of the cavity modes. In comparison with the
single-cavity-mode scheme �9�, the scheme proposed in this
paper is more efficient and more tolerant against decoher-
ence. This is because there are two cavity modes contributing
to the phase accumulation and the time consumed for realiz-
ing a certain phase gate is thus doubly reduced. We also
show that the scheme can be generalized to a system consist-
ing of two atoms interacting with an N-mode cavity field.

This paper is organized as follows. In Sec. I, we briefly
describe the model and derive the effective interaction
Hamiltonian. In Sec. II, we show how a two-qubit UQC gate
can be realized in the case of cavity decay. We also show that
the evolution time of the gate in the two-mode case is less
than that of the gate in the one-mode case �9�. The fidelity of
the gate is investigated. The generalization of the scheme to
an N-mode cavity is also discussed. In Sec. III, we end with
some conclusions.

We consider two three-level atoms inside a two-mode
cavity with high quality value. The atomic energy levels and
the interactions between atom and cavity modes �driving la-
ser fields� are shown in Fig. 1. For each atom, there are three
different states: �e�i, �g�i, and �c�i, with i=1,2, where �e�i, �g�i
are metastable states and �c�i is an excited state. The dipole-
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FIG. 1. Each atom in the � configuration with levels �g�, �e�,
and �c� interacts with the excitation fields. Here �1, �2, �3, �1, and
�2 are frequency detunings, and g1, g2, �1, �2, �3, and �4 are the
respective coupling strengths.
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allowed transitions are �c�i↔ �g�i and �c�i↔ �e�i via three Ra-
man channels due to the laser fields and the cavity modes.
Two of the channels contain classical fields �m with frequen-
cies �m and two quantized fields with frequencies � fm

, where
m=1,2. The last channel is excited by two classical external
fields �3 and �4 with frequencies �3 and �4, respectively.
This channel is assumed to satisfy the Raman resonance �3
− �4=�0, where �0 is the energy difference between levels
�e� and �g�, while the other two channels have small detun-
ings �1 and �2 from the Raman resonance. The Hamiltonian
of the system can be written as

H = ��g�
j=1

2

�g� j j�g� + ��e�
j=1

2

�e� j j�e� + ��c�
j=1

2

�c� j j�c�

+ ��
m=1

2

� fm
am

† am + 	��
m=1

2

gm
* am

† �
j=1

2

�e� j j�c� + H.c.

+ 	��

m=1

3

�m
* e−i�mt�

j=1

2

�c� j j�g� + H.c.


+ 	��4e−i�4t�
j=1

2

�c� j j�e� + H.c.
 . �1�

Here, am �m=1,2� is the annihilation operator for each cav-
ity mode, �i �i�e ,c ,g� is the energy of the atomic level i,
gm �m=1,2� is the coupling constant of the cavity mode with
the atom, and �1,2,3,4 are the coupling strengths of the atom
with the laser fields.

To eliminate spontaneous emission, it is required that
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,
�3

�3
,
�4

�3
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The detunings �l �l=1,2 ,3� are assumed to be sufficiently
large so that the top level �c� can be removed adiabatically.
The approximation leads to an effective atomic system with
two energy levels �e� and �g�. In addition, in order to avoid
undesired atomic transitions, we consider the rotating-wave-
approximation conditions
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We can obtain an effective Hamiltonian with small detunings
�1,2,

H��t� = ��
j=1

2

�h1�t�a1 + h2�t�a2�	 j
− + �h1

*�t�a1
† + h2

*�t�a2
†�	 j

+�

+ ��
j=1

2

�r�t�	 j
+ + r*�t�	 j

−� , �3�

where 	+= �e��g� and 	−= �g��e�, and the effective couplings
r�t�, h1�t� and h2�t� are

r�t� = −
2�3

*�4

�3
,

h1�t� = − g1�1ei�1t	 1

�1
+

1

�1 + �1

 = h1ei�1t,

h2�t� = − g2�2ei�2t	 1

�2
+

1

�2 + �2

 = h2ei�2t. �4�

For simplicity, we assume r�t� is real. In the strong effective
classical driving regime r� �h1 � & �h2�, Eq. �3� in the inter-
action picture can be written as

Heff � ��/2��
i=1

2

�hi�t�ai + hi
*�t�ai

†��	1
x + 	2

x� , �5�

where 	 j
x=	 j

++	 j
−.

In cavity QED quantum computation, cavity decay due to
coupling to the environment is the main source of decoher-

ence. Through the interaction with the environment, the sys-
tem evolves as a mixed state. The effect of the cavity decay
should be considered in our quantum computation scheme.
We here use the quantum trajectory method �11� to evaluate
the geometric phase in the case of weak cavity decay. Al-
though this method has been shown to be unsuitable for a
general situation with stochastic unravelings �12,13�, it can
still be used to associate a geometric phase to an individual
quantum trajectory through measurement of the environment
�9,13�.

We investigate a no-jump trajectory corresponding to the
situation that no leaky photons from the cavity are detected.
When no photon is detected, the wave function of the sys-
tem, �
0�t��, evolves according to an effective non-
Hermitian Hamiltonian due to its coupling to the reservoir:

Hnon = Heff − i��1a1
†a1 − i��2a2

†a2, �6�

where �i �i=1,2� is the cavity decay rate for mode ai. By
considering very weak decay rates, the system evolves ac-
cording to the non-Hermitian Hamiltonian �14� so that we
have the wave function of the system �
0�t��
=e−�1ta1

†a1−�2ta2
†a2 ���t��, and

i�
d

dt
���t�� = H̃���t�� , �7�

where H̃= �� /2���i=1
2 hi�t�e−�itai+hi

*�t�e�itai
†��	1

x +	2
x� and

���t��= Ũ�t� ���0�� with Ũ�t� is the nonunitary evolution op-
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erator, ���0��= �0�1 �0�2 �kl� is the initial state of the system
with the subscripts 1 and 2 representing cavity modes, and
we assume that the cavity modes are initially in vacuum
states. The state �kl� represents the atomic state with
k , l= + ,−. We choose the eigenstates of 	x, �± �
= ��g�± �e�� /�2, as the computation basis, such that the
evolution governed by the Hamiltonian �6� will not give
rise to any population changes. In the computational basis
�+ + � , �+−� , �−+ � , �−−�� �with corresponding eigenvalues

kl�, Ũ�t� is of the form Ũ�t�=diag�Ũ++�t� ,1 ,1 , Ũ−−�t�� with
elements given by

Ũkl�t� = exp�
i=1

2 	�i,kl
�1� �t�ai + �i,kl

�2� �t�ai
† +

�i,kl�t�
2


 , �8�

where �i,kl�t�=�0
t �i,kl

�2� ���d�i,kl
�1� ���−�0

t �i,kl
�1� ���d�i,kl

�2� ��� with
d�i,kl

�1� ���=−i�kl /2�hi���e−�i�d�, d�i,kl
�2� ���=−i�kl /2�hi

*���
�e�i�d�.

In the case of the no-jump trajectory �11�, the total and
dynamic phases acquired from t=0 to t=T can be found as
follows:

�kl
t,0 = −

kl

4
�

0

T

�
i=1

2

e−�ithi�t��i,kl
�2� �t� + �hi�t��i,kl

�2� �t��*�dt ,

�kl
d,0 = −

kl

2
�

0

T

�
i=1

2

e−�ithi�t��i,kl
�2� �t� + �hi�t��i,kl

�2� �t��*�dt .

�9�

By comparing the above equations, we have �kl
g,0=�kl

t,0−�kl
d,0

=−�kl
t,0, indicating that the total phase and the dynamic phase

are both proportional to the geometric phase.
For further analysis, let us work out the wave function

�
kl
0 �t�� = exp�Rkl + i�kl

t,0���1,kl
�2� e−�1t�1��2,kl

�2� e−�2t�2�kl� ,

where ��i,kl
�2�e−�it� �i=1,2� is a coherent state with

�i,kl
�2�e−�it =

klhi��i − i�i�
2��i

2 + �i
2�

�e−i�it − e−�it� , �10�

Rkl represents amplitude damping due to decay, which is
found to be �with t=T=2m� /�1=2n� /�2�

Rkl = �
i=1

2
kl

2 �hi�2

8��i
2 + �i

2�2 ��i
2�3 − 2�iT − 4e−�iT + e−2�iT�

− �i
2�1 + 2�iT − e−2�iT�� , �11�

and

�kl
t,0 = �

i=1

2
kl

2 �hi�2�i

4��i
2 + �i

2�2 �2�i�1 − e−�iT� − ��i
2 + �i

2�T� . �12�

In the computational basis, the evolution is described by a

diagonal matrix, diag�eR++ei�++
t,0

,1 ,1 ,eR−−ei�−−
t,0

�, which pos-
sesses the global geometric feature.

Cavity decay in general disallows the execution of cyclic
evolution. However, when �i �i=1,2� is very small in com-
parison with �i �i=1,2�, h1, and h2, we can choose t=T
=2m� /�1=2n� /�2 �m ,n being positive integers� as the
time interval for an approximate closed path with small co-

herent amplitudes. We should choose m ,n as small as pos-
sible �e.g., m=n=1�, such that the coherent amplitudes are
small enough. The presence of the cavity decay affects the
fidelity Fkl of the quantum gate operation. Fkl is defined as

Fkl = ��
kl
�i���T��
kl

0 �T���2, �13�

where �
kl
�i��T��= �
kl

0 �T����1,�2=0 corresponds to the state of
the system at time T in the ideal case. In Fig. 2, we plot the
fidelity F as a function of x=�1 / �h1 � =�2 / �h2� when
�1 / �h1 � =�2 / �h2�. In Fig. 2 the curve 1 is for m=2, n=1 and
the curve 2 is for m=n=1. We find that the fidelity F de-
creases when x increases. The result shows that x should be
sufficiently small in order to keep a reasonable fidelity. For
the purpose of comparison, we also show the result given in
Ref. �9� when m=1 �Fig. 2, curve 3�. It is clear that the
fidelity of the gate proposed here attenuates more slowly
with increasing decay than the fidelity of the one in Ref. �9�.
That is to say that our gate is more tolerant to decay than the
gate in Ref. �9�.

In the following, let us give a brief explanation for the
decay tolerance of our scheme. In our scheme the phases
acquired by the atomic states to realize a certain phase gate
are due to the cyclic evolution of the cavity modes. There are
two cavity modes contributing to the phase accumulation,
and the time consumed for realizing a certain phase gate is
thus doubly reduced. From Eq. �8�, it can be seen that the
phase �kl

t,0 consists of two parts, one from each modes �see
Eq. �9��. For example, in an ideal case, Eq. �12� can be
written as

�kl
t,0 = −

2m�kl
2 �h1�2

4�1
2 −

2n�kl
2 �h2�2

4�2
2 . �14�

By assuming the simple case that �1=�2=� and m=n=1,
we have

�kl
t,0 = −

�kl
2 ��h1�2 + �h2�2�

2�2 . �15�

In order to realize a �-phase gate, we need �++/−−
t,0 =−� and

hence 2���h1�2+ �h2�2� /�2=�. The evolution time is found to
be Ttwo mode=2� /�=2� /�2��h1�2+ �h2�2�. Let us recall that
the evolution time is Tone mode=2� /�=2� /�2 �h1�2 in the
single-mode case �9�. For the gate proposed in Ref. �9�, one
needs to increase the value of �h1� in order to reduce the
evolution time such that the evolution time is less than the

FIG. 2. �Color online� Fidelity F++/−− of the phase gate after
operating time T=2m� /�1=2n� /�2 versus x=�1 / �h1 � =�2 / �h2�
when �1 / �h1 � =�2 / �h2�.
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photon lifetime. However, as a result of the rotating-wave
approximation and the physical constraints in practical ex-
perimental techniques needed to achieve strong coupling in
cavity QED, �h1� cannot take sufficiently high values. Con-
sequently, one needs to maintain a balance between the two
requirements. In the two-mode case the situation can be
modulated because there are two parts �h1� and �h2� contrib-
uting to the total phase and hence the evolution time. The use
of a two-mode cavity allows us to include the term �h2� to
offset the value of �h1�. The evolution time of the gate dis-
cussed here can be less than that of the gate proposed in Ref.
�9�. This tells us that the present gate is more tolerant to
cavity decay than the one given in Ref. �9� due to the reduc-
tion of evolution time.

The scheme can also be generalized to a system com-
prised of two atoms interacting with multimode fields. The
Hamiltonian is given by

H̃N = �/2	�
i=1

N

hi�t�e−�itai + hi
*�t�e�itai

†
�	1
x + 	2

x� ,

where ai is the annihilation operator of cavity mode i, �i
represents the decay rate of the corresponding cavity. In the
computational basis �+ + � , �+−� , �−+ � , �−−��, the phase ac-
cumulated during the evolution can be found to be

�N
t,0 = −

kl

4
�

0

T

�
i=1

N

e−�ithi�t��i,kl
�2� �t� + �hi�t��i,kl

�2� �t��*�dt ,

�N
d,0 = −

kl

2
�

0

T

�
i=1

N

e−�ithi�t��i,kl
�2� �t� + �hi�t��i,kl

�2� �t��*�dt ,

where kl is the eigenvalue of �	1
x +	2

x�, �i,kl
�2� �t�

=�0
t �−ikl /2�hi

*���e�i�d�. There are N parts in �N
t,0 due to the

N-mode cavity fields. It is reasonable to say that the more
modes there are in the cavity, the more tolerant the gate can
be to cavity decay.

We next assess the feasibility of our scheme under current
experimental techniques. Let us recall that the detunings �1
and �2 �see Fig. 1� should be sufficiently large compared
with gi �i=1,2� and � j �j=1,2 ,3 ,4� such that the atomic
excited state can be adiabatically eliminated. By taking g1
=g2=g, �1=120 �g�, �2=80 �g�, �3=40 �g� and ��1 � = �g�,
��2 � = 2

3 �g�, ��3 � = ��4 � =2 �g� such that �h1 � = �h2 � = �h �
��g � /60, it is easy to check that the conditions defined in
Eqs. �2� and �3� and �r � � �h1,2� are satisfied. Suppose we

wish to achieve a total phase −� with m=n=1 and �1=�2
=�. According to Eq. �12�, we can find the relation between
� and �h � : �=2 �h� in the ideal case. Furthermore, the gate
time is approximately Tmin=2� /�=� / �h�. In the microwave
cavity QED experiment of Walther and co-workers �15�, the
coupling constant of the cavity mode and the atom is �g �
=41 kHz and the photon lifetime achieved is Tc=0.3 s. It can
be seen that the gate time Tmin is approximately 0.0046 s,
which is much shorter than the photon lifetime Tc. So it is
possible to experimentally realize the proposed scheme.

Of course in order to achieve a two- or more-mode inter-
action with the atoms, our scheme requires more laser
beams, which obviously increases the experimental difficul-
ties; therefore it is interesting to explore how to further mini-
mize the experimental parameters. One possible way is to
control the shape of the laser beams so that the evolution
paths with multiple cavity modes can be achieved by using
fewer laser beams in one gate operation. This method has
been developed by Zhu et al. �16� in a trapped-ion quantum
computation model. In future work, we will examine the
feasibility of such an idea in our scheme.

In summary, we present a scheme for unconventional geo-
metric quantum computation. The scheme is proposed to be
realized in a system that consists of two atoms interacting
with a two-mode cavity field. We include the effect of cavity
decay on the gate in the investigation. The time evolution of
the system results in a two-qubit phase gate. It is found that
the total phase possesses global geometric features so that
the phase gate is robust to some types of noise. One advan-
tage of the proposed phase gate is that it is not affected by
spontaneous emission because it involves only metastable
states of the atoms. It is worth noting that the evolution time
of the gate is less than that of the gate proposed in Ref. �9�.
This tells us that the gate can be more tolerant to cavity
decay than the previous one. This is another advantage of the
gate. The scheme can also be generalized to a system con-
sisting of two atoms interacting with an N-mode cavity field.
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