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Since in quantum optics light is represented in terms of photons, light propagation through a linear medium
is discussed quantum mechanically in this paper by following the multiple-scattering process of one incident
photon from the medium. To treat the photon and the medium on the same quantum footing, the medium is
assumed to be an ensemble of uniformly distributed identical two-level atoms. It is found that inside the
medium the incident photon follows the same propagation rules as a plane wave does in the classical domain,
and has a possibility to become entangled with the atoms. It is also found that when interacting with a
two-level test atom outside the medium, the output photon appears to be formally in a single mode identical to
that of the incident photon.
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I. INTRODUCTION

Although the theory of quantum optics is successful in
explaining those time-dependent phenomena related to light-
atom interactions �1�, it is believed to become cumbersome
when used to formulate light propagation �2�. To discuss
light propagation in the quantum framework, different ap-
proaches have been developed; one example is the
momentum-operator method �2–4�. All these approaches
have one point in common, that is, they all require quantiza-
tion of electromagnetic fields inside the medium through
which light travels, and consider only the spatial progression
of electromagnetic wave operators. See, in addition, Refs.
�5–8�. In contrast, in the theory of classical optics, light
propagation is treated in a simple manner �9�. For instance, it
is well known that one way to formulate light propagation is
to formulate it as a multiple-scattering process: Light propa-
gation from one point to another is represented by all scat-
tering events connecting these points �10–12�. Since light is
expressed in terms of photons in quantum optics, light propa-
gation through a medium should also allow a similar treat-
ment as a multiple-scattering process of individual photons
from the particles that constitute the medium, without quan-
tizing at all the electromagnetic fields inside the medium.
This viewpoint is pursued in this paper via specifically ex-
amining every order of scattering experienced by one single
incident photon. The reason one photon is sufficient is that
the present discussion is limited to the linear domain, in
which photons do not combine nonlinearly to create new
photons.

Outside the medium, the incident photon is certainly scat-
tered into various modes. But photons cannot simply be
added as numbers and do not have an unambiguously defined
phase �1,13�. To measure cumulative effects of and possible
correlation among the output photons in different modes,
also discussed in this paper is the transition prompted by the
output photon of a two-level test atom from its ground state
to an excited state.

The medium is assumed to be an ensemble of N identical
two-level atoms that are uniformly distributed in the region

0�z�d and have an excited state �E� and a ground state
�G�, so that the atoms and photons are treated on the same
quantum footing. The energies of states �E� and �G� are ��E
and ��G, respectively ��0=�E−�G�. The test atom’s two
states are similarly denoted as �ET�, the excited state with
energy ��T

E, and �GT�, the ground state with energy ��G
T

��T=�E
T −�G

T �. In this paper, the system under investigation
is composed of the atoms and photons, and has a Hamil-
tonian H that is decomposed into an unperturbed component
H0 and an interaction component V in the minimal-coupling
form �14�:

H0 = �
j

���E�Ej��Ej� + ��G�Gj��Gj�� + �
�

���a�
†a�

+ ��E
T�ET��ET� + ��G

T �GT��GT� , �1�

V = �
j,�

��� GE
�j� · g���Gj��Ej�e−ik��·R� ja�

† + �� EG
�j� · g��

* �Ej��Gj�eik��·R� ja��

+ �
�

��� GE
�T� · g��

�T��GT��ET�e−ik��·R� Ta�
† + �� EG

�T� · g��
�T�*�ET��GT�

�eik��·R� Ta�� 	 V1 + V2. �2�

In the preceding expressions, superscripts j are used to de-
note that �Gj� and �Ej� are, respectively, the ground and ex-

cited states of the jth atom at R� j in the ensemble, and g��

= i
2���0
2 / �L3������ and g��

�T�= i
2���T
2 / �L3������ are the

coupling constants of the �th quantized electromagnetic
mode �� �whose unit vector of polarization is ���� with the

atoms in the ensemble and the test atom located at R� T in the
region z	d, respectively ��k���=�� /c, where c is the speed of
light in vacuum�. The quantization volume is L3. While �� GE

�j� ,
whose complex conjugate is �� EG

�j� , represents the matrix ele-
ment between �Gj� and �Ej� of the electric dipole moment �� �j�

belonging to the jth atom inside the ensemble, the symbol
�� GE

�T� is defined as the matrix element between �GT� and �ET�
of the electric dipole moment �� �T� belonging to the test atom.
Throughout the present paper, Greek letters are reserved for
the field modes. In Eq. �2�, the interaction between the fields
and the atoms in the ensemble is denoted as V1, and the*wguo2@email.uncc.edu
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interaction between the fields and the test atom as V2. The
quantities a�

† and a� are, respectively, the creation and anni-
hilation operators for mode �. As usual, the asterisk denotes
the conjugate of a complex quantity.

In quantum optics, a scattering process involves the fol-
lowing steps. An incident photon is absorbed by a ground-
state atom, causing the atom to jump to an excited state, and,
when the atom returns to its ground state, a photon is re-
leased to go to other atoms �13�. To describe these steps, the
counter-rotating terms are not needed �and thus ignored� in
the interaction Hamiltonian V, because these terms, if in-
cluded, would be largely responsible for the creation of vir-
tual photons and would have little connection to the scatter-
ing of the incident photon. See Appendix A for a more
detailed discussion.

The discussion to follow is presented in the Schrödinger
picture, so that the state �
�t�� of the system at time t is
related to the system’s initial state �
�0�� through the follow-
ing integral relation:

�
�t�� = −
1

2�i
�

−�

�

dq
e−iqt/�

q − H
�
�0�� , �3�

where it is understood that the denominator in the integrand
contains an imaginary component i���→0+�. For simplicity,
all the atoms are assumed to be in the ground state when t
=0. As a result, the initial state of the system reads �
�0��
= � j=1

N �Gj���GT��1I�, where �1I� represents the state of the
single incident photon. This photon is incident on the atomic
ensemble from the z�0 region and has a wave vector k�I
��kI�=�I /c� and a polarization vector ��I along x̂.

As in Ref. �15�, the Green function 1/ �q−H� in Eq. �3� is
expanded into ascending powers of V2:

1

q − H
=

1

q − H0 − V1
+

1

q − H0 − V1
V2

1

q − H0 − V1

+
1

q − H0 − V1
V2

1

q − H0 − V1
V2

�
1

q − H0 − V1
+ ¯ . �4�

Since the test atom is needed in the present discussion
merely for the purpose of measuring the output photon, ra-
diation from the test atom should not be allowed to interact
with the atoms in the ensemble. This requirement clearly
means that the expression in Eq. �4� is in need of modifica-
tion, because, in its present form, the Green function de-
scribes not only the interactions between the incident photon
and the atomic ensemble �see the operator 1 / �q−H0−V1��,
but also those processes in which the photon first interacts
with the atoms in the ensemble, then with the test atom, and
finally with the atoms in the ensemble again �see the second
term on the right-hand side of the same equation�. All the
following terms in Eq. �4� mean that the photon is scattered
back and forth between the ensemble and the test atom even
more times. After being tailored to the present problem, the
Green function reduces to

1

q − H
=

1

q − H0

��V2 + V2
1

q − H0
V2

1

q − H0
V2 + ¯  1

q − H0 − V1

=
1

q − H0
�V2 + V2

1

q − H0
V2

1

q − H0
V2 + ¯ 

� � 1

q − H0
+

1

q − H0
V1

1

q − H0

+
1

q − H0
V1

1

q − H0
V1

1

q − H0
+ ¯  , �5�

where it is recognized that the series of V1 operators is ob-
tained through the expansion of 1/ �q−H0−V1�, and de-
scribes the multiple-scattering events the incident photon ex-
periences when propagating through the atomic ensemble.
The series of operators V2, on the other hand, illustrates that,
after interacting with the output photon, the test atom still
needs to conduct radiation reactions before finally settling
into its excited state. The terms containing even orders of V2
are excluded in Eq. �5�, because they would instead force the
test atom to settle into its ground state and, thus, would rep-
resent scattering of the output photon from the test atom, a
situation that is clearly not needed in the present discussion.

In Sec. II, propagation of the incident photon through the
atomic ensemble is analyzed. Then, in the following section,
calculation of the test atom’s transition probability amplitude
from ground state to excited state is presented. The paper is
finally summarized in Sec. IV.

II. PHOTON PROPAGATION THROUGH THE ATOMIC
ENSEMBLE

To describe accurately how the incident photon is multi-
ply scattered from the atoms in the ensemble, every term in
the serial expansion of 1/ �q−H0−V1� �see Eq. �5�� has to be
examined. The first term in the expansion, 1 / �q−H0�, con-
tains no interaction Hamiltonian V1 and thus can represent
only the one possibility that the incident photon approaches
the test atom directly without interacting with the atoms in
the ensemble at all,

1

q − H0
�
�0�� =

1

q − N��G − ��G
T − ��I

�
�0��

	
1

q − E0
�
�0�� , �6�

where ��I denotes the energy carried by the incident photon.
From the viewpoint of classical optics �11�, Eq. �6� repre-
sents the zeroth-order scattering of light, which certainly
leaves the state �
�0�� of the system unchanged.

In the second term, one V1 exists. For the present initial
state and the structure of V1, this operator allows each atom
in the ensemble to have a chance to transit to its excited state
by absorbing the incident photon:
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1

q − H0
V1

1

q − H0
�
�0��

=
1

q − E0
�

j

�� EG
�j� · g� I

*

q − E1
eik�I·R

�
j�Ej��

j�l

�Gl��GT��0� , �7�

where E1= �N−1���G+��E+��G
T , and �0� denotes the

vacuum state created after the incident photon is absorbed.
Any atom that does not absorb the incident photon remains
in the ground state; see �Gl� and �GT� in the preceding equa-
tion. While in the excited state, an atom �atom j in Eq. �7� for
example� can emit one photon and return to the ground state,
with the help of the third term in the serial expansion of
1/ �q−H0−V1�:

1

q − H0
V1

1

q − H0
V1

1

q − H0
�
�0��

=
1

q − E0
�
j,�

��� GE
�j� · g������ EG

�j� · g� I
*�

�q − E1��q − E��
ei�k�I−k���·R� j

� �Gj��
j�l

�Gl��GT��1�� , �8�

where E�=N��G+��G
T +���, and the emitted photon �1��

can be in any mode. Equations �7� and �8� describe a com-
plete scattering cycle: One atom first absorbs the incident
photon to go to the excited state and then returns to its
ground state through emitting a different photon �1��. This
cycle, however, does not exhaust all the transitions the atom
can make, because the atom can, in addition, repeatedly ab-
sorb and release the same photon it already created before
the photon goes to a different atom. Such repeated absorption
and emission of photons by the same atom is called a radia-
tion reaction and was demonstrated to be the physical origin
of spontaneous emission in Ref. �15�. In the present discus-
sion, the radiation reactions are generated by those terms in
the expansion of 1/ �q−H0−V1� that contain even orders of
V1. It will become clear in the following section that it is
through the consideration of the radiation reactions that the
atomic spontaneous emission rate is naturally introduced into
the atomic polarizability. After all the corrections from the
radiation reactions are added to the scattering cycle in Eqs.
�7� and �8�, the state S1 of the system, which represents the
first-order scattering of the incident photon from the atomic
ensemble, is obtained:

S1 =
1

�q − E0��q − E1 − E���j,�
��� GE

�j� · g������ EG
�j� · g� I

*�
q − E�

ei�k�I−k���·R� j

� �Gj��
l�j

�Gl��GT��1�� , �9�

which shows, as expected, that, after the scattering, all the
atoms are again in their ground states. In Eq. �9�, E�

=������ GE
�j� ·g���2 / �q−E��� is the change brought to the atomic

excited state by the radiation reactions and can be evaluated
by using the usual mode-continuum-limit approximation and
requiring q=E1 �see Ref. �15��,

E� = −
�0�

2��0
�� + �0 ln�� − �0

�0
� − i

�0�

2
.

In the preceding relation, �0=4��� GE�2�0
3 / �3�c3� is the spon-

taneous emission rate of any excited atom in the ensemble,
and � the cutoff frequency needed to make the nonrelativis-
tic Hamiltonian H valid �16� in the present discussion.

Note that in the serial expansion of 1/ �q−H0−V1� odd
powers of V1 also exist. What the odd powers of V1 achieve
is to leave the system in such states that each atom in the
ensemble has a chance to settle into its excited state through
absorbing the incident photon; see Eq. �7� for an example.
Although not needed in the present discussion of photon
scattering, these states clearly show, along with S1, that, as
the incident photon propagates through the atomic ensemble,
entanglement between the atoms and the photon is inevitably
established. Entanglement of atomic ensembles is believed to
be a promising way to realize quantum-information process-
ing �17�.

The emitted photon from one atom will eventually go to
different atoms and be repeatedly absorbed and released by
these atoms as well. Radiation reactions conducted by differ-
ent atoms can still be taken into account by the operator
1 / �q−H0−V1�. To understand this point, one needs to note
that, if organized into different groups, the operators V1 in
the expansion of 1/ �q−H0−V1� are able to regulate the tran-
sitions of more than one atom. For example, in

1

q − H0
V1

1

q − H0
V1

1

q − H0
V1

1

q − H0
V1

1

q − H0
,

while the right two V1’s can be used to force one atom to first
absorb the incident photon and then emit another photon, the
left two enable another atom to carry out the same absorption
and emission transitions as soon as the photon created by the
first atom arrives. After the relevant atoms at two different
locations all complete their radiation reactions, the system
develops into the following state:

S1→2 =
1

�q − E0��q − E1 − E��2

��
j,�

��� GE
�j� · g������ EG

�j� · g� I
*�

q − E�

ei�k�I−k���·R� j

� �
l�j,�

��� GE
�l� · g������ EG

�l� · g��
*�

q − E�

ei�k��−k���·R� l

� �Gl��
m�l

�Gm��GT��1�� , �10�

which is a representation of the second-order scattering of
the incident photon from the atoms. At the end of the second-
order scattering, all the atoms are again in their ground
states. Similarly, after the third-order photon scattering
�which involves atoms at three different locations�, the state
of the system reads
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S1→2→3 =
1

�q − E0��q − E1 − E��3

��
j,�

��� GE
�j� · g������ EG

�j� · g� I
*�

q − E�

ei�k�I−k���·R� j

� �
l�j,�

��� GE
�l� · g������ EG

�l� · g��
*�

q − E�

ei�k��−k���·R� l

� �
m�l,�

��� GE
�m� · g������ EG

�m� · g��
*�

q − E�

� ei�k��−k���·R� m�Gm� �
n�m

�Gn��GT��1�� . �11�

In Eqs. �10� and �11�, the emitted photons can be in any
mode, such as �1�� and �1��.

Propagation of the incident photon through the atomic
ensemble is completely described by the multiple-scattering
series formed by adding to the first three terms in Eqs. �6�
and �9�–�11� all higher-order terms. But, since photons do
not have an unambiguously defined phase �1,13�, the result-
ant multiple-scattering series cannot be expressed in closed
form, and can shed only limited light on what can be learned
from the output photon. One way to study the output photon
requires that the photon be measured. In the following sec-

tion, the interaction between the output photon and the test
atom is analyzed, and the test atom’s transition amplitude A
from ground state to excited state as a result of such interac-
tion is calculated. It is then demonstrated that A not only can
be expressed in closed form but also, more importantly, con-
tains specific information about the propagation of the inci-
dent photon through the atomic ensemble. It is additionally
shown that, as far as light detection is concerned, A is
equivalent to the amplitude of a transmitted classical wave.
In passing, the present formulation of photon scattering is
based on mode expansion, an approach also used in Ref. �18�
in the description of nonlinear wave interactions.

III. EXCITATION OF THE TEST ATOM

At the location of the test atom, the incident photon is
scattered from the atomic ensemble into all the modes al-
lowed by the theory of quantum optics �see, for example,
�1�� and �1�� in Eqs. �10� and �11��, and the test atom needs
to respond to the output photon in all these modes before
transiting to its excited state �ET�. With the help of Eq. �5�,
one finds that the interaction between the test atom and the
output photon changes the state of the system from that rep-
resented by the multiple-scattering series in Sec. II to the
following state:

1

q − H
�
�0�� =

1

q − H0
�V2 + V2

1

q − H0
V2

1

q − H0
V2 + ¯ � 1

q − E0
�

j

�Gj��GT��1I� +
1

�q − E0��q − E1 − E��

� �
j,�

��� GE
�j� · g������ EG

�j� · g� I
*�

q − E�

ei�k�I−k���·R� j�Gj��
l�j

�Gl��GT��1�� +
1

�q − E0��q − E1 − E��2

��
j,�

��� GE
�j� · g������ EG

�j� · g� I
*�

q − E�

ei�k�I−k���·R� j �
l�j,�

��� GE
�l� · g������ EG

�l� · g��
*�

q − E�

ei�k��−k���·R� l�Gl��
m�l

�Gm��GT��1�� + ¯ 
= ���� EG

�T� · g� I
�T�*�eik�I·R

�
T�

j

�Gj� +
1

q − E1 − E�
�
j,�

��� GE
�j� · g������ EG

�j� · g� I
*�

q − E�

� ei�k�I−k���·R� j��� EG
�T� · g��

�T�*�eik��·R� T�Gj��
l�j

�Gl� +
1

�q − E1 − E��2�
j,�

��� GE
�j� · g������ EG

�j� · g� I
*�

q − E�

ei�k�I−k���·R� j

� �
l�j,�

��� GE
�l� · g������ EG

�l� · g��
*�

q − E�

ei�k��−k���·R� l��� EG
�T� · g��

�T�*�eik��·R� T�Gl��
m�l

�Gm� + ¯  �ET��0�
�q − E2 − E�

T��q − E0�
. �12�

New quantities introduced in the preceding equation are
the energy of the system when the test atom is in its
excited state, E2=N��G+��E

T, and the change to the atom’s
excited state level due to the radiation reactions E�

T

=−��0
T� /2�T����+�T ln���−�T� /�T��−�0

T� /2, where �0
T

=4��� GE
�T� �2��T�3 / �3�c3� is the spontaneous emission rate of

the test atom once in the excited state. The state in Eq. �12�

is obtained after each term of the photon multiple-scattering
series discussed in Sec. II is considered for its contribution to
the excitation of the test atom. For example, in the large
parentheses after the second equality in Eq. �12�, the first
term arises from the zeroth-order scattering of the incident
photon, the second term from the first-order scattering, and
all the other remaining terms from higher-order scattering
events. Thus, all the information regarding the propagation
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of the incident photon through the atomic ensemble is now
contained in the state in Eq. �12�.

The time-dependent probability amplitude A for the test
atom to transit from its ground state to an excited state under
the influence of the output photon is obtained after the scalar
product between the state in Eq. �12� and �
 f	=� j=1

N �Gj

	�ET	�0	 is found, and after the residue theorem is subse-
quently applied to the scalar product; see Eq. �3�. Note that
only the pole around E0− i� is required by the residue theo-
rem. The pole from E�, on the other hand, should be ignored,
because this pole would result in the generation of an expo-
nentially decaying wave, which will diminish A as t→�. In
classical optics, a dipole driven by an external electromag-
netic field is also known to create an evanescent wave that
exponentially decays due to the radiation reactions, and a
propagating wave bearing the same frequency as that of the
external field. The pole associated with E�

T exhibits—aside
from the fact that due to spontaneous emission the test atom
can never stay in its excited state forever—little about the
propagation of the incident photon, and, thus, should be ig-
nored too. Specifically, A is found to be

A =
e−iE0t/�

E0 − E2 − E�
T ���� EG

�T� · g� I
�T�*�eik�I·R

�
T +

1

E0 − E1 − E�

��
j,�

��� GE
�j� · g������ EG

�j� · g� I
*�

E0 − E�

ei�k�I−k���·R� j��� EG
�T� · g��

�T�*�eik��·R� T

+
1

�E0 − E1 − E��2�
j,�

��� GE
�j� · g������ EG

�j� · g� I
*�

E0 − E�

ei�k�I−k���·R� j

� �
l�j,�

��� GE
�l� · g������ EG

�l� · g��
*�

E0 − E�

�ei�k��−k���·R� l��� EG
�T� · g��

�T�*�eik��·R� T + ¯  . �13�

When the summation over individual atoms in Eq. �13� is
replaced by integration, the expression of A is simplified.
Note that the atoms in the ensemble are already assumed to
have a uniform distribution �characterized from now on by a
constant density n�:

A =
e−iE0t/�

E0 − E2 − E�
T ���� EG

�T� · g� I
�T�*�eik�I·R

�
T +

n�2��2

E0 − E1 − E�

��
0

d

dzje
i�kIz−k�z�zj�

�

��� GE
�j� · g������ EG

�j� · g� I
*�

E0 − E�

���� EG
�T� · g��

�T�*�eik��·R� T��k�I� − k���� +
n2�2��4

�E0 − E1 − E��2

��
0

d

dzje
i�kIz−k�z�zj�

�

��� GE
�j� · g������ EG

�j� · g� I
*�

E0 − E�

��k�I� − k����

� �
0

d

dzle
i�k�z−k�z�zl�

�

��� GE
�l� · g������ EG

�l� · g��
*�

E0 − E�

���k��� − k���� � ��� EG
�T� · g��

�T�*�eik��·R� T + ¯  , �14�

where integration over the x−y plane is responsible for the
formation of two-dimensional � functions. Also, in the pre-

ceding equation, B� � represents the component on the x−y

plane of an arbitrary vector B� . The orientation of any atom’s
dipole moment is unmeasurable and, thus, has to be averaged
over �13�. It is found that after this orientation averaging the
only surviving component of all g� factors in Eq. �14� is along
a direction parallel to x̂, the same direction as the polariza-
tion of the incident photon. This conclusion reflects a famil-
iar result in classical optics: The polarization of an incident
TE wave remains unchanged as the wave travels into a uni-
form dielectric medium �9,12�. An application of the mode-
continuum-limit approximation, aided by the � functions,
then shows that each sum over the field modes in Eq. �14�
reduces to Gz�z1−z2�, the one-dimensional classical Green
function ieikIz�z1−z2� / �2kIz�, where the parameter kIz denotes
the z component of the incident wave vector k�I. �In this work,
G�r�=eikIr /4�r is referred to as the classical Green function
in order to distinguish it from 1/ �q−H�.� As a result, A be-
comes

A =
e−iE0t/�

E0 − E2 − E�
T

�


�I

eik�I�·R� T

��eikIzRTz + �−
4�n��� GE�2�0

2

3�E0 − E1 − E��c2
��

0

d

dzje
ikIzzjGz�RTz − zj� + � 4�n��� GE�2�0

2

3�E0 − E1 − E��c22

��
0

d

dzje
ikIzzjGz�zj − zl��

0

d

dzlGz�RTz − zl� + ¯ � ,

�15�

where �=−i�EGx
�T� 
2���T

2 �L3 , and �EGx
�T� is the x̂ component

of �� EG
�T� . The coefficient −4�n ��� GE�2�0

2� 3c2�E0−E1−E�� in
Eq. �15� can be expressed in terms of �0 as

4�nk0
2 �0

4k0
3��0 − �I −

�0

2��0
�� + �0 ln

� − �0

�0
 − i

�0

2
�

	 4�nk0
2Patom, �16�

where k0=�0 /c, and Patom is the resonant component of the
polarizability of the atoms in the ensemble �13,19�. Although
a photon released from each atom in the ensemble can be in
any mode, the symmetry of the ensemble in the x−y plane
�see the � functions� and the sums over the modes �see, for
example, Eq. �14�� practically dictate that any photon propa-
gating from one atom to another must have the same wave
number as the incident photon. It is then natural to find that
the series in Eq. �15� resembles those in Ref. �11�, where a
classical multiple-scattering description of light propagation
is presented. Nevertheless, it is necessary to note that, in Eq.
�15�, coefficients like 4�n ��� GE�2�0

2 / �3c2�E0−E1−E��� and
its higher powers are in fact related to quantum probabilities.

Since the test atom’s transition is caused by the output
photon �which is in fact nothing other than the incident pho-
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ton passing through the atomic ensemble�, specific informa-
tion about the spatial and temporal dependence of the inci-
dent photon’s propagation inside the medium must be
recorded in A �as well as the state in Eq. �12��. Such infor-
mation is demonstrated in Appendix B to be indeed in A, in
particular, in the series composed of the classical Green
function. Due to the symmetry of the atomic ensemble along
the x−y plane, however, only Gz appears in the serial repre-
sentation A in Eq. �15�.

The results reported in Ref. �11� are then used to put the
series in Eq. �15� into a closed-form expression:

A =
2

E0 − E2 − E�
T

�


�I

D0kz�e
i�kz�−kIz�deik�I·R

�
T−iE0t/�, �17�

where kz�=
kIz
2 +4�nk0

2Patom, and D0=2kIz��kz�+kIz�2

− �kz�−kIz�2e2ikz�d�−1.

IV. CONCLUSION AND DISCUSSION

Linear propagation of light through an ensemble of iden-
tical two-level atoms is formulated through following the
course of multiple scattering of one incident photon from the
atoms, rather than through studying the spatial progression of
the quantized electromagnetic wave operators. Since the
multiple-scattering series obtained in Eq. �15� is practically
the same as that describing the propagation of a classical
wave through a dielectric slab formed by classical dipoles
�11� �see also Appendix B�, it is evident that inside the en-
semble the incident photon actually travels abiding by the
same rules as does a classical wave. This familiar result was
also reached by other authors �2,4,5� using different ap-
proaches that all require quantization of the fields inside the
medium.

Since the present formulation is a fully quantum formula-
tion, it yields more information about light propagation. For
example, since the atoms are treated on the same quantum
footing as are photons, it is found in Sec. II that as the inci-
dent photon travels through the atomic ensemble it has a
chance to become entangled with the atoms. This quantum
phenomenon can never be exhibited if the medium is treated
as a classical medium �2,4,5,7�. Another feature of this paper
is that the discussion is presented in the Schrödinger picture
and takes into consideration all atomic transitions relevant to
photon propagation. As a result, the dispersion properties of
light propagation are analyzed accurately without assuming
that the susceptibility of the medium is constant �2,7� or
employing approximation methods to consider possible
losses in the medium �5�. In particular, this paper shows
specifically through Eq. �16� that energy is taken out of the
light through spontaneous emission. The Schrödinger-picture
approach also allows one to argue in Appendix A that exclu-
sion of the counter-rotating terms from H does not prevent
the light propagation from being formulated properly.

For the purpose of measuring the output photon, also dis-
cussed in the paper is the excitation of a test atom by the
output photon through calculating the transition amplitude A
of the atom. It turns out that A can be put into closed form
�see Eq. �17��, implying that, although the output photons in

different modes do not have specific relative phases, they do
correlate with each other when interacting with the test atom.

More specifically, the quantity 2D0kz�e
i�kz�−kIz�deik�I·R

�
T in Eq.

�17� demonstrates that, when interacting with the test atom,
the output photon formally appears to be in a mode identical
to that of the incident photon. To understand this observation,
it is necessary to note that photon propagation through the
slab follows the classical laws, so that the output photon,
which is the transmitted incident photon through the slab,
must have the same wave vector or be in the same mode as
the incident photon. Note that the quantity

2D0kz�e
i�kz�−kIz�deik�I·R

�
T is in fact the transmitted plane wave

eik�I·r� through the atoms �11�. This analogy not only confirms
that the present quantum formulation of light propagation is
consistent with the classical formulation, but also, more im-
portantly, demonstrates that when light detection is con-
cerned the amplitude of a transmitted wave in classical optics
is equivalent to the transition probability amplitude of the
test atom �placed outside the medium� from the ground state
to the excited state in quantum optics. The reason is simple:
While light detection is described by the transition probabil-
ity of a detector �the test atom in the present discussion� in
quantum optics �1�, it is related to light intensity in classical
optics �20�. Light detection is a topic seldom discussed when
light propagation is addressed through the spatial progression
of the quantized field operators �2,4,5�. It is shown in Appen-
dix B that the spatial and temporal dependence of light
propagation is actually represented by the classical Green
function, that is, information about photon propagation can
be studied through A.

It is worthwhile to note that, in principle, the relations in
Eqs. �13�–�15� and �17� are valid only as t→�, because in
these relations every order of photon scattering is included,
and every order of photon scattering, as shown in Appendix
B, takes time to complete.
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APPENDIX A: JUSTIFICATION OF THE ROTATING-
WAVE APPROXIMATION IN V

In principle, the interaction Hamiltonian V should include
both the rotating and counter-rotating components in order to
describe accurately light-atom interactions. When photon
propagation through �two-level� atoms is considered, how-
ever, the counter-rotating components can be excluded from
V. For illustration, consider a case in which the incident pho-
ton is scattered only from atom A to atom B, all initially in
the ground state. If the radiation reactions are additionally
ignored for simplicity, the Green function in Eq. �3� contains
only one term:

1

q − H
=

1

q − H0
V1

1

q − H0
V1

1

q − H0
V1

1

q − H0
, �A1�
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which evidently is sufficient for the following scattering pro-
cess. Atom A first absorbs the incident photon �through the
rightmost V1� to go to the excited state and then releases a
different photon �through the middle V1� to return to the
ground state. The released photon, when reaching atom B,
causes the latter atom �through the leftmost V1� to enter its
excited state.

Since the rightmost V1 addresses the interaction between
the incident photon and atom A, it should only include those
atomic operators that belong to atom A:

V1 = �
�

��� GE
�A� · g���GA��EA�e−ik��·R� Aa�

† + �� EG
�A� · g��

* �EA��GA�

�eik��·R� Aa�� + �
�

��� EG
�A� · g���EA��GA�e−ik��·R� Aa�

†

+ �� GE
�A� · g��

* �GA��EA�eik��·R� Aa�� , �A2�

where the counter-rotating components are given in the sec-

ond term, and R� A and R� B denote, respectively, the locations
of atoms A and B. For the initial state �GA��GB��1I�, one finds
that

1

q − H0
V1

1

q − H0
V1

1

q − H0
V1

1

q − H0
�GA��GB��1I�

=
1

q − 2��G − ��I

1

q − H0
V1

1

q − H0
V1

�� �� EG
�A� · g� I

*

q − ��E − ��G
eik�I·R

�
A�EA��GB��0�

+ �
�

�� EG
�A� · g��

q − ��E − ��G − ��I − ���

�e−ik��·R� A�EA��GB��1I��1�� , �A3�

where the second term in the large parentheses is due to the

counter-rotating component ���� EG
�A� ·g���EA��GA�e−ik��·R� Aa�

† ,
and represents such a transition that atom A spontaneously
jumps �without the aid of the incident photon �1I� at all� to
the excited state and emits in the meantime one virtual pho-

ton �15� that can be in any mode �1��. Clearly this transition
does not fit into the present discussion of photon scattering,
because the incident photon, the photon to be scattered from
atom A, does not even interact with atom A. As a result, the
counter-rotating components in the rightmost V1, as well as
the term in Eq. �A3� created by these components, are not
needed. The first term in the large parentheses is due to the
rotating components and is a representation that atom A ab-
sorbs the incident photon to transit into the excited state.

The middle V1 in Eq. �A1� is the same as that in Eq. �A2�,
because it is still used to describe the interaction between
atom A and the fields. From Eq. �A3�, it is found that the
scattering process continued by the middle V1 changes the
state of the system to

1

q − 2��G − ��I

1

q − H0
V1

1

q − H0
V1

�
�� EG

�A� · g� I
*eik�I·R

�
A

q − ��E − ��G
�EA��GB��0�

=
1

q − 2��G − ��I

1

q − H0
V1

���
�

�� GE
�A� · g��

q − 2��G − ���

�� EG
�A� · g� I

*

q − ��E − ��G
ei�k�I−k���·R� A

��GA��GB��1�� + 0 , �A4�

where the null state in the large parentheses, a state equal to
zero, is noted to be created by the counter-rotating compo-

nents ���� GE
�A� ·g��

* �GA��EA�eik��·R� Aa�. Thus, the counter-rotating
components actually would stop the scattering process—the
middle V1 can be treated under the rotating-wave approxima-
tion. The nonzero state in the large parentheses can be un-
derstood like this: Under the action of the rotating compo-
nents, atom A returns to its ground state and emits one
photon �1��.

The leftmost V1 is obtained from the expression in Eq.
�A2� by replacing all the indices A by B, because this opera-
tor now determines the interaction between atom B and the
fields. When the leftmost V1 acts on the state in Eq. �A4�, the
following states are obtained:

1

q − 2��G − ��I

1

q − H0
V1�

�

�� GE
�A� · g��

q − 2��G − ���

�� EG
�A� · g� I

*

q − ��E − ��G
ei�k�I−k���·R� A � �GA��GB��1��

=
1

q − 2��G − ��I
��

�

��� EG
�B� · g��

*���� GE
�A� · g���

q − 2��G − ���

�� EG
�A� · g� I

*

�q − ��E − ��G�2ei�k�I−k���·R� A+ik��·R� B � �GA��EB��0�

+ �
�

�� EG
�B� · g��

q − ��G − ��E − ��I − ���

e−ik��·R� B�
�

�� EG
�A� · g��

q − 2��G − ���

�
�� EG

�A� · g� I
*

q − ��E − ��G
ei�k�I−k���·R� A�GA��EB��1���1�� , �A5�
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where the first term in the large parentheses is due to the
rotating components and shows that atom B absorbs one pho-
ton released by atom A and jumps into the excited state; all
these transitions are consistent with the photon scattering
process. The second term, on the other hand, is generated by
the counter-rotating components, more specifically by

����� EG
�B� ·g���EB��GB�e−ik��·R� Ba�

†�, and represents such a transi-
tion that atom B spontaneously creates a photon �which is
still virtual and can be in any mode �1���, and enters the
excited state. This latter transition is evidently not caused by
the photon from atom A and is, thus, not even part of the
scattering process intended to be discussed here. Therefore,
the counter-rotating components can be ignored in the left-
most V1 too.

From the preceding discussion, it is evident that the
counter-rotating components, although they might be impor-
tant in other situations, are unnecessary for the formulation
of light propagation, because they are mainly responsible for
the creation of virtual photons and contribute little to the
scattering of the incident photon. The Schrödinger-picture
approach used in the present work requires every atomic
transition to be tracked and consequently enables an exhibi-
tion of different roles played by the rotating and counter-
rotating components in V.

APPENDIX B: CLASSICAL GREEN FUNCTION AND
LIGHT PROPAGATION

The spatial and temporal dependence of photon propaga-
tion through the atomic ensemble is stored in the classical
Green function G. To explain this point, consider an analo-
gous multiple-scattering formulation of light propagation in
the classical domain by computing the total field E at r� after
an incident plane wave eik�·r�−i�t is scattered from N atoms.
Such a treatment is relevant, because it is already shown in
Sec. III that propagation of the incident photon through the
atomic ensemble follows the same classical laws. The den-
sity n of the atoms is

n�r�� = �
j=1

N

��r� − r� j� . �B1�

For simplicity, all the waves are simplified as scalar waves.
The zeroth-order component of E certainly contains the inci-
dent plane wave alone. The first-order component �denoted

as E1� results from the first-order scattering of the incident
wave from the atoms �9�:

E1�r�,t� = �atomk2� � ��t1 − �t − �r� − r�1�c−1��
�r� − r�1�

�eik�·r�1−i�t1n�r�1�dr�1dt1

= �atomk2�
j=1

N
eik�·r�j−i��t−�r�−r�j�c

−1�

�r� − r� j�

= �atomk2�
j=1

N
eik�r�−r�j�+ik�·r�j−i�t

�r� − r� j�
, �B2�

where it is clear that the spatial and temporal dependence of
light propagation from a particular atom, the jth atom for
example, to r�, is contained in ik�r�−r� j�, that is, in the classical
Green function eik�r�−r�1� / �4� �r�−r� j � �. In the preceding equa-
tion, �atom denotes the atomic polarizability, and k=� /c.
When all higher-order components are included in E, one has

E�r�,t� = e−i�t�eik�·r� + �atomk2�
j=1

N
eik�r�−r�j�

�r� − r� j�
eik�·r�j

+ �atom
2 k4�

j�l

N
eik�r�−r�l�+ik�r�l−r�j�

�r� − r�l� · �r�l − r� j�
eik�·r�j + ¯  . �B3�

If the atoms are again assumed to have a uniform distribution
n0 between z=0 and d, and if the results in Ref. �11� are
used, E reduces to a series of the one-dimensional Green
function:

E�r�,t� = eik�·r��−i�t�eikzz + 4��atomk2n0

��
0

d

dzjGz�z − zj�eikzzj + �4��atomk2n0�2

��
0

d

dzlGz�z − zl��
0

d

dzjGz�zl − zj�eikzzj + ¯  ,

�B4�

which is formally identical to the quantum series in Eq. �15�
and confirms that A contains all the information in its Gz
series about the propagation of the incident photon.
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