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A classical wave-optics analog of topological �Aharonov-Bohm� suppression of tunneling in a double-well
potential on a ring threaded by a magnetic flux is proposed. The optical system consists of a uniformly twisted
optical fiber with a structured annular core, in which the fiber twist mimics the role of the magnetic flux in the
corresponding quantum-mechanical problem. Light waves trapped in the annular core of the fiber experience
an additional topological �Aharonov-Bohm� phase, which may lead to the destruction of optical tunneling at
certain values of the twist rate.
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I. INTRODUCTION

Tunneling of a wave function between two communicat-
ing wells of a bistable potential is a rather universal phenom-
enon encountered in a wide variety of quantum systems at
the mesoscopic and macroscopic levels �see, for instance,
Refs. �1,2��. Owing to the splitting of the ground-state ener-
gies of the double-well system, a wave initially localized in
one of the two wells periodically tunnels back and forth be-
tween them in a characteristic time which is inversely pro-
portional to the doublet energy splitting. Such a familiar dy-
namical behavior may be strongly modified when the system
is exposed to a time-dependent driving field �2�. In particular,
for a periodic driving force tunneling can be brought to a
complete standstill under certain conditions, a phenomenon
which is usually referred to as “coherent destruction of tun-
neling” �CDT� �2,3�. A related problem is that of tunneling of
a quantum particle in a double-well potential constrained to
move on a closed loop, such as on a ring, threaded by a
magnetic flux �4�. As compared to a double well on the line,
in this case there exist two different paths connecting the two
wells on the closed loop and the tunneling rate is thus modi-
fied. Interestingly, when the ring is threaded by the magnetic
flux, an additional Aharonov-Bohm phase appears in the
wave function which can lead to tunneling suppression for
certain values of the magnetic flux �4–6�. As compared to
CDT, in this case tunneling suppression has a topological
origin and arises as a destructive interference between differ-
ent tunneling paths. Such a kind of tunneling suppression of
purely topological origin has been theoretically predicted
�5,6� and experimentally observed �7� in magnetic systems as
a periodic quenching of the ground-state energy splitting
when the applied magnetic field is increased. Instead of
threading a quantum ring with a magnetic flux, the additional
topological phase can be achieved by rotating the ring
around its axis, the Coriolis force in the noninertial reference
frame playing an analogous role of the magnetic force �see,
for instance, Refs. �8,9��. In spite of the fact that these phe-
nomena have been mostly investigated in the framework of
quantum systems, they may be observed as well in classical
wave optics owing to the strong similarities between quan-
tum and optical wave phenomena �see, for instance, Refs.
�10–12�, and references therein�. Electromagnetic analog of

tunneling enhancement and suppression in a driven bistable
potential have been recently demonstrated using two engi-
neered evanescently coupled optical waveguides �13,14�,
where the refractive index profile transverse to the propaga-
tion direction of light mimics the double-well potential of the
corresponding quantum problem whereas the temporal evo-
lution of the wave function is replaced by the spatial evolu-
tion of the light wave along the propagation direction. The
optical analog of the motion of a quantum particle on a ring
is represented by ray propagation in microstructured annular
optical guides, which can be nowadays designed and fabri-
cated thanks to the impressive advances in optical fiber tech-
nology �see, for instance, Refs. �15–17�, and references
therein�.

In this work we theoretically propose an optical analog of
topological quantum tunneling suppression via Aharonov-
Bohm destructive interference based on a uniformly twisted
structured annular-core fiber. The annular core of the fiber is
designed such that light is preferentially confined to two sec-
tors of the core and evanescent coupling of optical waves
�optical tunneling� is allowed along the two paths of the ring.
A topological additional phase, which mimics the Aharonov-
Bohm phase induced by the magnetic flux in the correspond-
ing quantum problem, is attained by a uniform twist of the
fiber around its axis. In the twisted reference frame, optical
rays experience both centrifugal and Coriolis forces �see, for
instance, Ref. �18��, the latter one being analogous to the
magnetic �Lorentz� force and thus responsible for the appear-
ance of an additional topological phase. As in the untwisted
fiber an initial light beam injected into one of the two high-
index sectors of the annular core undergoes periodic optical
tunneling as in a usual optical directional coupler, in the
twisted case the spatial length of the optical tunneling varies
with the twist rate �, and at certain values of � tunneling can
be completely suppressed via destructive interference.

The paper is organized as follows. In Sec. II the basic
model of light propagation in a twisted annular-core fiber
with a structured core is presented and a variational analysis
is used to capture the dynamics of light waves trapped in the
annular core region. In Sec. III topological suppression of the
tunnel splitting induced by fiber twist is discussed and the
optical-quantum analogy is clarified. Numerical simulations
of light propagation in the twisted annular fiber are presented
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in Sec. IV, which confirm the theoretical predictions. Finally,
in Sec. V the main conclusions are outlined.

II. BASIC MODEL AND VARIATIONAL ANALYSIS

A. Annular fiber model

The starting point of our analysis is provided by a rather
standard model for monochromatic light propagation at fre-
quency � in a guiding dielectric structure with a refractive
index profile n�x ,y ,z�, which describes a fiber with a struc-
tured annular core in the transverse �x ,y� plane uniformly
twisted along the propagation direction z with a spatial twist
period �. In the weak guidance approximation, where the
refractive index n�x ,y ,z� weakly deviates from the substrate
�cladding� index ns, the scalar field approximation can be
used �see, for instance, Refs. �19–21�� and propagation of the
electric field E, in a given polarization state, is ruled by the
Helmholtz equation

�2E

�z2 + ��
2 E + k0

2n2�x,y,z�E = 0, �1�

where ��
2 = ��2 /�x2�+ ��2 /�y2� is the transverse Laplacian,

k0= �� /c0�, and �=2� /k0 is the wavelength of light in
vacuum. In a rotating frame that follows the fiber twist �18�,
Eq. �1� takes the form

� �

�z
− �

�

��
�2

E + ��
2 E + k0

2n2�r,��E = 0, �2�

where �r ,�� are the polar coordinates in the rotating trans-
verse reference frame, �=2� /� is the twist rate, and ��

2

= �1/r���E /�r�+ ��2E /�r2�+ �1/r2���2E /��2�. In our model,
we consider a fiber index profile n�r ,�� which slightly devi-
ates from that of a step-index annular-core fiber �20�; i.e., we
set n�r ,��=n0�r�+	n�r ,��, where n0�r�=n2 for �r−a�
� /2,
n0�r�=ns for �r−a��� /2, a and � are the annular core radius
and thickness, respectively, �n2−ns�ns and �	n� �n2−ns�.
The behavior of 	n�r ,��—i.e., of the index profile increase
in the annular-core region—is left undetermined at this stage
and will specified in the following.

B. Variational analysis

Propagation of light waves trapped in the annular core
region can be at best captured in the limit of a narrow ring
��a� by eliminating from Eq. �2� the radial part of the field
and looking for an amplitude equation for the angular part
solely �22�. Owing to the presence of the structured part
	n�r ,�� in the core region, the problem is not exactly sepa-
rable and one has to resort to approximate techniques to cap-
ture the angular wave dynamics. To this aim, let us notice
that Eq. �2� can be derived from the variational principle
��r dr d� dz L=0 with a Lagrangian density L=L�E ,E* ,
Ez ,Ez

* ,E� ,E�
* ,Er ,Er

*� given by

L = k0
2n2�r,��EE* −

�E

�r

�E*

�r
−

1

r2

�E

��

�E*

��

− � �E

�z
− �

�E

��
�� �E*

�z
− �

�E*

��
� . �3�

Let us indicate by E�r�=R�r�exp�inek0z� the angular-
invariant fundamental mode of the annular fiber for 	n=0,
where R�r� is the radial mode profile and ne the mode
effective index, i.e., �1/r���R /�r�+ ��2R /�r2�+k0

2n0
2�r�R�r�

=k0
2ne

2R�r�. Let us then look for an approximate solution to
Eq. �2� of the form E�r ,� ,z�	R�r�f�� ,z�, where f�� ,z� de-
scribes the angular distribution of light waves. After setting
n2�r ,��	n0

2�r�+2n0�r�	n�r ,��, the evolution equation for
f�� ,z� is given by the Euler-Lagrange equation

�Lred

�f* −
�

��

�Lred

�f�
* −

�

�z

�Lred

�fz
* = 0 �4�

for the reduced Lagrangian density Lred=�0
�drrL. Assuming

the normalization condition �0
�dr r�R�r��2=1, the reduced La-

grangian density reads explicitly

Lred = k0
2�ne

2 − 2neVe����f f* −
1

R0
2

�f

��

�f*

��

− � �f

�z
− �

�f

��
�� �f*

�z
− �

�f*

��
� , �5�

where we have set

Ve��� 
 −
1

ne
�

0

�

dr rn0�r�	n�r,���R�r��2 �6�

and

1

R0
2 
 �

0

�

dr
1

r
�R�r��2. �7�

Note that, for a narrow annulus, R0 is close to the mean
radius a of the ring fiber core. From Eq. �4� one then obtains
the following evolution equation for f:

� �

�z
− �

�

��
�2

f +
1

R0
2

�2f

��2 + k0
2�ne

2 − 2neVe����f = 0. �8�

.

III. TOPOLOGICAL SUPPRESSION OF OPTICAL
TUNNELING

A. Modes of the twisted fiber and suppression of
tunnel splitting

The angular modes of the twisted fiber can be derived
from Eq. �8� by setting f�z ,��=A���exp�i�z�, where the an-
gular mode profile A��� and corresponding propagation con-
stant � are found as eigenfunctions and eigenvalues of the
equation
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�i� − �
d

d�
�2

A +
1

R0
2

d2A

d�2 + k0
2�ne

2 − 2neVe����A = 0, �9�

with the monodromy condition A��+2��=A���. Consider
first the case of an untwisted fiber, corresponding to �=0, so
that Eq. �9� reads

−
1

2k0
2neR0

2

d2A

d�2 + Ve���A = EA , �10�

where we have set E
�k0
2ne

2−�2� / �2k0
2ne�. Let us assume an

index profile 	n�r ,�� such that the averaged function Ve���
given in Eq. �6�, which plays the role of a potential on the
ring �see Eq. �10��, is periodic with period �, i.e., Ve��+��
=Ve���, and shows two minima �double-well potential� in the
interval �0,2��, as shown in Fig. 1. Such a situation can be
realized, in practice, by assuming a step-index annular-core
fiber with four core sectors with alternating refractive indices
n2 and n3�n2, as shown in Fig. 1. In this case, the Bloch-
Floquet theorem ensures that any solution to Eq. �10� has the
form A���=uQ,l���exp�iQ�� and E=El�Q�, where −1
Q
�1, l=1,2 ,3 , . . ., is the band index and uQ,l��+��=uQ,l���
is the periodic part of the Bloch function. The monodromy
condition A��+2��=A��� restricts the possible values of Q
to Q=0 or Q=1, yielding two sets of eigensolutions Al

�e����
and Al

�o���� with corresponding propagation constants �l
�e�

=k0ne�1−2El�0� /ne�1/2	k0ne�1−El�0� /ne� and �l
�o�=k0ne�1

−2El�1� /ne�1/2	k0ne�1−El�1� /ne� �see Fig. 1�c��. Note that
Al

�e���+��=Al
�e���� whereas Al

�o���+��=−Al
�o����; i.e., the

two sets of modes have opposite parity �symmetric and an-
tisymmetric modes�. The two lowest-order modes A1

�e���� and

A1
�o���� correspond to the usual symmetric and antisymmetric

modes of the double-well potential Ve on the ring, with light
localized in the two high-index regions of the annular core
with different phases, as shown in Fig. 2. The splitting 	�
=�0

�e�−�0
�o�	k0�E1�1�−E1�0�� of their propagation constants

is responsible for optical tunneling between the two high-
index sectors of the annular core in such a way that an initial
light beam injected in correspondence of one of the two
high-index regions periodically tunnels forth and back along
the propagation axial coordinate z, as will be shown by direct
numerical simulations in the next section. Consider now the
effect of a fiber twist. As we consider the weak guidance
limit �Ve��� � ne, one has �	k0ne and for a twist period
��R0, a condition usually met in practice, the eigenvalue
equation �Eq. �9�� can be simplified as follows:

−
1

2k0
2neR0

2

d2A

d�2 + Ve���A + i
�

k0

dA

d�
= EA , �11�

which differs from Eq. �10� for the appearance of the addi-
tional term i�� /k0��dA /d�� on the left-hand side in the equa-
tion. Equation �11� can be reduced to the form �10� for the
untwisted fiber after the gauge transformation A���
=����exp�i�k0neR0

2��, which transforms Eq. �11� into

−
1

2k0
2neR0

2

d2�

d�2 + Ve���� = E�� , �12�

with E�=E+�2neR0
2 /2. The main effect of fiber twist is

thus to introduce an additional angular phase term
exp�i�k0neR0

2��, whose relation with the Aharonov-Bohm
phase of the corresponding quantum-mechanical problem
will be clarified in the next subsection. Note that the condi-
tion of monodromy requires ���+2��=����exp�−2�i��
with

� = �k0neR0
2. �13�

Therefore, writing the solution to Eq. �12� again in the
Bloch-Floquet form ����=uQ,l���exp�iQ��, the values of Q
now allowed are given by Q=−� and Q=1−� for the sym-
metric and antisymmetric modes, and the corresponding val-
ues of propagation constants read

�l
�e� 	 k0ne�1 −

El�− �� − �2neR0
2/2

ne
 , �14�

FIG. 1. �Color online� �a� Schematic of a step-index annular
fiber with a four-sector core for the observation of topological sup-
pression of optical tunneling. �b� Typical behavior of the effective
double-well angular potential Ve �Eq. �6��. For the step-index fiber
of �a� the effective potential is a double square well. �c� Band dia-
gram El�Q� corresponding to the step-index annular fiber �param-
eter values are given in Sec. IV�. Symmetric and antisymmetric
modes correspond to the allowed values of Q=0 and Q=1 at the
different band orders l, respectively.

30 �m

30
�
m

30 �m

30
�
m

(a) (b)

FIG. 2. �Color online� Field distribution corresponding to �a� the
symmetric and �b� the antisymmetric annular fiber modes in the
lowest band of Fig. 1�c�.
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�l
�o� 	 k0ne�1 −

El�1 − �� − �2neR0
2/2

ne
 . �15�

Note that the separation 	�l=�l
�e�−�l

�o�	k0�El�1−��
−El�−��� of propagation constants between even and odd
modes is controlled by the twist rate � through the band
dispersion curves El shown in Fig. 1�c�. Note that, at values
�= ±1/2 , ±3/2 , ±5/2 , . . ., one always has El�−��=El�1
−�� owing to the symmetry of the band dispersion curves
El�Q� around Q=0. In such cases the propagation constants
of symmetric and antisymmetric modes become degenerate,
and the condition for tunneling destruction is attained. The
values of spatial periods � of the fiber twist which corre-
spond to tunneling suppression are thus given by �
=�0 ,�0 /3 ,�0 /5 , . . ., where the fundamental period �0 is
given by

�0 =
8�2neR0

2

�
. �16�

Conversely, note that for �=�0 /2 ,�0 /4 , . . . one has �
=1,2 , . . . and therefore the twist has no effect on the tunnel-
ing dynamics.

B. Optical-quantum correspondence

To understand the physical origin of optical tunneling
suppression induced by fiber twist and its connection with
topological suppression of quantum tunneling on a ring
threaded by a magnetic flux �4�, it is worth considering the
dynamics of the angular part of the light wave, as given
by Eq. �8�, under the paraxial approximation. After setting
f�� ,z�=A�� ,z�exp�ik0nez� and assuming the paraxial con-
ditions ���A /�z��k0ne�A� and �� / �k0ne�����A /����
��1/ �k0

2ne
2R0

2�����2A /��2����1/ne��Ve���A� �A�, from Eq.
�8� the following equation of motion for the slowly varying
envelope A can be derived using a multiple-scale analysis:

i�–
�A

�z
= −

�–2

2neR0
2

�2A

��2 + Ve���A + i�–�
�A

��
, �17�

where �– 
1/k0=� / �2�� is the reduced wavelength. In its
present form, Eq. �17� is formally analogous to the quantum
dynamics of a charged particle of mass m=ne and charge q
on a ring of radius R0 in the presence of an external potential
Ve��� on the ring and threaded by a magnetic flux � �see, for
instance, Ref. �23��, provided that the temporal evolution of
the quantum system is replaced by the spatial dynamics
along the propagation axis z of the fiber and the Planck con-
stant h is replaced by the wavelength � of the optical wave.
The magnetic flux � in the quantum problem is related to the
fiber twist rate �=2� /� by the simple relation �
= �2�neR0

2�� /q. Note that the condition for tunneling sup-
pression at �=�0 ,�0 /3 ,�0 /5 , . . . discussed in the previous
subsection �see Eq. �16�� corresponds to a magnetic flux �
given by �=�0 ,3�0 ,5�0 , . . ., where �0
� / �2q� is the ana-
log of the elementary �two-electron� flux quantum �24�. Such
a formal equivalence can be physically understood after ob-
serving that, in the transverse reference frame �r ,�� rotating

along the axis z at the twist rate �, optical rays experience
additional forces analogous to the centrifugal force FCen
=ne�

2rur and Coriolis force FCor=2nsv��, where �=�uz
is the angular spatial frequency of the twist �see, for instance,
Ref. �18��. In terms of wave optics description, the effect of
the centrifugal force on the ring is merely to shift the eigen-
value �energy� E to E� by the centrifugal potential term
−�1/2��2neR0

2 �see Eq. �12��, whereas the Coriolis force is
equivalent to the magnetic �Lorentz� force experienced by a
particle of charge q in a uniform magnetic field B
= �2ns /q��= �2ns� /q�uz and is thus expected to introduce a
topological �Aharonov-Bohm� phase term in the optical
wave function. In fact, the motion of a quantum particle in
the presence of a magnetic flux along a closed path, such as
along a ring of radius R0, leads to an additional Aharonov-

Bohm phase term exp�±iq� / �–�=exp�±2�i��, where �
=�R0

2B is the magnetic flux �see, for instance, Ref. �9��. Tak-
ing into account that B=2ns� /q, the Aharonov-Bohm phase
term then reads exp�±i�� /�0�=exp�±i��0 /��, where �0 is
defined by Eq. �16�. Quenching of tunneling splitting then
corresponds to the values � ,3� ,5�. . ., of the Aharonov-
Bohm phase, at which a destructive interference between the
two different tunneling paths occurs �4�.

IV. NUMERICAL RESULTS

We checked the occurrence of topological tunneling sup-
pression by a direct beam propagation analysis of light
waves in a step-index annular-core fiber made of four sec-
tors, as shown in Fig. 1�a�. Geometrical and optical param-
eters of the fiber used in the numerical simulations are a
=7 �m, �=1 �m, ns=1.450 67, n2−ns=0.02, n3−ns=0.022,
and �=980 nm and refer to a cladding region made of fused
silica. The index changes �n2−ns� and �n3−ns� in the core
regions can be achieved, for instance, by GeO2 doping with
concentrations of about 16% /mol for �n2−ns� and 18% /mol
for �n3−ns� �25�. The modes and corresponding propagation
constants of the untwisted fiber were first determined nu-
merically by a standard mode-solver technique. The profiles
of the two lowest-order modes, corresponding to the sym-
metric and antisymmetric functions A�e���� and A�o���� on the
ring discussed in Sec. III A, are depicted in Fig. 2. The sepa-
ration 	� of their propagation constants turns out to be 	�
	0.178 mm−1, which corresponds to a spatial tunneling pe-
riod zT=2� /	�	35.3 mm. The fundamental period �0 of
fiber twist corresponding to tunneling quenching, as calcu-
lated using Eq. �16� with a numerically computed R0
	6.5 �m effective ring radius �see Eq. �7��, turns out to be
�0	4.94 mm. To study beam propagation along the fiber,
we numerically integrated Eq. �1� using a standard beam
propagation method �BPM� on a square 30 �m�30 �m in-
tegration domain with 256�256 spectral modes and with
absorbing boundary conditions. Integration has been per-
formed along the forward propagation direction in the
twisted reference frame neglecting backscattered waves.
Note that the use of a simple one-directional BPM technique
rather than a bidirectional BPM is justified in our case be-
cause we just consider twist periods � much longer than the

ORNIGOTTI et al. PHYSICAL REVIEW A 76, 023833 �2007�

023833-4



wavelength �, whereas the scalar approximation is consistent
with the small index change between cladding and core re-
gions. As an initial condition at the z=0 input plane, we
assumed an elliptical Gaussian beam with spot size �full
width at half maximum �FWHM�� wx=3 �m and wy
=12 �m, centered in one of the two high-index sectors of the
annular core. Figure 3 shows the numerically computed frac-
tional beam powers trapped in the right �R� and left �L� sec-
tors of the fiber for �=� �untwisted fiber� and for a propa-
gation distance up to L=5 cm, together with the detailed
images of transverse intensity profiles at a few propagation
distances. Note the characteristic oscillation of the beam
power �optical tunneling� between the two sectors with a
spatial period very close to the theoretical value zT
	35.3 mm. For the sake of clearness, in the figure at each
propagation distance z the power in the two sectors has been
normalized to the total beam power trapped in the whole
integration domain at the same propagation distance, so that
radiation losses �simulated by the absorbing boundary con-
ditions� are not included in the figure �26�. Figures 4–6 show

the behavior of the fractional beam power trapped in the two
fiber sectors for increasing values of the twist rate �=2� /�
at �=2�0, �=�0, and �=�0 /2. Note that, according to the
theoretical predictions of Sec. III, as � increases from zero
the tunneling period first increases �Fig. 4� up to �=2� /�0,
where tunneling is almost suppressed �Fig. 5�. As � is further
increased, the tunneling period decreases up to �=� /�0 �Fig.
6�, where the dynamical scenario of the untwisted fiber is
basically retrieved.

V. CONCLUSIONS

In this work we have theoretically proposed a fiber-optics
analog of topological suppression of quantum tunneling in a
double-well system on a ring. Propagation of light waves in
a twisted annular fiber with a structured core has been shown
to mimic the temporal dynamics of a charged particle in a
double-well potential on a ring threaded by a magnetic field,
for which a topological suppression of tunneling is possible
at certain values of the magnetic flux �4�. Numerical simula-
tions performed for an annular-core fiber made by four sec-
tors with alternating high and low refractive index have con-
firmed the occurrence of topological tunneling suppression at
special values of the fiber twist rate. The phenomenon of
topological tunneling suppression can be of course extended
to other fiber geometries, provided that the light path in the
core forms a closed loop and two optical trapping regions

FIG. 4. �Color online� Same as Fig. 3, but for a twisted fiber
with a twist period �=2�0=9.88 mm. The transverse field intensity
distributions in the top images are taken in the laboratory �nonro-
tating� reference frame �x ,y�. The dotted lines in the four images
show the local position of the fiber Y axis �see Fig. 1�a�� which
rotates along the propagation distance.

FIG. 3. �Color online� Numerically computed fractional beam
power trapped in the left �L� and right �R� fiber sectors versus
propagation distance z in a L=5 cm long untwisted annular fiber
excited by an elliptical Gaussian beam on the left sector, showing
periodic optical tunneling between left and right high-index core
sectors. The top images show the transverse field intensity distribu-
tion at a few propagation distances in a gray scale plot.

FIG. 5. �Color online� Same as Fig. 3, but for a twist period
�=�0=4.94 mm, corresponding to topological suppression of op-
tical tunneling.

FIG. 6. �Color online� Same as Fig. 3, but for a twist period
�=�0 /2=2.47 mm.
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exist along the path. Such a situation can be found, for in-
stance, in an elliptical annular core fiber with an unstructured
core, where the ellipticity of the annular core induces an
effective double-well potential for the light waves analo-
gously to what happen for matter waves in elliptically shaped
optical ring traps �27�. It should be finally noted that the
proposed optical-quantum analogy, besides for providing a
novel example in classical wave optics of Aharonov-Bohm
interference of quantum mechanics, is rather distinct from
the optical realization of CDT in a driven double well on a

line �2,3� recently observed in a periodically curved optical
directional coupler �14�. In fact, as CDT is associated with
quasienergy crossing of the periodically driven double-well
system and in the optical system of Ref. �14� this was real-
ized by spatially shaking the double-well potential, suppres-
sion of tunneling in the twisted annular fiber is due to a
destructive interference between two different tunneling
paths �4,8� and is controlled by the additional topological
phase induced by the fiber twist which is the optical analog
of the Aharonov-Bohm phase.
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