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We employ a recently developed S-matrix approach �L. Plaja and J. A. Pérez-Hernández, Opt. Express 15,
3629 �2007�� to investigate the process of harmonic generation in tunnel and multiphoton ionization regimes.
In contrast with most of the previous approaches, this model is developed without the stationary phase ap-
proximation and including the relevant continuum-continuum transitions. Therefore, it provides a full quantum
description of the harmonic generation process in these two ionization regimes, with a good quantitative
accuracy with the exact results of the time-dependent Schrödinger equation. We show how this model can be
used to investigate the contribution of the electronic population ionized at different times, thus giving a
time-resolved description that, up to now, was reserved only to semiclassical models. In addition, we will show
some aspects of harmonic generation beyond the semiclassical predictions as, for instance, the emission of
radiation while the electron is leaving the parent ion and the generation of harmonics in semiclassically
forbidden situations.
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I. INTRODUCTION

The interaction of intense laser fields with atoms consti-
tutes a paradigmatic example of a quantum process beyond
the perturbative limit. This particular case, however, results
are especially interesting since theory can be contrasted with
experiments on a regular basis. This key fact results from the
extraordinary development of intense laser during the last
two decades. Besides its fundamental theoretical interest, the
study of intense-field processes has also lead to the emer-
gence of new technological applications as, for instance, co-
herent x-ray generation �2� and the production of attosecond
pulses of electromagnetic radiation �3�. These particular de-
velopments are based specifically on the properties of the
harmonic generation in the strong interaction regime. For
instance, soft x rays can be generated with some efficiency
since the dipole radiation spectrum shows a plateau in which
the harmonic intensities are at the same level, until a high-
frequency �soft x-ray� cutoff is reached �4,5�. Also, for ul-
trashort laser pulses, it has been demonstrated that the
highest-order harmonics are phase matched, allowing for the
reconstruction of trains of high-frequency pulses with dura-
tions below the femtosecond scale �6–8�.

The basic concepts relevant for understanding the har-
monic generation have been established a decade ago in the
frame of a three-step model �9�. According to this view, the
higher frequency harmonics are generated by the recollision
of the electrons previously detached from the atom. The en-
ergy acquired by the electron during this excursion in the
continuum is released in the form of harmonic radiation, in
the event of recombination with the parent ion. The rigorous
theoretical support to this view was established in �10�,
within the strong field approximation �SFA� �neglecting the
effect of the Coulomb potential in the dynamics of the elec-
trons in the continuum�. This model becomes especially
fruitful when tackled with the stationary phase approxima-
tion �SPA�, since then the theory becomes semiclassical and

extraordinarily intuitive, in terms of electronic trajectories in
free space. However, the use of the stationary phase approxi-
mation imposes some conditions to the harmonic processes:
the electron should recombine at the same location where it
was previously ionized, and the velocity right after ionization
is zero �actually negative kinetic energy, but it is often con-
sidered as a zero velocity condition �11��. It is generally ac-
cepted that these conditions are only applicable in the inten-
sity regime of tunneling ionization.

Despite the success of the semiclassical approach, the
lack of quantitative agreement has limited the applicability
of the theory as a rigorous description. It is known that it
requires profound ad hoc corrections in order to approach the
exact results, computed numerically �11,12� or found experi-
mentally �13�. It should be noted, however, that even for
those cases, the corrections are not tested quantitatively for a
range of intensities, and in some cases require the numerical
solution of the Schödinger equation to include Coulomb cor-
rections �13�. Also, the description in terms of semiclassical
trajectories neglects some important quantum aspects, as the
spreading of the wave packet and the possibility of recombi-
nation in neighbor potential wells, as in the case of elongated
molecules. Recently an S matrix theory has been demon-
strated to provide a quantitative description for a wide range
of situations �multiphoton, tunnel, and soft over-the-barrier
ionization� in the realistic case of Coulomb binding poten-
tials and for electrons exposed to electromagnetic fields of
arbitrary pulse shape. This theory does not employ the sta-
tionary phase approximation and includes the relevant part of
the continuum-continuum transitions, while still being very
efficient in computational terms �about two orders of magni-
tude faster than the exact integration of the time-dependent
Schrödinger equation, TDSE�. The aim of this paper is to use
this tool to perform a detailed analysis of the harmonic gen-
eration in tunneling and multiphoton regimes, which may
provide some insight on the role of these quantum aspects
beyond the SPA.

The paper is organized in two sections. We shall begin
with a detailed derivation of the model, and a brief discus-
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sion on its quantitative accuracy, complementary to that of
�1�. In the second section, we will exploit the possibilities of
the SFA formalism to develop a time-resolved description of
the harmonic generation process, in a similar fashion as the
semiclassical SPA models do, but now including the full
quantum aspect of the dynamics.

II. THEORETICAL APPROACH

This section complements our previous work �1� in two
aspects. First we will provide a detailed discussion on the
derivation and approximations of the model and, second, we
will provide some more comparisons with the exact results
of the TDSE to demonstrate the accuracy of our description
against variations of the carrier phase, field envelope, and
wavelength.

Our derivation begins with the standard definition of the
evolution of the wave packet in terms of the propagator

���t�� = iG+�t,t0����t0�� �1�

�t0 being an initial time before the interaction starts�, associ-
ated with the time-dependent Hamiltonian H�t�=Ha+Vi�t�.
Here we will consider Ha= p2 /2m+Vc�r�, the atomic Hamil-

tonian �Vc�r�=−Zq2 /r�, and Vi�t�=−�q /mc�A�t� ·p
+q2 / �2mc2�A2�t� the interaction with the electromagnetic
field in the velocity gauge and in the dipole approximation.
Note that the SFA S-matrix theories are known to be gauge
dependent, therefore the accuracy of this description in the
length gauge remains as an open question for a future work.
We can consider the following exact identity, useful for de-
veloping recursive approximations to the full evolution of
the wave function,

G+�t,t0� = Ga
+�t,t0� + �−1�

t0

t

dt�G+�t,t��Vi�t��Ga
+�t�,t0� ,

�2�

where Ga
+ is the propagator for the field free case, i.e., asso-

ciated with Ha.
Assuming a classical description of the electromagnetic

field, the harmonic radiation is proportional to the electron’s
acceleration a�t�= ���t��â�t����t�� with â�t�	�1/m��−�Vc

+qE�t��. Note that, if the full quantum nature of the field is
to be computed, then this mean value has to be replaced by
the dipole matrix element �14�. Using Eqs. �1� and �2�, to-
gether with the definition of the acceleration, we may write

a�t� = ���t0��Ga
−�t0,t�â�t�Ga

+�t,t0����t0�� + �−1�
t0

t

dt1���t0��Ga
−�t0,t�â�t�G+�t,t1�Vi�t1�Ga

+�t1,t0����t0��

+ �−1�
t0

t

dt1���t0��G−�t1,t�Vi�t1�Ga
−�t0,t1�â�t�Ga

+�t,t0����t0��

+ �−2�
t0

t

dt2�
t0

t

dt1���t0��Ga
−�t0,t2�Vi�t2�G−�t2,t�â�t�G+�t,t1�Vi�t1�Ga

+�t1,t0����t0�� . �3�

Note that the third term in the right-hand side of Eq. �3� is the complex conjugate of the second. On the other hand, we may
use the following identity

�
t0

t �
t0

t

dt�dt�f�t��g�t�� 	 �
t0

t

dt��
t0

t�
dt�f�t��g�t�� + �

t0

t

dt��
t0

t�
dt�f�t��g�t�� �4�

to rewrite Eq. �3� as

a�t� = adr�t� + aar�t� + c.c. = �−1�
t0

t

dt1���t0��Ga
−�t0,t�âG+�t,t1�Vi�t1�Ga

+�t1,t0����t0��

+ �−2�
t0

t

dt2�
t0

t2

dt1���t0��Ga
−�t0,t2�Vi�t2�G−�t2,t�âG+�t,t1�Vi�t1�Ga

+�t1,t0����t0�� + c.c. �5�

As discussed in �1�, the first term �adr, direct recombination�
corresponds to a direct process, in which the electron is first
ionized by the field and, afterwards, recombined to the
ground state. The second term �aar, assisted recombination�,
takes into account the continuum-continuum transitions and

refers to the possibility of the electron being recombined not
to the ground but to an excited state �see Fig. 1 in �1��. For
reasons given below, we shall consider this process as a re-
combination assisted by the field. This second path is usually
neglected, and has been demonstrated to be small for the
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case of zero-range atomic potentials �15�. However, it is also
demonstrated to be relevant in the Coulombic case, espe-
cially in the multiphoton regime �1�.

To proceed, let us first consider the direct term adr. In the
strong field approximation �SFA�, we neglect the atomic po-
tential in the dynamics of the ionized states, so we may write

iG+�t,t1���k�t1�� 
 e−�i/���t1
t d��k�����k�t1�� , �6�

with �k���= ��k− �q /c�A����2 /2m. Thus, inserting the com-
pleteness relation �dk��k�t����k�t��=1 in the direct recombi-
nation term of Eq. �5� we may decompose

adr�t� =� dka�k,t� �7�

with

a�k,t� 
 −
i

�
�

t0

t

dt1ei�0�t−t1�/�e−�i/���t1
t �k���d� � �0,kVi,k�t1���k�

�8�

with ���t0��= ��0�, the initial atomic eigenstate, and �k� a
plane wave, and Vi,k�t1�= �k�Vi�t1��k�, ��k�= �k ��0�,

��k��0� =
1

�
�2a0

Z
3/2 1

�1 + �a0/Z�2k2�2 �9�

and �0,k= ��0�â�k�,

��0��−
1

m

�Vc

�z
��k�t��

= − �2ikz
Zq2

�m
� Z

a0
3/2 1

k2�1 −
arctan�ka0/Z�

�ka0/Z� � . �10�

By definition iGa
+�t1 , t0����t0��=exp�−i�0�t1− t0� /����0�. In

fact, the computation of a�k , t� involves a single integral
which can be carried on very effectively. This can be easily
noticed by considering its differential form

d

dt
a�k,t� =

i

�
��0 − �k�t��a�k,t� −

i

�
�0,kVi,k�t���k� . �11�

Since this is an uncoupled system its computation can be
carried on very efficiently, for instance using a Runge-Kutta
algorithm. Note that the uncoupling is inherent to the SFA-
S-matrix approach, but it has not been generally exploited.
Instead, most authors seem to consider unavoidable the use
of the stationary phase approximation to make the computa-
tion of Eqs. �7� and �8� tractable.

Now we turn our attention to the acceleration due to the
assisted recombination, aar. After employing the SFA and
using the completeness relation twice �before and after the
acceleration operator�, we find

aar�t� =� dk� dk��
t0

t dt2

�
ei��0/��t2e�i/���t2

t d��k������0�Vi�t2��k��

��k���
t0

t2 dt1

�
e−i��0/��t1e−�i/���t1

t d��k���â�k�Vi,k�t1���k� .

�12�

As noted above, this term describes the recombination to a
state excited by the field. Since the operator â is relevant at
short distances from the atom, the contribution to the integral
is non-negligible only for times t2
 t. Otherwise, the final
excited state would have been driven by the field far from the
potential origin, and the overlap with â would be almost
zero. We shall, therefore, replace the lowest bound �t0� of the
t2 integral by t−	t, 	t being a small quantity that represents
the time lapse during which the overlap is not negligible. In
this situation, the only relevant term in this integral is the
phase i

��t2
t d��k����
 i

��k��t��t− t2�, while t2 can be replaced
by t in the arguments of the rest of the functions �including
the upper limit of the integral over t1�. According to our
interpretation of the time interval 	t, we consider the integral
to vanish in its lower limit. In this form, the integral over t2
can be computed easily as

aar�t� 

i

�
� dk� dk�ei��0/��t 1

�k��t� − �0
��0���k��t� −

�2k�2

2m
�

��k���k���
t0

t

dt1e−i��0/��t1e−�i/���t1
t d��k���â�k�

�Vi,k�t1���k� , �13�

where we have expressed Vi�t� in terms of the Volkov ener-
gies �k��t�. The computation of the integral in momentum
space requires some further approximations. On one hand,
the wave packet expressed in the k� space corresponds to a
ionized wave function close to the nucleus, therefore it is
reasonable to approximate its energy by the time-averaged
�k��t�
�0+Up, Up being the ponderomotive energy at the
field maximum. Note that this is a rough approximation, and
it can only be fully justified by the results of our theory. On
the other hand, the matrix element can be processed as

��0�
�2k�2

2m
�k�� 	 �−

�2�2

2m
�0�k�� �14�

and then substituted in Eq. �13� together with the time-
averaged energies. Now the integral in k� is unity, and we
are left with the following matrix element

�−
�2�2

2m
�0�â�k� = ��Ha − Vc��0�â�k�

= ��0�â���0 − Vc�k� = ��0�â���0 − H

+ Hf��k� 
 ��0�â
�2k2

2m
�k� , �15�

Hf being the atom-free Hamiltonian, that has also been ap-
proximated by the average �2k2

2m +Up, and H the total energy,
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approximately �0+Up. After these manipulations, Eq. �13�
can be written as

aar�t� 
 −� dk�1 +
�0 − �2k2/2m

Up
a�k,t� + c.c. �16�

Thus the total acceleration defined in Eq. �5� can be, there-
fore, written as

a�t� 
 − CF� dk
�0 − �2k2/2m

Up
a�k,t� + c.c., �17�

where we have introduced a Coulomb factor in the amplitude
of the Volkov waves CF= �2kB��0� /E0�Z/kB, with kB=�2m��0�
and E0 the maximum field amplitude. This correction is de-
rived as an approximation of the prefactor found in �16� and
demonstrated to give accurate quantitative results for the
computation of ionization rates in the tunneling regime �17�.
Figures 1�a�–1�c� shows the comparison of the results of the
formulation above with the exact integration of the
Schrödinger equation for the hydrogen atom interacting with
a linearly polarized electromagnetic field of the form E�t�
=E0��t�sin�2�ct /
+�0�. The spectra have been calculated
according to the definition of the Fourier series a�t�
=� ja�� j�exp�−i� jt�, where � j = j	�, 	�=2� / tint, with tint

the total time lapse of the computation. The subplots 1�a� and
1�b� correspond to a field envelope ��t�=sin2��ct /
 /8� with

=800 nm, �0=0, and computation time tint of eight cycles.
These two cases complement those presented in �1�, that
where computed with another carrier phase, �0=� /2. There-
fore, together with the previous results of �1�, these figures
demonstrate the ability of our formulation to reproduce
quantitatively the changes in the high-frequency part of the
spectra caused by the variation of the carrier phase. Also,
Fig. 1�b� demonstrates the accuracy of our S-matrix calcula-
tion in situations where the ionization is non-negligible �see
inset of the figure�. A further check of the accuracy of our
approach can be found in Fig. 1�c�, where the comparison
has been carried out for a completely different situation: en-
velope ��t�=cosh−2��ct−8
� /2
�, wavelength 
=1064 nm,
and interaction time of 16 cycles. Note that Fig. 1�a� corre-
sponds to a multiphoton situation �Keldysh parameter 1.5�,
while Figs. 1�b� and 1�c� correspond to a tunnel �Keldysh
parameters 0.57 and 0.47, respectively�.

As commented above, traditionally the efficient evalua-
tion of the S-matrix acceleration given by Eqs. �7� and �8�
has been tackled with the use of the stationary phase ap-
proximation, instead of Eq. �11�. The semiclassical picture
emerging from this approximation is closely connected with
the so-called three-step model. Although this is a quite suc-
cessful model that describes several aspects of the harmonic
spectra �cutoff frequency, harmonic chirping, etc.�, it is
known to be limited to the tunneling ionization regime and
neglects some quantum effects as the wave function spread-
ing. Furthermore, it needs additional corrections to describe
the harmonic generation with elliptically polarized laser
beams, or to describe the same process for a potential with
various scattering centers �as elongated molecules� which
give rise to interfering paths from harmonic emission.

As a main advantage, our method preserves the quantum
character of the interaction dynamics, while still offering a
substantial increase in computing speed. Therefore, it offers
the possibility of analyzing the process of harmonic genera-
tion from a fully quantum perspective and in situations not
restricted to the tunnel ionization regime. On the other hand,
as we will see below, the nature of the S-matrix approach
also allows for a time-resolved analysis of the process which
is unavailable from the numerical integration of the TDSE.
In our case, this analysis is the quantum counterpart of the
interpretation based on classical trajectories that come up if
the stationary phase approximation is employed. In the fol-
lowing, therefore, we will use our derivation to perform an
analysis of the harmonic generation process beyond the
semiclassical description in tunnel and multiphoton regimes.
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FIG. 1. �Color online� Compared harmonic spectra of hydrogen
atom for �a�, �b� sin2 and �c� cosh−2 envelopes �orange �grey� lines:
exact results from the TDSE; blue �black� lines: results of our for-
mulation, no rescaling of the data has been done�. �a� and �b� cor-
respond to an eight-cycle pulse of 
=800 nm with intensities 
5
�1013 and 
3.5�1014 W/cm2, respectively. �c� corresponds to 

=1064 nm, intensity 
3�1014, and interaction time of 16 cycles.
The inset in �b� shows the evolution of the population of the ground
state during the interaction.

J. A. PÉREZ-HERNÁNDEZ AND L. PLAJA PHYSICAL REVIEW A 76, 023829 �2007�

023829-4



III. SEMICLASSICAL AND QUANTUM ASPECTS OF
HARMONIC GENERATION

The fundamental understanding of the high-order har-
monic generation process can be drawn directly from the
S-matrix expression of the adr term in Eq. �5�: the electron
remains in the ground state of the atom until it is perturbed
by the field, at some time instant t1. Afterwards, it evolves
under the influence of the field and the Coulomb potential,
until it recombines with the ground state emitting radiation
through the â operator. The strong field approximation �SFA�
simplifies this picture by assuming that the electron, once
detached from the atom, evolves in the continuum with the
solely influence of the electromagnetic field. If the stationary
phase approximation �SPA� is also employed, a semiclassical
picture emerges in which the electron ionizes with zero ve-
locity and localized at the potential center, evolves as a clas-
sical particle, and recombines when its trajectory crosses
again the electrons birth coordinate. The maximum energy of
the harmonics radiated is, then, directly related with the elec-
tron’s kinetic energy at the moment of the recollision. In this
picture, therefore, the whole process of harmonic generation
is the sum of the contributions of each possible electron tra-
jectory associated to a particular ionization event during the
interaction. Two of these classical trajectories are plotted as
orange �grey� lines in Figs. 2�b� and 3�b�, corresponding to
the electron ionized when the electric field is close to its
maximum and when it is zero, respectively. As can be easily
seen, the nature of the process of harmonic generation differs
substantially between these two cases: when the electron is
released near the field maximum it rescatters with the
nucleus after less than a half laser period, while if released at
a zero of the field no rescattering occurs after ionization.
Therefore, according to the semiclassical picture, harmonics
are only generated in the first case. The kinetic energy asso-
ciated to the classical trajectories is plotted as a orange �grey�
line in Figs. 2�a� and 3�a�. As can be noticed, this quantity
oscillates strongly with the electron quiver during its excur-
sion after ionization. According to the semiclassical picture,
the harmonics associated with the case of Fig. 2 will have a
maximum frequency equal to the instantaneous kinetic en-
ergy at the recollision, plus the energy of the ground state.
By inspection it is easy to notice that this value is around
��0�+3.2Up.

Up to now, this time-resolved description of the harmonic
generation process has been generally associated to the en-
semble of classical trajectories resulting from the SPA of the
SFA S-matrix formulas. However, the structure of the
S-matrix integral �5� also allows to isolate the contribution of
a particular ionization instant in a natural way, by simply
replacing Vi�t1� by Vi��t1�	W�t1�Vi�t1�, W�t1� being a Gauss-
ian time window defined as W�t1�=exp�−�t− tc�2 /�2�. Note
that W�t1� only restricts the time interval allowed for the
ionization process, i.e., the electron dynamics in the con-
tinuum is unaffected. In correspondence with the semiclassi-
cal view expressed above, Figs. 2�b�, 2�c�, 3�b�, and 3�c�
show the time dependence of the total acceleration �17� when
the time window W�t1� is centered near the maximum �tc

=3.29 field periods� and the zero of the field �tc=3.5 field

periods�, respectively. In both cases the width of the window
is defined as �=1/16 field periods. A close inspection of both
cases reveal some features unexpected with the semiclassical
analysis.

Let us begin considering the data shown in Fig. 2. Figure
2�b� corresponds to the multiphoton case whose spectrum is
shown in Fig. 1�a�, and Fig. 1�c� to the tunneling case of Fig.
1�b�. In both situations, the orange �grey� line corresponds to
the classical trajectory of an electron born near the field
maximum, at the time where the window W�t1� is centered.
There are two interesting features, in both ionization re-
gimes, which depart from the ideas drawn by the semiclas-
sical approach. On one hand, a strong acceleration �and
therefore harmonic radiation� is generated before the rescat-
tering event. Therefore, this demonstrates that harmonics are
also generated in the way out of the ionization process, when
the electron departures from the atom. In the tunneling case,
however, the acceleration is strongly chirped, so that the
higher spectral frequencies are generated near the classical
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FIG. 2. �Color online� �a� Electric field �orange �grey� line� and
kinetic energy �blue �black� line� associated with the classical tra-
jectory of an electron assumed to be ionized near the field’s maxi-
mum �arrow�. �b� Electron trajectory associated to this situation
�orange �grey� line� and dipole’s acceleration computed from our
S-matrix formulation for the corresponding time window for the
multiphoton case of Fig. 1�a�. �c� The same as for the tunnel case of
Fig. 1�b�. The inset shows a magnification of the acceleration near
the classical time for recollision.
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times of the rescattering. This explains the success of the
semiclassical theory to describe the nature of the harmonic
radiation at the higher frequency part of the spectrum. Note
that the up chirping near the time of rescattering can be in-
terpreted classically as due to the contribution of short tra-
jectories. However, in the multiphoton regime the chirp is
reduced and the frequencies of the harmonics generated dur-
ing the way out are similar to those generated at the rescat-
tering.

The second interesting feature is the presence of second-
ary bursts of radiation associated with times in which the
distance of the quivering electron with the parent atom
reaches a minimum. Note that, as the electron trajectory does
not cross the coordinate origin, this mechanism of close up
radiation is forbidden in the semiclassical theory. These
bursts are found to be down chirped in their first half and up
chirped in the second, in correspondence to the kinetic en-
ergy of the electron around the time instant of maximal ap-
proach to the atom. In the tunneling regime, the maximum
frequency of these burst falls well into the plateau region, so
the semiclassical theory is safe when neglecting its contribu-
tion to describe the higher spectral frequencies. In the mul-

tiphoton case, the frequency of the closeup radiation is again
similar to the those at the end of the plateau, and cannot be
neglected to explain the source of the higher-order harmon-
ics.

To our understanding, the physical mechanisms underly-
ing way-out and closeup harmonic radiation are associated
with the delocalization of the wave function in the con-
tinuum: first, the electron’s wave packet is not perfectly lo-
calized at the instant of ionization, second, the wave packet
spreads during the excursion through the continuum and, fi-
nally, the recombination does not take place at the coordinate
origin, as the acceleration operator has some spatial exten-
sion. As a result, the overlap of the ionized wave function
with the ground state and the acceleration operator remains
operative in situations where the classical trajectories are far
from the nucleus.

The same analysis can also be applied to the case of Figs.
2�b� and 2�c� where we show the acceleration associated to
the ionization of a wave packet near the zero of the field. In
this case, the classical trajectory never comes back to the
nucleus, therefore the harmonic generation is forbidden
semiclassically. Our results show, however, that harmonics
are generated right after the ionization, when the electron
leaves the parent ion. This way-out radiation is typically de-
creasing shortly after ionization and has frequencies also in
the middle of the plateau. Note that although the electron’s
kinetic energy can reach 8Up in its way out �for instance at
the beginning of the four cycle�, this possibility is not
mapped into the harmonic frequencies, since they are domi-
nated by the slower part of the wave function, which is the
one remaining closer to the parent ion. Note that, in the
tunneling case, the amplitude of the acceleration during this
way-out process is substantially smaller than when the elec-
tron departs near a maximum of the field. This later fact is
consistent with the known dramatic decrease of the tunnel
ionization probabilities when the field amplitude decreases.

IV. CONCLUSION

We have developed and used an S-matrix theory for the
computation of the harmonic generation in a wide variety of
situations. The theory is proven to be quantitative accurate in
the description of the higher frequency part of the spectra,
and to give also physical insights on the time evolution of the
generation process. In particular, we have shown two radia-
tive processes in addition to the conventional electron rescat-
tering. This way out or the closeup mechanisms of radiation
are demonstrated to be irrelevant in the qualitative under-
standing of the generation of the higher harmonics in the
tunneling case, but not in the multiphoton regime. Further
investigation on the applicability of our model to species
different from hydrogen and to molecules is currently being
done.

ACKNOWLEDGMENTS

We thank L. Roso and I. Sola for fruitful discussions. This
work has been supported by the Spanish Ministerio de Edu-
cacion y Ciencia �Grant No. FIS2006-04151�.

-1-1-1-1

-0.5-0.5-0.5-0.5

0000

0.50.50.50.5

1111

0000

1111

2222

3333

4444

5555

6666

7777

8888

3 3.5 4 4.5 5 5.5 63 3.5 4 4.5 5 5.5 63 3.5 4 4.5 5 5.5 63 3.5 4 4.5 5 5.5 6

A
cc
el
er
at
io
n
(a
.u
.)

A
cc
el
er
at
io
n
(a
.u
.)

A
cc
el
er
at
io
n
(a
.u
.)

A
cc
el
er
at
io
n
(a
.u
.)

z
(a.u

.)
z
(a.u

.)
z
(a.u

.)
z
(a.u

.)

(a)(a)(a)(a)

-0.05-0.05-0.05-0.05

0000

0.050.050.050.05

-100-100-100-100

-50-50-50-50

0000

50505050

100100100100

3 3.5 4 4.5 5 5.5 63 3.5 4 4.5 5 5.5 63 3.5 4 4.5 5 5.5 63 3.5 4 4.5 5 5.5 6

A
cc
el
er
at
io
n
(a
.u
.)

A
cc
el
er
at
io
n
(a
.u
.)

A
cc
el
er
at
io
n
(a
.u
.)

A
cc
el
er
at
io
n
(a
.u
.)

z
(a.u

.)
z
(a.u

.)
z
(a.u

.)
z
(a.u

.)

(b)(b)(b)(b)

-0.004-0.004-0.004-0.004

-0.003-0.003-0.003-0.003

-0.002-0.002-0.002-0.002

-0.001-0.001-0.001-0.001

0000

0.0010.0010.0010.001

0.0020.0020.0020.002

0.0030.0030.0030.003

0.0040.0040.0040.004

-200-200-200-200

-150-150-150-150

-100-100-100-100

-50-50-50-50

0000

50505050

100100100100

150150150150

200200200200

3 3.5 4 4.5 5 5.5 63 3.5 4 4.5 5 5.5 63 3.5 4 4.5 5 5.5 63 3.5 4 4.5 5 5.5 6

A
cc
el
er
at
io
n
(a
.u
.)

A
cc
el
er
at
io
n
(a
.u
.)

A
cc
el
er
at
io
n
(a
.u
.)

A
cc
el
er
at
io
n
(a
.u
.)

z
(a.u

.)
z
(a.u

.)
z
(a.u

.)
z
(a.u

.)

(c)(c)(c)(c)

Laser periodsLaser periodsLaser periodsLaser periods

FIG. 3. �Color online� �a� Electric field �orange �grey� line� and
kinetic energy �blue �black� line� associated with the classical tra-
jectory of an electron assumed to be ionized at the field’s zero
�arrow�. �b� Electron trajectory associated to this situation �orange
�grey� line� and dipole’s acceleration computed from our S-matrix
formulation for the corresponding time window for the multiphoton
case of Fig. 1�a�. �c� The same for the tunnel case of Fig. 1�b�.
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