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The transverse correlation of triphoton entanglement generated within a single crystal is analyzed. Among
many interesting features of the transverse correlation, they arise from the spectral function F of the triphoton
state produced in the parametric processes. One consequence of transverse effects of entangled states is
quantum imaging, which is theoretically studied in photon counting measurements. Klyshko’s two-photon
advanced-wave picture is found to be applicable to the multiphoton entanglement with some modifications. We
found that in the two-photon coincidence counting measurement by using triphoton entanglement, although the
Gaussian thin lens equation �GTLE� holds, the imaging shown in coincidences is obscure and has a poor
quality. This is because of tracing the remaining transverse modes in the untouched beam. In the triphoton
imaging experiments, two kinds of cases have been examined. For the case that only one object with one thin
lens is placed in the system, we found that the GTLE holds as expected in the triphoton coincidences and the
effective distance between the lens and imaging plane is the parallel combination of two distances between the
lens and two detectors weighted by wavelengths, which behaves as the parallel combination of resistors in the
electromagnetism theory. Only in this case, a point-point correspondence for forming an image is well-
accomplished. However, when two objects or two lenses are inserted in the system, though the GTLEs are
well-satisfied, in general a point-point correspondence for imaging cannot be established. Under certain con-
ditions, two blurred images may be observed in the coincidence counts. We have also studied the ghost
interference-diffraction experiments by using double slits as apertures in triphoton entanglement. It was found
that when two double slits are used in two optical beams, the interference-diffraction patterns show unusual
features compared with the two-photon case. This unusual behavior is a destructive interference between two
amplitudes for two photons crossing two double slits.
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I. INTRODUCTION

Since the seminal work of Einstein, Podolsky, and Rosen
�1�, entangled states of two or more quantum particles have
become the heart of many major paradoxes associated with
the interpretation of quantum mechanics �2�. Over the last
two decades, correlated photon pairs created in optical spon-
taneous parametric down-conversion �SPDC� �3� and EIT-
based systems �4� have been extensively studied in both
theories and experiments. Many applications for these en-
tangled photon pairs range from the foundations of quantum
mechanics �5�, optical measurements �6�, spectroscopy �7�,
imaging �8–11�, and lithography �12,13�, to quantum infor-
mation processing �14�. Recently, there has been great inter-
est in exploring the generation and properties of multiparticle
entanglement since the pioneering work of Greenberger,
Horne, and Zeilinger �GHZ� �15�. The multiparticle en-
tanglement has also been assumed an important place in the
practical development of quantum cryptography techniques
and in the construction of basic elements of quantum telepor-
tation to serve as a part of the quantum communication and
quantum computing process �16�. A number of proposals for
generating such states have been put forward �17,18�. To
date, however, most theories and experiments have concen-
trated on the effects of the frequency phase matching for N
�3 particle entanglement. In this paper we present a theo-

retical treatment of the transverse correlations in triphoton
generation proposed in Ref. �18� with emphasis on the geo-
metrical and physical optics properties of the triphoton
amplitude.

By taking advantage of the entangled nature of paired
photons created from SPDC, Pittman et al. �9� proved the
possibility of reproducing, nonlocally, the ghost image of an
object and found that the location of the image plane was
governed by a two-photon Gaussian thin lens equation
�GTLE�. This pioneering ghost imaging work was soon fol-
lowed by another experimental development; Strekalov et al.
demonstrated the ghost interference-diffraction pattern of a
double slit �11�. The proof-of-principle experimental demon-
stration of quantum lithography was reported in �13�. The
experimental results confirmed that the two-photon
interference-diffraction pattern has a spatial interference
modulation period smaller and a diffraction pattern width
narrower, by a factor of 2, than in the classical case.

Stimulated by the two-photon quantum imaging, one may
raise the question: do there always exist GTLEs which are
satisfied for the multiphoton quantum imaging? If so, what
kind of imaging properties will they present? For the tripho-
ton entangled state, in this paper we found that the GTLEs
are always established but high-resolution images are not
always attained. Performing the two-photon imaging by
making use of triphoton sources, it was found that the image
governed by GTLE becomes obscure and this is different
from the ghost imaging implemented by paired photon
sources such as SPDC �9,10�. Under different arrangements
in the triphoton imaging process, we found that if only one*jianm1@umbc.edu
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object with one thin lens is placed in either of the optical
beams, the ghost image has a better resolution in the imaging
plane. The distance from the lens to the imaging plane is the
effective length which is a parallel combination of the dis-
tances between the lens and two detectors weighted by wave-
lengths, and this behaves as a parallel combination of resis-
tors in the electromagnetism theory. However, if two objects
are placed in the optical beams, in general, it is not always
possible to obtain high-quality images in the imaging planes
�for experimental setup see Fig. 1�a��. The reason is that the
point-point correspondence for forming an image turns now
to be a point-spot relationship. In general, to image one ob-
ject with one lens in the multiphoton entanglement, the high-
resolution image can be formed in the imaging plane and the
two-photon advanced-wave model proposed by Klyshko �19�
provides an intuitive picture for understanding the imaging
process, except that the distance between the lens and imag-
ing plane should be interpreted as the effective length which
behaves as the parallel combination of resistors in the elec-
tromagnetism theory. In principle, to image more than one
object or image one object with more than one lens in the
multiphoton entanglement, in the imaging planes generally
blurred images can be observed in the coincidences. By care-
fully choosing the experimental parameters, the images may
be approximately reduced to independent images of each
object.

To further understand the transverse correlation of tripho-
ton entanglement, we also studied the quantum ghost
interference-diffraction experiments in which double slits are
placed as apertures in the optical beams. It was found that
when placing two double slits in the experiment, the ghost
interference-diffraction patterns will exhibit unusual features,
which are different from the patterns obtained using one
double slit. This unusual behavior is caused by the destruc-
tive interference between two amplitudes for two photons to
cross two double slits.

The paper is organized as follows. Because the imaging
properties are determined by both the transfer functions of
optical systems placed in front of the detectors and the spec-
tral function of the triphoton state, we begin with modeling
the spectral function F of the triphoton generation proposed
in Ref. �18� in Sec. II. In Sec. III, the triphoton geometrical
optics will be presented and the quantum imaging will be
discussed for several cases. These include the single-photon
detection, two-photon imaging, and triphoton imaging under
different experimental setups. In Sec. IV, we will consider
the quantum ghost interference-diffraction experiments by

using double slits as apertures and three kinds of experimen-
tal situations will be examined. In the end, the conclusion
will be given.

II. SPECTRAL FUNCTION OF TRIPHOTON STATE

The triphoton state considered here is generated by two
SPDCs and the sum frequency generation �SFG� of two idler
beams, see Fig. 1�b�. All three interactions occur within a
single crystal. This method exploits a phase matching retrac-
ing behavior in one crystal and it makes it possible to gen-
erate a triphoton state from a single pump beam �20�. For
simplicity, we assume that a monochromatic pump laser with
angular frequency �p is incident on such a noncentrosym-
metric crystal and propagates along the longitudinal axis z.
In the experiment, one can use filters to achieve an approxi-
mately cw pump mode. The length of the crystal is L and
effective cross section area is A. In SPDC a pump photon is
annihilated and a paired signal and idler with angular fre-
quency �s and �i are produced. Similarly in SFG a pair of
idler photons are annihilated to produce an up-conversion
photon with angular frequency �u �Fig. 1�b��. In SPDC, the
pump field is many orders of magnitude larger than the gen-
erated fields and is taken to be classical, while the signal and
idler beams are quantized. In SFG all three fields are treated
quantum mechanically. Considering the weak nonlinear in-
teraction, we assume that the perturbation theory is suitable
to study the optical properties of the system.

In the interaction picture, the effective Hamiltonian for
the optical parametric processes in a nonlinear crystal is
given by

H = �
V

d3r
�0��2�

2
EaEbEc, �1�

where V is the interaction volume of the crystal illuminated
by the pump laser Ep and ��2� is the second-order nonlinear
susceptibility. The positive frequency part of the quantized
field inside the crystal is

Ej
�+� = �

k� j

Eje
i�k� j·r�−�jt�ak� j

, �2�

where the dispersion relation is �k� j�=� jnj /c, nj is the refrac-
tive index, Ej = i��� j /2�0nj

2VQ, and VQ is the quantization
volume.

In keeping only the terms of interest, the calculation of
the triphoton state to third order in the perturbation theory
gives

��	 = 
− i

�
�3�

−�

�

dtI�
−�

�

dtII�
−�

�

dtIIIT�H�tI�H�tII�H�tIII���0	

= 	�
k�s1

�
k�s2

�
k�u

F�k�s1,k�s2,k�u�a†�k�s1�a†�k�s2�a†�k�u��0	 , �3�

where T is the time-ordering operator for three parametric
processes, 	= �−
i�0��2�VQ�3�EpEsEi

2�2Eu is the parametric
gain index, and F is called the spectral function, which is
defined by
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FIG. 1. �Color online� �a� Photon counting measurements. “CC”
represents the coincidence counter and “OS”s are the optical sys-
tems, respectively. Dj �j=1,2 ,3� are point photodetectors. �b�
Triphoton interaction. Processes I and II denote two parametric
down-conversions while III is an up-conversion.

WEN et al. PHYSICAL REVIEW A 76, 023828 �2007�

023828-2



F�k�s1,k�s2,k�u� = �
k�i1

�
k�i2

���kIL����kIIL����kIIIL�

H��� s1 + �� i1�H��� s2 + �� i2�H��� u − �� i1 − �� i2�

���p − �s1 − �i1����p − �s2 − �i2�

���i1 + �i2 − �u� . �4�

In Eq. �4�, � is called the longitudinal detuning function
which is the z integral from −L to 0 over the length of the
crystal, i.e.,

��x� =
1 − e−ix

ix
. �5�

The phase mismatching in the longitudinal z direction for
three parametric processes is �kI=kp−ks1−ki1, �kII=kp−ks2
−ki2, and �kIII=ki1+ki2−ku. These longitudinal detuning
functions determine the natural spectral widths of the two-
photon states in SPDC and the triphoton, respectively. The
integrals over the area A of the intersection of the beam cross
section and the crystal give the transverse detuning func-
tions, which take the form of

H��� � =
1

A
�

A

d2�e−�� ·�� , �6�

where we have assumed that A is independent of z. The time
integrals give the Dirac � functions in the steady-state ap-
proximation. The transverse detuning function H depends on
the transverse components of the wave vectors. In the limit
that the area of the pump beam is large enough so that the
diffraction may be neglected, H��� �=���� � can be reached.
Under such an approximation, the generated modes are cor-
related in pairs. In most experiments, the range of the trans-
verse modes is limited by placing pin holes in the beam
pathways. In the limit of infinite crystal length and large
cross area, we have perfect phase matching conditions in
energy and momentum for three parametric generations.

Before proceeding, we consider the phase mismatching in
the longitudinal axis. We approximate the frequencies as
small deviations around the corresponding central frequen-
cies, i.e., �s1=�s1+�1 and �s2=�s2+�2 where the range of
frequencies reaching each detector, � j, is limited so that
�� j���sj. This approximation is valid only to perfect phase
matching. Expanding the wave vectors to first order, we
obtain

ksj = Ksj +
� j

usj
−

�sj
2

2Ksj
, �7�

where Ksj is the central wave number, usj is the group veloc-
ity of the sj beam, and �� is the transverse component of the
wave vector, respectively. To maximize the output intensities
of the interaction, the crystal is cut so that for j=1,2

Ks1 + Ki1 = kp, Ks2 + Ki2 = kp, Ki1 + Ki2 = Ku,

�s1 + �i1 = �p, �s2 + �i2 = �p, �i1 + �i2 = �u. �8�

Throughout this paper we shall denote the central frequen-
cies and wave numbers by capital letters as in Eqs. �7� and

�8�. Thus the phase mismatchings �kj now become

�kI = − �1D11 +
�s1

2

2Ks1
+

�i1
2

2Ki1
,

�kII = − �2D22 +
�s2

2

2Ks2
+

�i2
2

2Ki2
,

�kIII = − �1D13 − �2D23 −
�i1

2

2Ki1
−

�i2
2

2Ki2
+

�u
2

2Ku
, �9�

where Djj =1/usj −1/uij and Dj3=1/uij −1/uu �j=1,2� and
DjkL is the difference in time for the j and k beams to cross
the crystal.

III. TRIPHOTON GEOMETRICAL OPTICS

The interesting properties of a triphoton state, especially
the transverse correlation, lead to many potential applica-
tions such as quantum imaging and lithography. In this sec-
tion, we will focus on the transverse effects in a triphoton
state by implementing the photon coincidence counting mea-
surement. We will show how the singles, two�photon coin-
cidence, and triphoton coincidence counting rates are deter-
mined by the spectral function F and the optical systems
placed between the crystal and the detectors. We will con-
centrate on the experiments schematically shown in Fig.
1�a�, where a strong cw pump beam incident on the nonlinear
crystal results in two SPDCs and one SFG to generate the
triphoton state. The generated beams, registered by point
photodetectors, may pass through some linear, passive opti-
cal systems �OS� placed between the crystal and the
detectors.

Using Glauber’s theory, the averaged triphoton coinci-
dence counting rate is defined by

R3 = lim
T→�

1

T
�

0

T

dt1�
0

T

dt2�
0

T

dt3

��E1
�−�E2

�−�E3
�−�E3

�+�E2
�+�E1

�+���	 , �10�

the two�photon coincidence counting rate is

R2 = lim
T→�

1

T
�

0

T

dt1�
0

T

dt2��E1
�−�E2

�−�E2
�+�E1

�+���	 , �11�

and the singles counting rate at detector D1 is given by

R1 = lim
T→�

1

T
�

0

T

dt1��E1
�−�E1

�+���	 . �12�

Ej
�+� is the positive frequency part of the electromagnetic

field evaluated at the jth detector’s spatial coordinate r� j =�� j
+zjẑ and trigger time tj. The propagation of these free-space
electromagnetic fields is governed by the transformation

Ej
�+� = �

k� j

Eje
−i�jtjgj�k� j,r� j�a�k� j� , �13�

where Ej = i��� j /2�0V. The function gj is the Green’s func-
tion which depends on the transverse coordinate of the jth
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detector, �� j, and the distance from the output surface of the
crystal to the plane of the detector, zj.

By using Eq. �3�, the sixth-order field correlation function
becomes

G�3� = ��E1
�−�E2

�−�E3
�−�E3

�+�E2
�+�E1

�+���	

= �0�E3
�+�E2

�+�E1
�+���	�2 = �A3�2, �14�

where A3 is called the triphoton amplitude. Similarly, the
fourth-order field correlation function becomes

G�2� = ��E1
�−�E2

�−�E2
�+�E1

�+���	

= �
k�3

�0�a�k�3�E2
�+�E1

�+���	�2

= �
k�3

�A2�2. �15�

The second-order field correlation function may be written as

G�1� = ��E1
�−�E1

�+���	

= �
k�2

�
k�3

�0�a�k�3�a�k�2�E1
�+���	�2

= �
k�2

�
k�3

�A1�2. �16�

First, let us look at the triphoton coincidence counts. For
the experiment illustrated in Fig. 1�a�, suppose that the two
signal beams produced from SPDCs are sent to detectors D1
and D2 while the up-converted photon is recorded by detec-
tor D3. By using Eqs. �3�, �13�, and �14�, we have

A3 = A3
0�

k�s1

�
k�s2

�
k�u

e−i��s1t1+�s2t2+�ut3�g1�k�s1,r�1�g2�k�s2,r�2�

g3�k�u,r�3�F�k�s1,k�s2,k�u� , �17�

where A3
0=	E1E2E3. Next, we perform the two�photon co-

incidence counts in the triphoton entangled state. As an ex-
ample, we examine the case that only one of the down-
converted photons trigger detector D1 and the up-converted
photon triggers D2. Other possible arrangements are left as
an exercise. By using Eqs. �3�, �13�, and �15�, we have

A2 = A2
0�

k�s2

�
k�u

e−i��s2t1+�ut2�g1�k�s2,r�1�g2�k�u,r�2�F�k�s1,k�s2,k�u� ,

�18�

where A2
0=	E1E2. For the single-photon detection, we con-

sider one case that the detector D1 detects the up-converted
photons. By using Eqs. �3�, �13�, and �16�, we have

A1 = A1
0�

k�u

e−i�ut1g1�k�u,r�1�F�k�s1,k�s2,k�u� , �19�

where A1
0=	E1. Equations �17�–�19� clearly show how the

counting rates are determined by the classical optical transfer
functions g and the triphoton spectral function F. In the bi-
photon optics of SPDC, based on the properties of Green’s
function, Klyshko gave an intuitive pictorial description,
named advanced-wave model �19�, to interpret the two-
photon phenomena. One of the photons is created at one

detector, propagates back to the source where it becomes the
second photon, and then propagates forward in time to the
second detector. For the triphoton geometrical optics dis-
cussed here, this intuitive advanced-wave picture is still ap-
plicable but with some modifications, as we shall see in the
following sections.

In the following discussion, for simplicity, it is always
assumed that the pump is a monochromatic plane wave trav-
eling along the z axis with a cross section large enough so
that the transverse detuning function H can be taken to be a
� function: H��� +�� ��=��� +���. In the whole process, the en-
ergy conservation �s1+�s2+�u=2�p is always well-
satisfied.

A. Single-photon counting rate

First, let us look at the single-photon counting rate for the
experiment drawn in Fig. 1�a�. The result showed that the
singles counting rate has no structure in experiments. Con-
sidering the case of up-converted photons triggering detector
D1, it is not difficult to show using Eqs. �12� and �16� that
the singles counting rate is independent of time, and may be
written using Eqs. �4�, �9�, and �A9� as

R1 = R1
0� d2�s1� d2�s2�S1
− �� s1 − �� s2 −

�u

cd1�
��1,

�u

cd1�
��2

� d�1� d�2�sinc
�1D11L

2
+

�s1
2 L

2K1
�

sinc
�2D22L

2
+

�s2
2 L

2K2
�sinc� ��1D13 + �2D23�L

2

+
��� s1 + �� s2�2L

2Ku
−

�s1
2 L

2Ki1
−

�s2
2 L

2Ki2
��2

, �20�

where R1
0 has absorbed all the slowly varying constants, and

S1 is the Fourier transform of the aperture function modeling
the optical system in front of detector D1 and is defined in
Eq. �A9�. In Eq. �20�, d1� is the distance between the aperture
plane and the detector, see Fig. 2, 1 /K1=1/Ks1+1/Ki1 and
1/K2=1/Ks2+1/Ki2. In the derivation of Eq. �20�, we have
converted the sum into the usual integral by ��k�

=V / �2
�3�d2��d� /u�. The integrals over � j may be deter-
mined by the form of filtering used. In experiments, the fil-

d1 d'1

c
ρ

s
ρ

1
ρ

k

α

FIG. 2. �Color online� The output surface of the crystal forms
the ��c plane, the optical system specified by an aperture function
s1���s� is in the s plane, and photo-detector D1 is placed in the ��1

plane. The distance between the aperture and output surface of the
crystal is d1 and d1� is the distance between the aperture and detector
planes. �� is the transverse component of the wave vector k�.
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tering may be done directly by placing a filter in the beam or
indirectly by using a small pinhole to limit the range of �� j
that enters the detector. If the bandwidth of the filter is large
compared to the natural spectral width of triphoton, the inte-
grals over the frequencies will give a constant and the inte-
grals over the transverse components of the wave numbers
will also give a constant for all ��1 in the paraxial region. If
we take the optical system to be a lens of focal length f with
aperture radius ra, and the detector D1 is placed in the focal
plane of the lens, S1 turns to be the Fourier transform of the
aperture �A9�. The singles counting rate simply becomes

R1 = R1
0� d2�s1� d2�s2� J1���� s1 + �� s2�ra�

��� s1 + �� s2�ra
�2� d�1� d�2

�sinc
�1D11L

2
+

�s1
2 L

2K1
�

sinc
�2D22L

2
+

�s2
2 L

2K2
�sinc� ��1D13 + �2D23�L

2

+
��� s1 + �� s2�2L

2Ku
−

�s1
2 L

2Ki1
−

�s2
2 L

2Ki2
��2

, �21�

where J1�x� is the Bessel function of first kind. If the aperture
is of the order of tenths of millimeters, then the range of �� is
determined by the Bessel function to be a few mm−1. Over
this range, the diffraction effects of a single slit cannot be
observed. In addition, if the slit is replaced by a double slit,
the Young’s interference fringes will be washed out.

B. TwoÈphoton coincidence counting rate

Next, we consider the two�photon coincidence counting
rate in a triphoton entangled state for the experiment shown
in Fig. 1�a�. As an example, we look at the case that only one
optical system is placed in one of the down-converted beams
�e.g., the s2 beam� which is detected by detector D1 while
detector D2 registers the up-conversion photons. In this case,
Eq. �18� becomes

A2 = A2
0�

k�s2

e−i��s2T1+�uT2��
��1,
�s2

cd1�
�

S1
�� s2 −
�s2

cd1�
��1,

�s2

cd1�
��
�� s2,−

cd1

�s2
�

�
− �� s1 − �� s2,−
cz2

�u
�

e−i��� s1+�� s2�·��2���kIL����kIIL����kIIIL� , �22�

where Tj = tj −zj /c for j=1,2. The function ��r� ,x� is defined
in Appendix A and takes the Gaussian form. Next, we denote
�=T1−T2 as the timing difference between two detectors D1
and D2 and convert the sum into the usual integrals. All the
slowly varying terms and phase factors are again grouped
into A2

0. In the paraxial approximation, Eq. �22� can be fur-
ther written as

A2 = A2
0� d2�s2�
�� s2,−

cd1

�s2
�S1
�� s2 −

�s2

cd1�
��1,

�s2

cd1�
�

�
− �� s1 − �� s2,−
cz2

�u
�e−i��� s1+�� s2�·��2� d�2

e−i�2�sinc
�2D22L

2
+

�s2
2 L

2K2
�

sinc� ��1D13 + �2D23�L
2

+
��� s1 + �� s2�2L

2Ku
−

�s1
2 L

2Ki1

−
�s2

2 L

2Ki2
� . �23�

The integral over �2 can be evaluated using

�02 =
�s2

2

D22K2
, �03 =

1

D23
��1D13 −

�s1
2

Ki1
−

�s2
2

Ki2
+

��� s1 + �� s2�2

Ku
� .

�24�

For a filter with broad bandwidth, the integral over �2 is
simply the Fourier transform of the product of two sinc func-
tions, which leads to

� d�2e−i�2� sinc� ��2 + �02�D22L

2
�sinc� ��2 + �03�D23L

2
�

= ∧ ��,�02,�03,D22L,D23L;�2� , �25�

where the function ∧ is provided in Appendix B. Equation
�25� shows how the frequency and wave number phase
matching interlock the spatial and temporal coherence. In
general, the spatial and temporal effects cannot be separated
in discussing the two-photon �and multiphoton� transverse
correlation. For simplicity, in the following discussions we
ignore the transverse components of wave vectors in the lon-
gitudinal phase matching. This approximation may allow us
to deal with the transverse and longitudinal components of
wave vectors in the two�photon �and three-photon� coinci-
dence counting rate separately. So, Eq. �23� now can be writ-
ten as

A2 = A2
0A2

tr  A2
lg, �26�

where the subscript tr means the transverse part and lg the
longitudinal part.

Using Eq. �A9� and regrouping the constants and phase
factors into A2

0, we find

A2
tr =� d2�ss1���s�e−i��s·�� 0�
��s,

�s2

cdeff
�2�� , �27�

where

�� 0 =
�s2

cd1�
��1 +

1

c� d1

�s2
+

z2

�u
�

��2 +

z2

�u

d1

�s2
+

z2

�u

�� s1,
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1

deff
�2� =

1

d1�
+

1

d1 + ��s2

�u
�z2

. �28�

On the one hand, in the far-field Fraunhofer approximation,
the �’s in Eq. �27� goes to unity and it leads to a Fourier
transform of the aperture function. On the other hand, in
standard optics it is known that the Fresnel phase factor can
be removed by placing a converging lens of focal length f in
the aperture plane and placing the detectors in the appropri-
ate optical planes. In other words, set deff

�2�= f , so that A2
tr is

proportional to the Fourier transform of t���s�, which is the
transmittance function of the aperture as discussed in Appen-
dix A. That is, we choose

1

d1�
+

1

d1 + ��s2/�u�z2
=

1

f
. �29�

Equation �29� is the same as that for the SPDC source �see
Eq. �70� in Ref. �10�� and it has the form of GTLE relating
the object and image plane to the focal length of a lens in
geometrical optics. As seen in Eq. �29�, d1+ ��s2 /�u�z2 is the
distance from the lens to the crystal plus the distance from
the crystal to detector D2 weighted by the ratio of the free-
space wavelengths. The magnification of the inverted image
is f / �d1�− f�. The image which appears in the coincidence
counting rate is, using Eqs. �11�, �15�, and �27�,

R2
tr =� d2�s1�S1
�� 0,

�s2

cf
��2

. �30�

Note that this image is not localized at either detector. The
difference between this result and Eq. �71� in Ref. �10� is that
the image becomes blurred because of tracing the transverse
component of the wave vector of the remaining down-
converted s1 beam. The relationship between the object and
the image can be obtained by completing the integration in
Eq. �27� over the effective area of the lens,

� d2�se
−i��s·�� 0 � �
��1

d1�
+

��2

d1 + ��s2/�u�z2
+

�z2/�u�c�� s1

d1 + ��s2/�u�z2
� ,

where Eq. �28� is applied. In the derivation of the above
relationship, we have assumed an infinite-size lens. As we
see, the point-point relationship between the object ���1� and
image ���2� is manifested by the remaining transverse modes
in the untouched s1 beam. The magnification of the inverted
image is �d1+ ��s2 /�u�z2� /d1�. If the lens has a finite size, the
above integral will yield a function of J1�x� /x, where J1�x� is
the Bessel function of first kind. From Eq. �30�, it is obvious
that the more transverse modes generated in the parametric
processes, the worse the quality of the image. In this two-
photon imaging, the advanced-wave model is valid and pro-
vides an intuitive picture to understand the relation between
the object and the image. For other possible experimental
arrangements of placing the optical system, one may find
similar results as Eqs. �27�–�30�.

C. Triphoton coincidence counting rate

We now turn to study the triphoton coincidence counting
rate for the experiment diagramed in Fig. 1�a�. Here we will

examine two instances. In the first one, we only place one
OS in one of the down-converted beams. In the second ex-
ample, one OS is placed in the up-converted beam and the
other one is put in one of the down-converted beams. Other
possible arrangements may be analyzed using the same pro-
cedure and we leave them as exercises. So, let us start with
the first case that the OS is placed in one of the down-
converted beams �e.g., s1 beam�. Under this experimental
setup, using the results given in Appendix A, the triphoton
amplitude �17� becomes

A3 = A3
0�

k�s1

�
k�s2

e−i��s1T1+�s2T2+�uT3��
��1,
�s1

cd1�
�

S1
�� s1 −
�s1

cd1�
��o,

�s1

cd1�
��
�� s1,−

cd1

�s1
��
�� s2,−

cz2

�s2
�

�
− �� s1 − �� s2,−
cz3

�u
�

ei�� s2·��2e−i��� s1+�� s2�·��3���kIL����kIIL����kIIIL� . �31�

Again, all the slowly varying terms and phase factors are
absorbed into A3

0. Under the same assumption that the natural
width of triphoton does not affect the transverse correlations,
we write the triphoton amplitude as the product of transverse
and longitudinal parts separately, i.e.,

A3 = A3
0A3

tr  A3
lg, �32�

where the transverse part is given by

A3
tr =� d2�ss1���s�e−i��s·�� 03�
��s,

�s1

cdeff
�31�� , �33�

where

�� 03 =
�s1

cd1�
��o +

�s1

cd1

�s2

z2
��2 +

�u

z3
��3

�s1

d1
+

�s2

z2
+

�u

z3

,
1

deff
�31� =

1

d1�
+

1

d1 + L�31� ,

�34�

and

�s1

L�31� =
�s2

z2
+

�u

z3
. �35�

In the far-field approximation, the �’s in Eq. �33� become
unity and it turns out to be the Fourier transform of the
aperture. For the quantum imaging, we may remove the
Fresnel phase factor by placing a converging lens of focal
length f in the aperture plane, i.e., setting deff

�31�= f , so that A3
tr

is a function of the Fourier transform of t���s�. That is

1

d1�
+

1

d1 + L�31� =
1

f
. �36�

It is obvious that Eq. �36� is the GTLE form. Comparing
with the biphoton geometrical optics �29�, one difference is
the distance between the lens and imaging plane. From Eq.
�36�, this distance becomes the distances from the lens to the
crystal �d1� plus the effective length L�31� from the crystal to
the imaging plane. The effective length L�31� �Eq. �35�� is a
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parallel combination of distances between the crystal and
two detectors weighted by wavelengths, which behaves as
the parallel combination of resistors in the electromagnetism
theory. The positions of two remaining detectors are not
unique, which is easy to verify from Eq. �35�. The image
shown in the triphoton coincidence counting rate is

R3
tr = �S1
�� 03,

�s1

cf
��2

. �37�

Whether the relation between the object and the image is a
point-point correspondence can be deduced from Eq. �33�
with the help of Eqs. �34� and �35�. Performing the integral
over the lens with an infinite size in Eq. �33� then gives

� d2�se
−i��s·�� 02 � �
�s1��o

d1�
+

�s2

z2
��2 +

�u

z3
��3

1 + d1/L�31� � .

As seen from the above result, the point-point correspon-
dence between the object ���o� and the image ���2 , ��3�, is
well-defined in the case discussed in this section. There are
two types of operations to perform the triphoton coinci-
dences. One way is to fix one detector, say D2, and only
move the other detector D3. The magnification of the in-
verted image is given by ��31/�u��1+d1 /L�31���z3 /d1��. The
other case is to move both detectors D2 and D3 together. In
such a case, the magnification of the inverted image is given
by �d1+L�31�� /d1�. The difference of the magnifications for
these two cases is represented by the ratio ��31z3� / ��ud1�. Of
course, the finite-size lens will give a function of J1�x� /x.
Making a comparison between Eqs. �37� and �30�, one may
find that in the two�photon coincidences, the blurred image
is due to tracing the remaining freedom in s1 photons; while
in the triphoton coincidence counting rate, the image has a
better resolution and Eq. �37� exactly has the same conse-
quence as Eq. �71� in Ref. �10�. The magnification of the
inverted image is f / �d1�− f�. Note again that the image is not
localized at either detector. Klyshko’s advanced-wave model
now should be interpreted as the effective two-photon pic-
ture, in which one of the photons is created at detector D1,
and propagates back to the source where it becomes the sec-
ond photon. Then this photon propagates forward in time to
the effective second detector which is located in the effective
length L�31� away from the crystal.

One may wonder if one object with two lenses is placed
in the system, how many images can be observed in the
coincidences, one or two? The answer is generally two ob-
scure images may be obtained in the imaging planes. How-
ever, by carefully choosing the experimental parameters, one
may see two good images with different magnifications, to
some extent. The reason is analyzed in the following ex-
ample.

In the second example, we will look at the case where one
OS is placed in one of the down-converted beams �e.g., the
s1 beam� and the second OS is in the up-converted beam.
The triphoton amplitude �17� now turns to be

A32 = A32
0 �

k�s1

�
k�s2

e−i��s1T1+�s2T3+�uT2�S1
�� s1 −
�s1

cd1�
��1,

�s1

cd1�
�

�
�� s1,−
cd1

�s1
��
�� s2,−

cz3

�s2
�S2


− �� s1 − �� s2 −
�u

cd2�
��2,

�u

cd2�
��


− �� s1 − �� s2,−
cd2

�u
�

ei�� s2·��3���kIL����kIIL����kIIIL� . �38�

All the slow constants and phase factors are grouped into
A32

0 . Similarly, separate the triphoton amplitude �38� into
transverse and longitudinal parts,

A32 = A31
0 A32

tr  A32
lg . �39�

After some algebra, the transverse part is given by

A32
tr =� d2�s1� d2�s2s1���s1�s2���s2�

e−i��s1·�� 1e−i��s2·�� 2e−i��s1·��s2/l2�
��s1,
�s1

cds1
�

�
��s2,
�u

cds2
� , �40�

where

�� 1 =
�s1

cd1�
��1 +

�s1

cd1

�s2

z3
��3

�s1

d1
+

�s2

z3
+

�u

d2

,

�� 2 =
�u

cd2�
��2 +

�u

cd2

�s2

z3
��3

�s1

d1
+

�s2

z3
+

�u

d2

,

1

l2 =

�s1�u

cd1d2

�s1

d1
+

�s2

z3
+

�u

d2

;
1

ds1
=

1

d1�
+

1

d1 + L1
�32� ,

1

ds2
=

1

d2�

+
1

d2 + L2
�32� ; �41�

and

�s1

L1
�32� =

�u

d2
+

�s2

z3
,

�u

L2
�32� =

�s1

d1
+

�s2

z3
. �42�

Using the same analog, in the far-field Fraunhofer approxi-
mation, the �’s in Eq. �40� go to unity and they become a
joint Fourier transform of two apertures. This joint Fourier
transform of two apertures generally cannot be separated be-
cause of the third crossed phase factor e−i��s1·��s2/l2 in Eq. �40�.
The effect of this crossed phase term will be further dis-
cussed in the next section by considering the ghost
interference-diffraction experiments, using double slits as ap-
ertures. In order to look at the ghost imaging process, we
remove the Fresnel phase factors by placing one lens of focal
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length f1 in the aperture plane 1 and another lens of focal
length f2 in the aperture plane 2, i.e., setting f1=ds1 and f2
=ds2, then A32

tr is proportional to the joint Fourier transform
of the transmittance function of two lenses t���s1� and t���s2�.
To satisfy the GTLEs, the condition ��s1f1d1�d2� / ��uf2d2�d1�
= �f1d1�+ f1d1−d1�d1� / �f2d2�+ f2d2−d2�d2� should be satisfied.
There is one special case to get rid of the Fresnel phase
factors, in which only one lens of focal length f is needed if
we require the relationship z3 /�s2=−�d1−d2� / ��u−�s2�. Af-
ter setting f1=ds1 and f2=ds2, the transverse part of the
triphoton coincidence counting rate becomes

R32
tr = �S
�� 1,

�s1

cf1
; �� 2,

�u

cf2
��2

. �43�

In Eq. �43� we have defined the two-image-amplitude Fou-
rier transform, which is

S
�� 1,
�s1

cf1
; �� 2,

�u

cf2
�

=� d2�s1� d2�s2t1���s1�t2���s2�e−i��s1·�� 1e−i��s2·�� 2e−i��s1·��s2/l2.

�44�

The relationship between two objects ���1 , ��2� and two im-
ages ���3� can be derived from Eq. �44� as follows:

� d2�s1� d2�s2e−i��s1·�� 1e−i��s2·�� 2e−i��s1·��s2/l2 � l4eil2�� 1·�� 2,

where two lenses are assumed to have the infinite size. In
general, the above result states that the point-point corre-
spondence between object and image is not well-defined in
such a case, even though the GTLEs are satisfied. Alterna-
tively, the general conclusion about the resolution for the
imaging could not be reached. The physics can be simply
argued as since both images are related with detector D3, one
image is washed out by the other image. However, there is a
case, if z3�d1,2, that the above result may be approximated

as two � functions, i.e., �� ��1

d1�
+

�s2L1
�32�

�s1z3

��3

d1+L1
�32� ��� ��2

d2�

+
�s2L2

�32�

�uz3

��3

d2+L2
�32� �. It is clear that under such a situation, the

triphoton imaging is reduced to two sets of independent two-
photon imaging processes and the point-point relation be-
tween object and image is recovered, to some extent. Let us
go back to Eq. �42�. Now it turns out to be GTLEs which
determine the positions of two imaging planes. However,
from the two-image-amplitude Fourier transform �44�, the
point-point correspondence for the imaging process now
spreads to become the point-plane correspondence due to the
crossed phase term. This means that in the imaging planes,
generally, two images get blurred and share the information
of both objects. To get high-quality images, one has to de-
crease the function of the crossed phase term in Eq. �44� by
setting z3�d1,2, as discussed above. This will lead to two
approximately independent images. Therefore the crossed
phase term in Eq. �44� plays an important role in determining
the imaging qualities. As stated in Eq. �44�, the two images
are generally not independent and they are correlated. To

further confirm this point, one may go back to examine Eq.
�42�. In Eq �42�, the effective lengths L1,2

�32� are the parallel
combination of distances from the imaging lens to crystal
and from the crystal to detector D3 weighted by wave-
lengths. By setting z3�d1,2, the effective lengths L1,2

�32� are
approximated as only a function of z3. The triphoton coinci-
dence counts now can be decoupled into two two-photon
coincidence counts. When z3 /�s2=−�d1−d2� / ��u−�s2�, two
images share the same imaging plane but may possess dif-
ferent magnifications.

IV. GHOST INTERFERENCE-DIFFRACTION
EXPERIMENTS OF DOUBLE SLITS

Like entangled-photon image transfer, the correlated-
photon transverse interference is a manifestation of angular
�transverse wave vectors� correlation of entangled states. In
analogy with the usual optical terminology, the imaging
transfer belongs to geometrical triphotonics, while the inter-
ference and diffraction belong to physical triphotonics. In
this section, let us consider a triphoton analog of Young’s
interference experiments. In Young’s experiment, the slits
having width b separated by a distance a between their cen-
ters are illuminated by a light source. The aperture function
of the double slit takes the form

s���� = �rect
 x + a/2

b
� + rect
 x − a/2

b
��rect
 y

�
� , �45�

where � is the length of the slits. If the double slit is illumi-
nated coherently, this requires that the wave-vector spectrum
of the source is much narrower than 2
 /a. Interference
fringes can be observed on a screen at a distance z behind the
slits. In the following, we will devise a triphoton analogy of
the Young’s experiments with the coincidence counting mea-
surement as discussed in Sec. III.

To connect with the biphoton ghost interference-
diffraction experiment done in SPDC �11�, we revisit this
experiment replaced with a triphoton source �see Fig. 3�. The
ghost interference-diffraction pattern which is obtained in the
two�photon coincidence detection now becomes

R2
tr�x2,y2� =� d�s1,x cos2
a�01,x

2
�sinc2
b�01,x

2
�

� d�s1,y sinc2
��01,y

2
� , �46�

where we have decomposed �� 01 and �� s1 in the �x ,y� plane

'
1d

1d

2z

D1

D2

C.C.
Absorber

2sω

uω

Pump

1sω
Double Slit

2x2y

FIG. 3. �Color online� Two-photon ghost interference-diffraction
experiment setup with one double slit. The double slit is inserted in
the �s2 beam and the detector D2 is scanned in its transverse plane.
The �s1 beam is absorbed by an absorber. The parameters of the
double slit are a=0.5 mm, b=0.1 mm, and �=1 cm.
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and ignored the constants. According to the advanced-wave
picture, the interpretation of Eq. �46� is to think of detector
D1 as an advanced-wave source placed at a distance d1� from
the double slit and scanning transverse coordinates �x2 ,y2� of
detector D2 which is at d1+ ��s2 /�u�z2 away from the double
slit where �d1+ ��s2 /�u�z2��a2 /�s2 and �d1

+ ��s2 /�u�z2��b2 /�s2. The cosine term is due to the inter-
ference of two amplitudes passing through two slits, but
modified by the imaginary phase from s1 photons which are
not detected. The phase difference between two optical path-
ways is approximately equal to 
ax2 /�s2�d1+ ��s2 /�u�z2�.
The sinc terms in Eq. �46� represent the effects of nonzero
width and length of the slits.

In Fig. 4, the ghost interference-diffraction patterns of a
double slit are plotted as a function of transverse coordinates
�x2 ,y2� of detector D2 with a different amount of transverse
modes in the nondetected s1 beam. The double-slit aperture
with slit width b=0.1 mm, distance between slits a
=0.5 mm, and length of each slit �=1 mm is placed in the
s2 beam at a distance d1=0.3 m from the crystal. The s2
beam passes through it and then travels d1�=1 m to detector
D1 which is fixed on the axis of the s2 beam. The up-
converted beam travels z2=1.8 m freely from the crystal to
detector D2. In the simulations, the wavelengths of two
down-converted beams are taken as 870 nm and the wave-
length of the up-conversion beam as 680 nm. In Fig. 4�a�,
since there are many transverse modes in the idle s1 beam,
the ghost interference-diffraction pattern grows fat and loses
the fidelity; while in Fig. 4�b�, the pattern has a better reso-
lution because there are few transverse modes in the s1
beam.

The physics can be understood as follows. Recall �� 0 in
Eq. �28�. By setting ��1=0, there remain two terms which
determine the properties of this vector: the first term is asso-
ciated with the spatial coordinates of detector D2 and the
second one with the transverse modes in the s1 beam. The
first integral in Eq. �46� determines the curvature along the x2
axis and the second integral describes the behavior along the
y2 axis. When the transverse modes of the s1 beam are few,

�� 0 mainly characterizes the two�photon properties. It
should be noted that the symbol “�” in this paper indicates
the approximate two photons in triphoton and they are dif-
ferent from biphotons in SPDC or EIT-based systems. In-
creasing d1 or/and z2, the oscillation periods along the x2 and
y2 axes are also increased as shown in Eq. �28�.

Next, we consider this ghost interference-diffraction ex-
periment by doing triphoton coincidence counting measure-
ment and the double slit is only placed in the s1 beam �see
Fig. 5�. From Eq. �37�, ignoring the constants it is easy to
obtain

R3
tr�x2,y2;x3,y3� = cos2
a�03,x

2
�sinc2
b�03,x

2
�sinc2
��03,y

2
� .

�47�

Equation �47� has the same analogy as the double-slit
interference-diffraction experiment done in SPDC. But the
cosine term now turns out to be the interference of two ef-
fective amplitudes traveling through two slits. The detection
should be also implemented at the far-field zone. In Fig. 6,
the double-slit interference-diffraction pattern is sketched as
the point detector D2 is fixed in the axis of the s2 beam
while detector D3 is scanned in its transverse plane �x3 ,y3�.
The distance from the crystal to detector D2 is z2=1.6 m and

'
1d

1d

3z
D3

C.C.

1sω

uω

Pump
2sω Double Slit

3x3y

a=0.5mm, b=0.1mm, l=1cm

D1

2z
D2

2x
2y

FIG. 5. �Color online� Triphoton ghost interference-diffraction
experiment setup with one double slit. The double slit is inserted in
the �s1 beam and one scans the transverse planes of detectors D2
and D3.

(a) (b)

FIG. 4. �Color online� Ghost interference-diffraction pattern of a double slit in a two�photon coincidence counting measurement by
using a triphoton entanglement source: �a� with many transverse modes in the nondetected s1 beam; and �b� with few transverse modes. The
parameters were chosen as d1�=1 m, d1=0.3 m, and z2=1.8 m.

TRANSVERSE CORRELATIONS IN TRIPHOTON … PHYSICAL REVIEW A 76, 023828 �2007�

023828-9



from the crystal to detector D3 is z3=1.5 m. Comparing with
Fig. 4, it is obvious that Fig. 6 gives a better interference-
diffraction pattern, i.e., a better resolving power. To under-
stand the behavior in this experimental setup, recall �� 03
given in Eq. �34�. By setting ��1=�� 2=0, �� 03 is only a function
of transverse coordinates of detector D3. The first two terms
on the right-hand side in Eq. �34� describe the feature along
the x3 axis while the third term tells the curve along the y3
axis. Increasing d1 or/and z2,3, the oscillation period along
the x3 axis is also increased and this can be understood by
examining �� 03 in Eq. �34�. Until now the discussions are
based on one double slit and we found that the ghost
interference-diffraction patterns exhibit some similar features
as those given by SPDC.

Now we turn to our major work: the two double-slit
interference-diffraction experiment �see Fig. 7�. For simplic-
ity, we assume that two identical double-slit apertures are
inserted into the system. One double slit is inserted in the s1
down-converted beam and the other in the up-converted
beam. Equation �40� now takes the form

A32
tr ��� 1,�� 2� = b�
�

−a−b/2

−a+b/2

dx1 + �
a−b/2

a+b/2

dx1�
e−ix1�1x�eia�2x/2eix1�a/2l2−�1x�

+ e−ia�2x/2e−ix1�a/2l2+�1x��

sinc�b

2

�2x +

x1

l2 ���
−�/2

�/2

dy1e−iy1�1y

sinc��

2

�2y +

y1

l2 �� , �48�

where we have decomposed all the vectors in their transverse
planes, �x ,y�. To understand the role of the crossed phase
term in Eq. �40�, we will discuss the Young’s experiments
with two double slits in three regions. To simplify the dis-
cussions, we take ��1=��2=0, i.e., two detectors D1 and D2

are fixed at their corresponding axes, so that the triphoton
coincidence counting rate is simply the function of spatial
coordinates of detector D3, ��3= �x3 ,y3�. First, we set
z3�d1,2 and in this case, the crossed phase term in Eq. �40�
plays an unimportant role for determining the ghost
interference-diffraction pattern. In Fig. 8�a�, the pattern is
depicted by choosing d1=d2=2.1 m and z3=0.3 m. The pic-
ture looks like that shown in Fig. 6 �or Fig. 4� except the
fringes are suppressed. The picture can be understood by
following the analysis presented above. Second, if now z3 is
comparable with d1,2, the crossed phase term is as important
as another two phase term in Eq. �40� and they together
determine the interference-diffraction pattern. In Fig. 8�b�,
by choosing d1=d2=1.4 m and z3=1.6 m, we found that the
interference-diffraction pattern is getting broadened and the
modulation has a slower period. Third, by setting z3�d1,2,
the crossed phase term now has an important contribution to
A32

tr . In Fig. 8�c�, we show one example in which d1=d2
=0.25 m and z3=2 m. In Fig. 8�d�, we choose d1=d2
=0.2 m and z3=1.8 m. As we see, the oscillations along the
x3 axis are different from those demonstrated in Figs. 8�a�
and 8�b�: around x3=0, the maximum shown in Figs. 8�a�
and 8�b� now tends to disappear and it appears unsymmetri-
cally besides the center. The new distribution is due to the
interference of two amplitudes crossing through two double
slits. The unsymmetrical distribution is because the ratio of
���s1 /d1� / ��u /d2�� is not equal to one. When this ratio goes
to one, the center of the feature moves toward x3=0. In ad-
dition, by making z3 /d1,2�1, the center of the coincidences
R32

tr approaches zero. This is the essential difference between
biphoton optics and triphoton optics. The oscillation periods
along the x3 and y3 axes alter following the changes of d1,2
and z3. To know the detailed changes, one may apply the
above procedure by examining the properties of �� 1,2 and l
given in Eq. �41�. Of course, there is no classical correspon-
dence, no matter quantum imaging or quantum interference-
diffraction phenomena as we discussed in this paper.

Knowing the interference-diffraction patterns of two
double slits, one may raise a simple question: by placing two
single slits in Fig. 7 �instead of double slits� in two arms,
what can we observe? To answer this question, let us con-
sider an experiment where two identical slits together form
the aperture function given in Eq. �45�. Following the same
procedure, one may find that the two-image-amplitude in Eq.
�44� becomes

'
1d

1d

3z

D2

C.C.

1sω

ω

Pump

2sω

Double Slit1

3x

3y

D1

D3

2d

Double Slit2 '
2d

C.C.

u
a=0.5mm, b=0.1mm, l=1cm

FIG. 7. �Color online� Triphoton ghost interference-diffraction
experiment setup with two double slits. Two double slits are in-
serted in the �s1 and �u beams, respectively. Detector D3 is
scanned in its transverse plane �x3 ,y3� to do the triphoton coinci-
dence measurement.

FIG. 6. �Color online� Ghost interference-diffraction pattern of a
double slit in triphoton coincidence counting detection. x3 and y3

represent the spatial position of detector D3 and detector D2 is fixed
in the axis of the s2 beam. The parameters were chosen as d1

=0.3 m, z2=1.6 m, and z3=1.5 m.
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S�x3,y3� = �
a−b

a+b

dx2 sinc�b
�1x +
x2

l2 ��
eix2�a/l2−�2x��

�/2

�/2

dy2 sinc��

2

�1y +

y2

l2 ��e−iy2�2y .

�49�

As we see, Eq. �49� exactly has the similar sequence as Eq.
�48�; the two slits play the role as one double slit. Though
there are also some oscillations in the y3 direction, they are
difficult to observe in the experiment.

V. DISCUSSION AND SUMMARY

In summary, we have presented a detailed analysis of the
transverse correlation of a triphoton state generated from two
SPDCs and one SFG within a single crystal as proposed in
Ref. �18�. For simplicity, we have assumed that the pump
beam is a monochromatic plane wave traveling along the
longitudinal axis without any depletion. We have discussed
the triphoton geometrical and physical optics, with emphasis
on the roles of the spectral function F and classical transfer
functions g. For the emergence of quantum imaging, we have
studied three classes: single-photon detection, two�photon,
and three-photon coincidence counting rates. Our results
show that the singles counts have no structure in experiments
such as the ghost interference experiment �11�. In the two
�photon coincidence counting measurement, the GTLE is

recovered as implemented by SPDC sources. However, the
quality of the image becomes worse if more transverse
modes are generated in the triphoton state. This is because
the point-point relationship between the object and image is
modified by the transverse modes in the untouched beam.
For the triphoton coincidence counting measurement, if only
one object with one lens is placed in the optical beam, the
ghost image governed by the modified GTLE has a better
resolution as in the SPDC case, and the point-point corre-
spondence between the object and image is well-defined. The
distance between the imaging plane and lens is a parallel
combination of distances between two detectors and a lens
weighted by the ratio of free-space wavelengths, which be-
haves as the parallel combination of resistors in the electro-
magnetism theory. The positions of two remaining detectors
are not unique. The situation changes dramatically if two
OSs are inserted into two optical beams. In such a case, the
general conclusion about the imaging could not be drawn
because the point-point correspondence for forming images
is not well-defined, even though the GTLEs are satisfied. To
characterize such a situation, a two-image-amplitude Fourier
transform �Eq. �44�� is defined. Whether the point-point re-
lation between object and image is restored to some extent,
depends on the impact of the crossed phase term in Eq. �44�.
In general, one image washes out the other one so that in
triphoton coincidences, no image can be observed. However,
under some conditions two roughly dependent images can be
formed in the imaging planes. To further understand the
transverse correlation in triphoton entanglement, we have
also studied the triphoton physical optics by looking at the

(a) (c)

(b) (d)

FIG. 8. �Color online� Ghost interference-diffraction patterns of two double slits in triphoton coincidence counting measurement. x3 and
y3 represent the position of detector D3. The parameters were chosen as �a� d1=d2=2.1 m and z3=0.3 m; �b� d1=d2=1.4 m and z3=1.6;
�c� d1=d2=0.25 m and z3=2 m; and �d� d1=d2=0.2 m and z3=1.8 m.
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double-slit interference-diffraction experiments under differ-
ent setups. With only one double slit, the interference-
diffraction pattern can be understood from the biphoton pic-
ture. However, when placing two double slits in the system,
the pattern shows different features. There is a destructive
interference occurrence between two amplitudes crossing
two double slits. This is the essential difference between bi-
photon optics and triphoton optics. We also demonstrated
that the modified Klyshko’s advanced-wave model provides
an intuitive picture to understand the triphoton geometrical
and physical optics.

In the discussions, for simplicity, we have decoupled the
interlocking between spatial and temporal coherence. This
simplification allows us to focus on the main features caused
by the spatial correlations and we do not worry about the
longitudinal manifestation. The generalization of quantum
ghost imaging in multiphoton entanglement is beyond the
scope of this paper and will be presented elsewhere �21�. It
should be also pointed out that the calculations in this paper
are carried out at the single-photon level. When this limita-
tion is broken, one may choose solving the three-dimensional
Maxwell’s equations to study the spatial correlations, as dis-
cussed in �22,23�.
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APPENDIX A: GREEN’S FUNCTIONS

The propagation of free-space electric fields is described
by the Green’s function. In this appendix, we give a brief
review of properties of Green’s functions for an electric field
through a diffraction limited linear optical system, which can
be in terms of an aperture function, following the treatment
in �10�. As pictured in Fig. 2 the aperture function, defined
by s���s�, is placed in a plane a distance d1 from the output
surface of the crystal and d1� from the detector. The Green’s
function is given by

g1��� ,�,��1,z1�=� d2�s� d2�c����1 − ��s,d1��

s1���s�����s − ��c,d1�ei�� ·��c, �A1�

where z1=d1+d1� and the optical transfer function is defined
in the paraxial approximation by �24�

���� ,d� =
− i�

2
c

ei�d/c

d
�
�� ,

�

cd
� , �A2�

�
�� ,
�

cd
� = ei��2/2cd. �A3�

It is useful to note that �25�

��
�� ,
�

cd
� = �
�� ,−

�

cd
� , �A4�

���� ,
�

c

1

d
+

1

d�
�� = �
�� ,

�

cd
��
�� ,

�

cd�
� , �A5�

�
��� − ����,
�

cd
� = �
�� ,

�

cd
��
���,

�

cd
�e−i�/cd�� ·���, �A6�

and the Fourier transform equation is

� d2��
�� ,
�

cd
�ei�� ·�� = i

2
cd

�
�
�� ,−

cd

�
� . �A7�

It is easy to show that

g1��� ,�,��1,z1� =
− i�d1�

2
c
ei�z1/c�
��1,

�

cd1�
�

S1
�� −
�

cd1�
��1,

�

cd1�
��
�� ,−

cd1

�
� ,

�A8�

S1
�� −
�

cd1�
��1,

�

cd1�
� =� d2�s�
��s,

�

cd1�
�ei��� −�/cd1���1�·��ss1���s� .

�A9�

If we place a converging lens of focal length f in the plane of
the aperture function, then

s1���s� = �
��s,−
�

cf
�t���s� , �A10�

where t���s� is the transmission function of the aperture. By
using Eq. �A9� we have

S1
�� −
�

cd1�
��1,

�

cd1�
� =� d2�se

i��� −�/cd1���1�·��st���s� ,

�A11�

which is the Fourier transform of t���s�.
Similarly, we can find that the Green’s function

g2��� ,�,��2,z2� = ei�z2/c�
�� ,−
cz2

�
�ei�� ·��2. �A12�

These results have been frequently applied in the context.

APPENDIX B: FOURIER TRANSFORM
OF PRODUCT OF TWO SINC FUNCTIONS

In Eq. �25� we have defined the function ∧�� ,a ,b ,c ,d ;��,
which is the Fourier transform of product of two sinc func-
tions,
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� d�e−i�� sinc� �� − a�c
2

�sinc� �� − b�d
2

�
=

�2


�b − a�cd
e−i
/4�ei�b�+c�b−a�/2��signum�� + c/2 − d/2� − signum�� + c/2 + d/2�� + ei�a�+d�b−a�/2�

�signum�� − c/2 − d/2� − signum�� + c/2 − d/2�� + ei�b�−c�b−a�/2��signum�� − c/2 + d/2� − signum�� − c/2 − d/2��

+ ei�a�−c�b−a�/2��signum�� + c/2 + d/2� − signum�� − c/2 + d/2��� , �B1�

where signum�x�=x / �x�.
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