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Direct space-time observation of pulse tunneling in an electromagnetic band gap
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We present space-time-resolved measurements of electromagnetic pulses tunneling through a coaxial elec-
tromagnetic band gap structure. The results show that during the tunneling process the field distribution inside
the barrier is an exponentially decaying standing wave whose amplitude increases and decreases as it slowly
follows the temporal evolution of the input pulse. At no time is a pulse maximum found inside the barrier, and
hence the transmitted peak is not the incident peak that has propagated to the exit. The results support the
quasistatic interpretation of tunneling dynamics and confirm that the group delay is not the traversal time of the

input pulse peak.
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I. INTRODUCTION

How long does it take a particle to tunnel through a bar-
rier? Seventy-five years after MacColl answered that it
“takes no appreciable time” [1], the question continues to
occupy physicists and generate controversy [2—8]. The con-
troversy stems from the fact that several tunneling time defi-
nitions predict a group velocity that not only exceeds the
vacuum speed of light but also increases with barrier length,
ultimately becoming infinite. This increase of group velocity
v, with barrier length L follows from an application of the
relation v,=L/7, to Hartman’s calculation of a tunneling
time 7, that becomes independent of barrier length [9]. To
test these predictions of the quantum theory, a number of
experiments have been reported using electromagnetic wave
packets which can tunnel through regions of evanescence in
a manner analogous to the tunneling of quantum particles
[10-14]. These experiments have yielded apparent superlu-
minal tunneling group velocities ranging from 1.7¢ to 5¢ and
beyond. Some of these experiments have also confirmed the
Hartman effect, the saturation of tunneling time with barrier
length, thus reinforcing the view that the tunneling process is
superluminal.

In recent papers, however, Winful has argued that tunnel-
ing is not a pulse propagation phenomenon that can be char-
acterized with a group velocity [15-18]. It is a quasistatic
phenomenon in which the barrier acts as a lumped element
with respect to the wave packet, whose spatial extent greatly
exceeds the barrier length. The barrier is essentially an eva-
nescent mode resonator characterized by a cavity lifetime
rather than by a transit time. The Hartman effect is explained
by the fact that the cavity lifetime is proportional to the
stored energy in the barrier, a quantity that saturates with
barrier length because of the exponential decay of the energy
density with distance. Numerical simulations have shown
that, during the tunneling process, the entire evanescent
mode rises and falls, adiabatically following the incident
pulse with a small delay due to energy storage [16,17]. At no
time is a pulse peak to be found inside the barrier, and hence
the transmitted peak is not the incident peak that has propa-
gated to the exit. To date, however, tunneling experiments
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have monitored only incident and transmitted pulses. The
proceedings within the barrier itself have remained a dark
and hidden secret from an observational standpoint.

In this paper we look inside a barrier and provide space-
time-resolved measurements of electromagnetic wave packet
tunneling which support the quasistatic interpretation of the
tunneling process. The incident field is seen to modulate the
amplitude and hence the stored energy of an exponentially
decaying quasi-standing-wave within the barrier. During the
evolution of the incident pulse the intrabarrier field is a
monotonic function of distance and no propagating envelope
or pulse peak is detected inside the barrier.

II. THE EXPERIMENT
A. The electromagnetic band gap structure

The barrier used in this work is a one-dimensional peri-
odic structure made by alternating 5-m-long coaxial cable
segments of characteristic impedance Z;=75 ) (RG-59/U)
with segments of characteristic impedance Z,=50 ) (RG-
58/U), similar to the configuration used in earlier studies
[14,19,20]. The periodic structure formed by the alternating
impedances operates on the same principle as the multilayer
dielectric structures used in many tunneling time experi-
ments [ 11-13]: waves whose frequencies lie within a certain
stop band are severely attenuated as a result of coherent
Bragg reflections. The stop band is centered at the Bragg
condition where the period A of the structure equals one-half
the electromagnetic wavelength within the medium. Here the
10-m period of our structure creates a stop band centered at
10 MHz with a width of 2.86 MHz. This makes it possible to
study the spatiotemporal evolution of tunneling pulses on a
meter length scale with microsecond time scale pulses. The
5-m segments were further subdivided into sections of
1.25 m joined by T connectors to enable measurement of the
electric signal inside the barrier with increased spatial reso-
lution. To simplify analysis the barriers were made symmet-
ric so that each one started and ended with a 75 () segment.
A 1.5-unit-cell barrier is therefore composed of a 75 () cable
followed by a 50 and a 75 () segment. Measurements were

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.76.023823

DOIRON, HACHE, AND WINFUL

carried out on uniform lengths of both types of cables to
determine the phase velocity and spectral dependence of the
attenuation. In the frequency range of interest, the phase ve-
locity in both segments was 0.66¢ and the attenuation in the
cables varied from 5.1 X107 to 6.5X 107> m~!. Tunneling
experiments were done with 10 MHz electric sinusoidal car-
rier waves with a 2 us full width at half maximum (FWHM)
Gaussian envelope produced by an HP33120A signal genera-
tor. The pulse duration was so chosen as to limit the spectral
width of the wave to 0.5 MHz, well within the bandwidth of
the stop band. This satisfies the slowly-varying-envelope ap-
proximation assumed throughout the rest of this paper and
ensures that there is a negligible contribution from spectral
components outside the stop band. The spatial extent of the
pulse is thus v7,=396 m, which greatly exceeds the maxi-
mum barrier length of 95 m used in these experiments, thus
satisfying the conditions for a quasistatic interaction [15-18].
It should be noted that in all reported observations of distor-
tionless, “superluminal” tunneling, the pulse lengths have ex-
ceeded the barrier length [10-14].

B. Input-output measurements

The system was first characterized by measuring the inci-
dent, transmitted, and reflected pulses with a detector and
digital oscilloscope. The transmission and reflection delays
of the 2 us FWHM Gaussian pulses were obtained by using
the center of mass definition of pulse delay [21]:

f tlE(t)|dt
TC.ITI. = —’
f |E(t)|dt

where |E(t)| is the amplitude of the electric signal. For sym-
metric pulses such as the ones used in this experiment, the
center of mass delay is the same as the group delay: the time
at which the transmitted field reaches a peak, given that the
incident field was a maximum at t= 0. The delays obtained
by this method agreed with delays calculated by taking the
frequency derivative of the transmission and reflection phase
shifts:

(1)

I _9¢ 2)

T, T,
t P r
0 dw § Jw

Figure 1 shows the incident and transmitted pulses for a
9.5-unit-cell barrier. (The black bar in the figure indicates the
transit time of a light front in a uniform waveguide and
shows that the pulse is much longer than this transit time.)
The measured group delay was 145 ns. It is seen that there is
no distortion of the transmitted pulse. The field amplitude
transmission was about 2.6% and was the same for the bulk
of the incident pulse. In other words, for signal levels above
the noise level every part of the input pulse experienced the
same transmission. The transmission group delay is much
smaller than the group delay of 480 ns that would be mea-
sured in a uniform 75 ) waveguide. It is this small group
delay that is often taken to imply that electromagnetic pulses
travel with superluminal group velocity through the stop
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FIG. 1. (a) Incident Gaussian pulse. The arrows indicate points
within the temporal profile at which snapshots are taken of the
intrabarrier field distribution. The black horizontal bar in the middle
of the pulse represents the transit time (0.48 us) of a light front
through a uniform cable. (b) Transmitted pulse. The transmitted
field attains a peak 145 ns after the incident pulse reaches a peak.
The transmitted pulse is undistorted and there is no observable re-
shaping or shortening.

band of a periodic structure. This inference is made by taking
the length of the structure and dividing by the delay: “v,”
=L/ 7,. This quantity represents a meaningful velocity only if
the group delay is an actual traversal time. For the particular
structure used here, the observed delay, if taken as a propa-
gation delay, would mean a “group velocity” of 2.2¢. This
classical notion of group velocity requires that an identifiable
object actually propagates from A to B, passing through ev-
ery point in between. The identifiable object in this case is
the incident electromagnetic pulse and its spatial position is
marked by its peak. The question then is whether an identi-
fiable pulse peak actually propagates through the barrier.

C. Space-time-resolved measurements
inside the barrier

To investigate this question, measurements were made in-
side the barrier (with a 1.25 m spatial resolution) by trans-
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FIG. 2. Theoretical (solid line) and experimental (empty circles) time evolution of the signal envelope inside a 9.5-unit-cell barrier. The
signal is composed of a 2 us FWHM Gaussian envelope with a 10 MHz carrier wave. The snapshots are taken at the following time instants,
measured from the peak of the incident pulse: (a) -5, (b) 2.5, (c) —1.5, (d) 0, (e) 1.5, and (f) 2.5 us. The dashed lines are exponential curves

that represent the evanescent behavior of the signal.

lating the detector along the waveguide segments for several
time instants within the input pulse envelope. An external
TTL trigger was used to guarantee that each measurement
was within the same temporal window. These multiple traces
at different points therefore allow the recreation of the signal
profile inside the barrier as a function of time. Measurements
were made for various time instants before the peak, at the
peak, and after the peak of the incident pulse. Figure 2 shows
the envelope dynamics of a single pulse tunneling through a
9.5-unit-cell barrier. The minima and maxima are the nodes

and antinodes of the standing wave formed by forward- and
backscattered waves, the period corresponding to one-half
the wavelength of the carrier. The dots are the experimental
points and the solid curve is the theoretical result obtained by
numerically propagating the Fourier components of the input
pulse through the periodic structure [19]. The agreement is
excellent, with no adjustable parameters. The envelope of the
standing wave is accurately fitted by an exponential function
exp(—«z) with k=0.039 m~!. During the tunneling process,
this envelope slowly rises and falls, following the temporal
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variations in the incident pulse envelope. It is clear that what
is seen here has nothing to do with pulse “propagation,” the
transport of a spatially localized excitation. The pulse enve-
lope does not propagate through the barrier. It simply modu-
lates the amplitude of the quasi-standing-wave, thus deter-
mining how much of the carrier will be transmitted at the
exit. There is no sense in which the incident pulse peak has
propagated to the exit. (For short pulses whose bandwidth
exceeded the band gap, pulse breakup occurred and multiple
peaks were seen to propagate through the barrier. However,
such propagating peaks do not represent tunneling pulses.)

A commonly used explanation for the short group delays
observed in barrier tunneling is the “reshaping” argument,
which claims that the early part of the pulse is transmitted
while the later part is rejected, resulting in a forward shift of
the peak of the pulse [3,7]. By that argument the barrier acts
essentially as a time-dependent shutter. Our measurements
do not support this view. We see here that the transmission is
the same for all parts of the incident pulse, within the reso-
lution of our detection system. Tunneling requires that the
interference process that leads to Bragg reflection be estab-
lished before the bulk of the pulse arrives. In our experiment
we see that the standing wave due to Bragg reflection is
already established as early as —2.5 us before the peak of the
incident pulse. The location of that point within the pulse is
shown by the first arrow in Fig. 1(a) while the standing wave
is displayed in Fig. 2(b). Obviously, the formation of the
standing wave is already complete in the distant wings of the
incident pulse. Theory shows that it occurs within one transit
time (of a light front) after the turn on of a pulse [17]. Once
this interference is set up, all parts of the delayed incoming
pulse experience the same steady-state transmission. That is
why the pulse is neither distorted nor shortened, as would
have been expected if the barrier were acting as a time-
dependent shutter.

A corollary of the “pulse reshaping” argument is that the
entire transmitted pulse is carved out of a tiny leading edge
of the incident pulse [3,7,11]. This is also not supported by
our experimental results. The group delay is a very small
fraction of the pulse length. In our case the group delay is of
order 145 ns while the incident and transmitted pulses have a
width of 2 us, 10 times the delay. Because of this very short
delay, incident and transmitted pulses practically overlap in
time. There is no way that the entire transmitted pulse could
have been created by just the leading edge, given that the 1/e
lifetime of any energy from the leading edge that is stored in
the barrier is only 145 ns, while the transmitted pulse has a
width (FWHM) of 2 us. It is clear then that the entire inci-
dent pulse, not just its leading edge, contributes to the trans-
mitted pulse.

Although numerical solution of the propagation equations
yields exact results for the electric field spatial evolution, an
approximate approach based on coupled-mode theory [15]
provides substantial physical insight and gives results that
are in reasonable agreement with the experimental data. A
very important parameter in the coupled-mode theory is the
coupling constant . Within the stop band the field decays
approximately as exp(—«z) except near the exit, where it
deviates from the simple exponential behavior in order to
match the boundary conditions. From coupled-mode theory
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FIG. 3. Experimental dwell time (crosses), reflection group de-
lay (triangles), and transmission group delay (circles). The filled
circles were obtained by computing the center of mass of the sig-
nals while the empty circles were obtained from the frequency de-
rivative of the measured transmission phase shift. The solid curves
represent the theoretical results obtained from the stepped-
impedance transmission line model with loss included. The dashed
line represents the delay of a signal traveling at the nominal phase
velocity of 0.66¢ on a uniform transmission line. In the absence of
loss all the curves collapse into one curve that saturates with
distance.

the half-width of the stop band in a lossless periodic struc-
ture is ().=xv rad/s, where v is the phase velocity in the
unperturbed waveguides. Using the phase velocity of 0.66¢
we find a half bandwidth of f.=1.26 MHz. This is in good
agreement with the measured half bandwidth of 1.43 MHz.
The limiting group delay for a lossless barrier is given by
1/Q2,=126 ns, also in reasonable agreement with experi-
ment. The coupling constant can, of course, be calculated
directly from the impedances of the transmission line seg-
ments. The procedure is exactly the same as for multilayer
dielectric structures [22] and we find the result

_21z,-2z)

= ) 3
AN Z,+Z7, ®)

K
Using the cable impedances and period we find «
=0.04 m~!, again in agreement with the experimental decay
rate of the field envelope.

D. Direct measurement of dwell time

The ability to measure the spatial distribution of the field
in the barrier means that we can directly measure the energy
stored and determine how it varies with barrier length. This
makes it possible to measure directly the dwell time in tun-
neling, a quantity defined as [2,3,15]

)
= p (4)
where (U) is the stored energy and P;, is the input power. By
integrating under the measured profiles we obtained the
stored energy and hence the dwell time for several barrier
lengths. The results shown in Fig. 3 (crosses) represent our
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actual measurement of the dwell time in barrier tunneling.
Experimentally, we find that the stored energy and the dwell
time saturate with barrier length. The reflection group delay
also saturates as shown. The transmission group delay, how-
ever, does not quite saturate with barrier length, a circum-
stance attributable to the presence of loss in the barrier. It
increases with barrier length but at a slower rate than the rate
of increase in a uniform waveguide. Inclusion of loss in the
theory yields excellent agreement with the experimental re-
sults. The presence of absorption reduces the effect of the
interferences that lead to Bragg reflection and the establish-
ment of a barrier. With increased loss, the group delay should
approach that of a uniform waveguide and thus increase with
length. A similar effect attributable to loss has been seen in
the tunneling of acoustic waves through phononic band gaps
[23]. The reflection group delay, however, will still saturate
since the contributions to the reflected wave vanish after a
certain decay distance. The periodic structure with absorp-
tion can thus be seen as a combination of a shortened perfect
Bragg reflector and a uniform but absorptive waveguide
without reflections. The portion of the input that enters the
uniform waveguide makes no contribution to the reflected
wave. The dwell time still saturates in the presence of a
moderate amount of loss since the barrier can only store a
finite amount of energy. It is surprising that even though
there have been numerous measurements of group delay in
barrier tunneling, the dwell time had never been measured
(to the best of our knowledge) until the work reported here.

III. DISCUSSION

In the tunneling process an exponentially decaying quasi-
standing-wave (with imperfect nodes) is set up. Our experi-
ment permits us to directly observe the spatiotemporal evo-
lution of these standing waves. When a structure (such as a
cavity resonator) supports a standing wave, the entire struc-
ture pulsates and throbs as a single unit. When this standing
wave is modulated, it can follow the modulation adiabati-
cally so long as the time scale of the modulation is long
compared to the transit time of a light front within the struc-
ture. In tunneling, the slow envelope of the incident pulse
modulates this standing wave. There is a small time lag in
the modulation response because the standing wave is in
contact with boundaries that permit energy to leak out of the
structure, which energy must then be replenished. The group
delay measures the 1/e lifetime of this stored energy escap-
ing through both ends [18]. This delay is not a transit time.

It is widely believed that wave packets tunnel with super-
luminal group velocity through photonic and quantum barri-
ers. The evidence for these rather large velocities is based on
measurements of group delay. These group delays are then
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used to calculate a group velocity through v,=L/7,. How-
ever, to properly speak of a group velocity, the wave packet
must be localized with respect to the spatial extent of the
medium within which it propagates. This is never the case in
tunneling, which has been shown to be a quasistatic process
requiring wave packets long compared to the barrier’s char-
acteristic length [16,17]. Because the barrier is short com-
pared to the wave packet, it acts as a lumped element with
respect to the envelope. In that regard it is very much like a
lossy capacitor characterized by an RC time constant. This
RC time constant is of course not a traversal time and one
would not use it to calculate a “group velocity” by dividing
the capacitor length by this time constant. By the same to-
ken, while group delay is a perfectly valid concept for a
barrier as a measure of the lifetime of stored energy, “group
velocity” has no meaning since the delay is not a traversal
time. Our experiment confirms that the group delay in tun-
neling is not a traversal time. In the absence of loss, the
group delay for our photonic barrier is identical to the dwell
time, which is the lifetime of stored energy and is certainly
not a transit time. Thus, tunneling-time experiments measure
photon lifetimes and not transit times. In all cases the wave
packet is much longer than the reflective barrier and hence
we are dealing with the quasistatic excitation and decay of a
cavity rather than the propagation of a localized (with respect
to the barrier extent) pulse.

IV. CONCLUSION

In conclusion, we have presented space-time-resolved
measurements of pulse tunneling through an electromagnetic
band gap. The results confirm the quasistatic interpretation of
tunneling dynamics, in which the output envelope adiabati-
cally follows the input with a small delay due to energy
storage. The incident peak does not actually propagate to the
exit which means that the tunneling group delay is not a
traversal time and cannot be used to assign a group velocity.
We have also presented a direct measurement of dwell time
in barrier tunneling, something made possible by our ability
to explore directly the intrabarrier field and stored energy.
Finally, we find no evidence for the pulse reshaping which
has been suggested as a mechanism for superluminal tunnel-
ing. Our results represent a contribution to the understanding
of tunneling time for evanescent waves in optics, electro-
magnetics, and acoustics, as well as for matter waves in
quantum barriers.
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