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We analyze a three-variable rate equation model that takes into account carrier capture and Pauli blocking in
quantum dot semiconductor lasers. The exponential decay of the relaxation oscillations is analyzed from the
linearized equations in terms of three key parameters that control the time scales of the laser. Depending on
their relative values, we determine two distinct two-variable reductions of the rate equations in the limit of
large capture rates. The first case leads to the rate equations for quantum well lasers, exhibiting relaxation
oscillations dynamics. The second case corresponds to dots nearly saturated by the carriers and is characterized
by the absence of relaxation oscillations.
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I. INTRODUCTION

After more than a decade of material development, quan-
tum dot �QD� lasers are now a viable alternative to commer-
cial quantum well �QW� lasers. QD edge-emitting lasers at
1300 nm on GaAs substrates exceed the performance of InP-
based QW edge-emitters in several important factors such as
threshold current, temperature stability, chirp, and feedback
insensitivity �1,2�. They may thus find application in low-
cost transmitter modules by releasing the need for tempera-
ture control, isolators, and external modulators. But the fea-
sibility of high-speed transmission rates strongly depends on
the damping rate of the relaxation oscillations �ROs� which
inevitably appear in gain-switched operations �3�. Since
1997, the response of QD lasers have been systematically
investigated through RO measurements �2,4,5� showing
stronger damping than conventional QW lasers. These mea-
surements used the expressions for the RO frequency and
damping rate of QW lasers �6,7� and recent efforts have been
directed to formulate more appropriate rate equations for QD
lasers. The damped ROs observed experimentally in �8,9�
have been simulated numerically using a five-variable rate
equation model that incorporates microscopic kinetic equa-
tions and takes into account spontaneous emission. These
equations are too complex for an analytical understanding of
the QD unusual ROs and a simpler model describing the
essential QD dynamical properties is desired. In QD semi-
conductor devices, the carriers are first injected into a wet-
ting layer before being captured by a dot. In addition to the
electrical field in the cavity and the carrier density in the
wetting layer, we need to introduce the occupation probabil-
ity of a dot and consider three rate equations that take into
account the carrier capture process and Pauli blocking
�10–12�. An alternative to the three-variable rate equation
model is to modify the two-variable QW rate equations in a
form suitable for QD lasers �15�. As we shall demonstrate,
these two different approaches of the QD dynamical problem
are not incompatible since two-variable models can be de-
rived as asymptotic limits of the three-variable model. The
two-variable QW rate equations indeed correspond to the
limit of very large capture rates but a different limit is pos-
sible if the dots are nearly saturated by the carriers.

The objectives of this paper are twofold. First, we propose
a first analytical explanation of the QD laser unusual relax-

ation properties. Second, we show that as a result of the
multiple time scales of the QD laser, two quite different dy-
namical laser responses are possible depending on their de-
sign.

The rate equations formulated by O’Brien et al. �13� con-
sist of three equations for the intensity I of the laser field in
the cavity, the occupation probability � of a dot in the laser,
and the number n of carriers in the wetting layer per dot. The
dimensionless equations needed for an analytical study are
formulated in Appendix A and are given by

I� = �− 1 + g�2� − 1��I , �1�

�� = ��F��,n� − � − �2� − 1�I� , �2�

n� = ��J − n − 2F��,n�� . �3�

The factor 2 in Eq. �3� accounts for the twofold spin degen-
eracy in the quantum dot energy levels. A similar factor 2 is
included in the definition of the differential gain factor g in
Eq. �1� �11�. The parameter �=�n /�s�10−3 is the ratio of
the carrier and photon decay rates. The relaxation rates of �
and n are assumed equal for mathematical simplicity. J is the
pump current per dot and is the control parameter. The func-
tion F�� ,n� describes the carrier exchange rate between the
wetting layer and the dots. In its most general form, the
carrier exchange rate can be formulated as

F��,n� = Rcap�1 − �� − Resc� , �4�

where 1−� is the Pauli blocking factor, Rcap=Bn describes
the carrier capture with rate B�103, and Resc describes the
carrier escape from the dots to the wetting layer. At room
temperature, Resc�Rcap and we shall ignore the escape pro-
cess by setting Resc=0. The three parameters B, � and g−1
control the time-dependent response of the QD laser. Since
their precise values are difficult to evaluate experimentally,
our objective is to derive analytical expressions for the
damping rate valid for given range of values of B, �, and g.
In the following sections, we consider � as our order param-
eter because it does not appear in the expressions of the
steady states. We then scale B and g−1 with respect to �
whenever it becomes necessary.
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In order to investigate the damping of the relaxation os-
cillations, we consider the effect of a small perturbation from
the nonzero intensity steady state. Its exponential decay can
then be described in terms of the eigenvalues of the Jacobian
matrix evaluated at the steady state. The characteristic equa-
tion for the growth rate is formulated in Sec. II. The basic
approximation of the eigenvalues corresponding to the limit
� small will be our starting point. In Sec. III, we examine the
influence of B by scaling B with respect to �. Several cases
are possible but one case emerges, giving a clear picture of
the role of B from small to large values. Our results are
tested numerically by simulating a turn-on experiment. Sec-
tion IV examines a previous study of the RO growth rate.
Finally, we discuss in Sec. V the combined role of the cap-
ture rate and the gain coefficient and derive two distinct two-
variable models in the limit of large capture rates.

II. GROWTH RATES

From Eqs. �1�–�3�, we first determine the steady states. In
addition to the zero intensity solution, there exists a nonzero
intensity steady state given by

�s =
1

2
�1 + g−1� , �5�

ns =
J

1 + Be
, �6�

Is =
g

2

Be

1 + Be
�J − Jth� �7�

where

Jth �
1 + Be

Be
�1 + g−1� and Be � B�1 − g−1� �8�

are defined as the laser threshold pump current per dot and
the effective capture rate, respectively. From the linearized
equations, we then formulate the characteristic equation for
the growth rate �. It is mathematically more convenient to
consider the steady state intensity Is as the control parameter
instead of J. This characteristic equation is

�3 + a1�2 + a2� + a3 = 0, �9�

where

a1 = ��1 + Be +
2�1 + Is�
1 − g−1 � , �10�

a2 = ��2Is + �
2�1 + Is�
1 − g−1 + �Be�1 + 2Is�� , �11�

a3 = 2Is�
2�1 + Be� . �12�

Using the Routh-Hurwitz conditions �17�, we find that the
steady state is always stable. For the QW rate equations, the
RO frequency is proportional to �1/2 which motivates seek-
ing a solution of Eq. �9� in power of �1/2. Specifically, we
introduce

� = �1/2�0 + ��1 + ¯ �13�

into Eq. �9� and equate to zero the coefficients of each power
of �1/2. This leads to a series of linear problems for �0 ,�1 , . . .
In this way, we obtain

�1,2 	 ± i�2�Is�1/2 − �
1 + Is

1 − g−1 , �14�

�3 	 − ��1 + Be� . �15�

The imaginary part of the expression �14� gives the RO fre-
quency

� = �2�Is�1/2, �16�

which is identical to the QW RO frequency. The real part of
the expression �14� gives the damping rate

�1 = �
1 + Is

1 − g−1 , �17�

which differs from the QW damping rate given by

�QW =
�

2
�1 + 2Is� . �18�

The expression �17� suggests that B does not have a strong
effect since it only appears through Is, given by Eq. �7�,
which remains O�1� as B→	. It is however important to
realize that B cannot be too large since mathematically dis-
tinguished limits of the characteristic equation are possible if
B scales like �−1/2. This problem is analyzed in the next
section.

III. LARGE CAPTURE RATE

Introducing ���1/2� into Eq. �9�, the equation for � is

�3 + b1�2 + b2� + b3 = 0, �19�

where

b1 = �1/2�1 + Be +
2�1 + Is�
1 − g−1 � , �20�

b2 = 2Is + �
2�1 + Is�
1 − g−1 + �Be�1 + 2Is� , �21�

b3 = 2Is�
1/2�1 + Be� . �22�

We wish to investigate the effect of large B. Because Is
= Is�Be�, we first need to expand I as a function of Be

−1. Using
its definition �7�, we find that

I = I0 + Be
−1I1 + ¯ , �23�

where

I0 =
g

2
�J − �1 + g−1�� and I1 = −

g

2
�J − 2�1 + g−1�� .

�24�
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We then note from the expressions �20� and �22� that Be
will contribute significantly to the characteristic equation
only if Be=O��−1/2�. Introducing

Be = �−1/2B1 �25�

into Eq. �19� and seeking a solution of the form

� = �0 + �1/2�1 + ¯ , �26�

we obtain a series of new problems for �0 ,�1 , . . .. The lead-
ing problem for �0 is

�0
3 + B1�0

2 + 2I0�0 + 2I0B1 = 0, �27�

which admits the solutions

�01,02 = ± i�2I0�1/2, �28�

�03 = − B1. �29�

The expression of the RO frequency provided by the solution
�28� is identical to the expression �16� with Is= I0. To deter-
mine the RO damping rate, we investigate the next order
problem for �1. This equation is given by

2�0�1��0 + B1� = 
− 2I1��0 + B1� − �1 +
2�1 + I0�
1 − g−1 ��0

2

− B1�1 + 2I0��0 − 2I0
 ,

�30�

where �0= ± i�2I0�1/2. Simplifying, we obtain

Re��1� =
− 1

�2I0 + B1
2�
� �1 + I0�

1 − g−1 2I0 +
B1

2

2
�1 + 2I0�� . �31�

Note that Re��1�→−�1 /� as B1→0, where �1 is defined by
�17�. On the other hand, Re��1�→−�QW/� as B1→	, where
�QW is the QW damping rate �18�. In Fig. 1, the new ap-
proximation �2=��Re��1�� is compared to the solution
�= �Re��1,2�� obtained numerically from Eq. �9�. We con-
clude that the damping rate decreases in the limit of very
large B. But we also note from the first term in the right-hand
side of the expression �31� that a value g close to 1 will
contribute to an increase of the damping rate. We examine
these two opposite effects in Secs. IV and V.

Next we propose to test the validity of our analytical pre-
dictions by simulating a turn-on experiment where the cur-
rent J is changed from J−
Jth to J+�Jth. Specifically, we
solve numerically Eqs. �1�–�3� with a constant k=10−4 added
into the right-hand side of Eq. �1�. This constant mimics the
effect of noise by avoiding too small values of I during the
turn-on process.

Figure 2 displays the influence of decreasing the capture
rate B. Our analysis predicts an increase of the RO damping
rate as we decrease B. This is indeed observed. Compared to
Fig. 2�a�, where B=1000, Fig. 2�b�, where B=100, exhibits
less RO oscillations.

Figure 3 investigates the effect of g. The analysis predicts
that a decrease of g−1 contributes to an increase of the RO
damping rate. Compared to Fig. 2�b�, Fig. 3, where g is
closer to 1, exhibits stronger damping. In the next section,
we analyze the effect of g in detail.

IV. THE EFFECT OF THE GAIN FACTOR

In �13�, the damping rate is studied numerically as a func-
tion of the steady state dot occupation probability �s defined
by �5�. Particular attention was devoted to the limit
�s→1− which is equivalent to the limit g−1→0. In order to
be consistent with our previous asymptotic analysis with
Be=O��−1/2� and � small, we now need to specify how
g−1 scales with �. From Eq. �19�, we note that an interesting
limit of the characteristic equation occurs if Be=�−1/2B1 and
1−g−1=�1/2c. Since Be=B�1−g−1�, this case is equivalent to

1 − g−1 = �1/2c and B = �−1B1. �32�

Introducing the new parameters �32� and the expansion �26�
into Eq. �19�, we then find that �=�0 satisfies the cubic
equation

�0
3 + �B1c +

2�1 + I0�
c

��0
2 + 2I0�0 + 2I0B1c = 0 �33�

that needs to be solved numerically �18�. The approximation
of the damping rate �3=�1/2�Re��0�� is obtained from the
real part of the complex-conjugate solutions of Eq. �33� and
is represented as a function of �s in Fig. 4 �curve b�. We also
represent in Fig. 4 the approximation �2=��Re��1�� where
Re��1� is given by the expression �31� �curve a� as well as
the solution �= �Re��1,2�� obtained numerically from the
original characteristic equation �9� �full line�.

In the limit c→0, the complex solutions of Eq. �33� sat-
isfy the quadratic equation

B

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

η
- 1 / 2

Γ

0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

η
- 1 / 2

Γ Q W

FIG. 1. Damping rate � as a function of B. J−Jth=1, �=10−3,
and g=1.25. The full line represents �= �Re��1,2�� obtained numeri-
cally from Eq. �9�. The upper broken line is the analytical approxi-
mation �31� where I0 has been replaced by Is to have a uniform
expression valid for all Is. The lower line is the approximation of
the damping rate of the QW laser �18�.

TIME SCALES AND RELAXATION DYNAMICS IN … PHYSICAL REVIEW A 76, 023819 �2007�

023819-3



2�1 + I0�
c

�0
2 + 2I0�0 + 2I0B1c = 0, �34�

in first approximation. Solving Eq. �34� then leads to the
complex solutions

�0 =
c

1 + I0
�− I0 ± 2i�I0

2�1 − B1� − 16I0B1� �35�

provided that B1� I0 / �I0+4�. The growth rate is given by the
real part and is proportional to c=�−1/2�1−g−1� �equivalently
1−�s�, as anticipated analytically in �13�. The limit c→0
suggests the new case where the scaling �32� is replaced by

1 − g−1 = �d and B = �−1B1. �36�

We analyze this case in the next section.

V. LIMITS AND DISCUSSION

As long suspected, the capture rate of the carriers into
empty dots contributes to the damping of the relaxation os-
cillations. In the limit of large effective capture rates �i.e.,

Be�B�1−g−1�→	�, the RO damping rate � decreases and
approaches the value �QW of the QW laser. This may be
understood as follows. If the capture rate is too large, the
number of available carriers n will be small and the QD laser
will behave like a conventional laser. On the other hand, we
have shown that the QD damping rate is larger than the QW
damping rate if Be=O�1�. This can be realized even for large
capture rates B provided that the deviation g−1 is small like
B−1. We then note from the expression �5� that the steady
state occupation probability �s is close to 1, meaning dot
saturation. As a consequence, the carriers cannot be captured
by dots and their number will be controlled only by the field
in the cavity.

In order to clearly understand the combined effects of B
large and g−1 small, we consider the large B limit of the full
rate equations �1�–�3� and derive two distinct limits depend-
ing on g. As we shall now demonstrate, these two limits lead
to the equations for a class B laser and a class A laser, re-
spectively �16�. The first case is characterized by the decay
rate of the carriers which is much smaller than the decay rate
of the photons in the cavity. The second case is characterized
by comparable time scales for both the photons and carriers.

The first case is defined by the scaling B=O��−1/2� and
g−1 arbitrary and fixed. By introducing n=B−1n̄ into Eqs.
�1�–�3�, we note from the expression �3� that n̄ can be elimi-
nated adiabatically as

n̄ =
J

2�1 − ��
. �37�

The remaining equations for the gain G�g�2�−1� and I
then become

I� = �− 1 + G�I , �38�
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FIG. 2. Effect of B. The values of the fixed parameters are
�=10−3, g=1.25, J−=1.6, and J+=2.1. The laser is initially in its
stable zero intensity steady state and t=0 corresponds to the abrupt
change of J. �a� B=1000 and �b� B=100. All variables are dimen-
sionless. Time is normalized by the photon lifetime.
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FIG. 3. Effect of g. The values of the fixed parameters are the
same as in Fig. 2�b�, i.e., �=10−3, J−=1.6, J+=2.1, and B=100.
Only the value of g has been reduced from 1.25 to 1.2. All variables
are dimensionless. Time is normalized by the photon lifetime.
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G� = ��J − g − G�1 + 2I�� , �39�

which we recognize as the QW laser rate equations.
The second case is defined by the scaling B=O��−1� and

g−1=O���. We now consider the scaling �36�, suggested by
the analysis of the previous section. In addition to the scal-
ings �36�, we introduce the deviation �=1−��̄ and the new
time
s=�t into Eqs. �1�–�3�. We then note that �̄ can be eliminated
adiabatically as

�̄ =
1 + I

B1n
�40�

and that the remaining equations for I and n reduce to

I� = �d − 2
1 + I

B1n
�I , �41�

n� = J − n − 2�1 + I� , �42�

where prime means differentiation with respect to the time s.
In this limit, the decay of the ROs occurs on the same time
scale as the ROs. Figure 5 compare the evolution of the
intensity for the two cases. The fixed parameters are identical
and the perturbation of the steady state initiating the oscilla-
tory decay is the same.

In summary, we have analyzed the decay of the ROs and
discussed the role of the capture rate and the gain coefficient.
Our analysis is based on a linearized theory and cannot an-
ticipate the nonlinear response of the laser following an ar-
bitrary perturbation of the steady state. Nevertheless, we may
reasonably expect that the different scalings identified here
will be useful for the analysis of the full nonlinear problem.
This is illustrated in Appendix B where a nonlinear theory
for the first case is derived.
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FIG. 4. The two approximations of the damping rate �. �s�g� is
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APPENDIX A: DIMENSIONLESS RATE EQUATIONS

In QD semiconductor devices, the carriers are first in-
jected into a wetting layer before being captured into a dot.
Taking account this two-stage process, rate equations have
been formulated by Sugawara et al. �10� and Uskov et al.
�11� and further developed in �13,12�. In their simplest form,
they consist of three coupled rate equations for the electrical
field in the cavity, E, the number of carriers in the wetting
layer per dot, N, and the occupation probability of a dot in
the laser pumped with the current per dot J. In terms of the
intensity I= �E�2, these equations are

I� = − �sI + vgg0�2� − 1�I , �A1�

�� = − �d� + CN�1 − �� − vg��2� − 1�I , �A2�

N� = − �nN + J/q − 2CN�1 − �� . �A3�

The rate of capture is described by the term CN�1−�� and is
proportional to the number of carriers present as well as the
probability to find a dot. The parameters �n and �d represent
non radiative decay rates, vg is the group velocity and � is
the cross section of interaction of the carriers in a dot with
the electrical field. �s is the photon decay rate in the cavity
and g0 is the differential gain. Introducing the dimensionless
variables

t1 � �st, n = N, and I1 = �d
−1vg�I �A4�

into Eqs. �A1�–�A3�, we obtain

I1� = �− 1 + g�2� − 1��I1, �A5�

�� = �1�− � + Bn�1 − �� − �2� − 1�I1� , �A6�

n� = ��− n + J1 − 2Bn�1 − ��� , �A7�

where �=�n /�s, �1=�d /�s, g=�s
−1vgg0, J1=�n

−1J /q, and
B=�d

−1C. Equations �A5�–�A7� are equivalent to Eqs. �1�–�3�
with F�� ,n�=Bn�1−��. Moreover, t and I replace t1 and I1,
respectively. Using the values of the parameters in �14�, we
determine g=1.25, B=103, and �=�1=3.3�10−3. Note that
larger values of B are possible since values of the capture
time C−1 from 1 to 102 ps have been reported in the litera-
ture. With �d=10−3 ps−1, it gives B=10–103.

APPENDIX B: NONLINEAR THEORY
FOR THE RO OSCILLATIONS

In this appendix, we take advantage of the scalings found
in the linear stability analysis and formulate the nonlinear

nearly conservative laser equations for the RO decaying os-
cillations. To this end, we introduce the deviations x, y, and z
from the steady state defined as

I = Is�1 + y�, � = �s + x, n = ns + B−1z , �B1�

and the new time

s � �t . �B2�

The coefficients  and � are determined so that the small
parameter � multiplying the right-hand side of Eq. �2� can be
removed. We find ���2�Is and �� / �2g�. They are both
O��1/2� small quantities. Inserting by the new variables �B1�
and �B2� into Eqs. �1�–�3�, we obtain

x� = �− y + z
g

2Is
�1 − g−1� −

gx

Is
�Bns + z + 1 + 2Is�1 + y��� ,

�B3�

y� = �1 + y�x , �B4�

z� =
B�

�
�− z�1 − g−1� − B−1z + 2x�Bns + z�� , �B5�

where prime now means differentiation with respect to time
s. We next assume that B=O��−1/2� and analyze the limit
�→0 of these equations. The leading order equation for
z is linear which means that we may determine the
solution of Eq. �B5� by a regular perturbation series in . The
solution in its simplest form �z�0�=0�, and after using
Bns=J / �1−g−1�+O�B−1�, is given by

z =
B�J

g − 1
exp�− Es��

0

s

exp�Es�x�s�ds + O��� , �B6�

where E��B� /���1−g−1+B−1�. Introducing u=ln�1+y�,
Eqs. �B3� and �B4� with the expresssion �B6� can be refor-
mulated as a weakly perturbed second order differential
equation for u of the form

u� − 1 + exp�u� = − 
gu�

Is
� J

1 − g−1 + 1 + 2Is exp�u��
+ B�

J

2Is
exp�− Es��

0

s

�exp�Es�u��s�ds + O��� . �B7�

The left-hand side is a Toda equation for the laser conserva-
tive oscillations �19�. The right-hand side contains two main
contributions. The first term multiplying  represents the
usual damping of the class B laser RO oscillations. The sec-
ond term multiplying B� is an integral term and represents
the effect of the relaxation of the carriers in the wetting layer.
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