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We investigate the generation of a strongly entangled electromagnetic field through laser pumping a collec-
tion of N two-level atoms in a two-mode optical resonator. The vacuum-multiparticle interactions enhance the
coupling of the atomic sample to the cavity modes facilitating the creation of entangled photons at higher
frequencies. In the dispersive atom-cavity limit, one can obtain a steady-state output field consisting of tens of
such photons per mode.
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I. INTRODUCTION

Nonlinear interactions play an essential role to entangle
light or matter wave modes as, for instance, via spontaneous
parametric down-conversion processes, multiwave mixing
phenomena or very intense laser-vacuum interactions �1–9�.
Potential applications of entanglement in quantum informa-
tion processing make the topics attractive and widely inves-
tigated �10�. Therefore, various new alternative experiments
are performed to generate highly entangled light. In particu-
lar, the electromagnetically induced transparency has been
used to generate narrow-band entangled photons �11� while a
four-wave parametric interaction in a two-level system was
shown to generate highly nonclassical light �12�. An experi-
mental demonstration of continuous variable entanglement
using cold atoms in a high finesse optical cavity was pre-
sented as well �13�. The Kerr nonlinearity was exploited to
generate two-mode entangled light in an optical fiber �14� or
cavities �15�, respectively. Note that earlier experimental
demonstrations of nonclassical light properties include anti-
bunched light �16�, sub-Poissonian photon statistics �17�, or
squeezing �18�.

Methods on how to entangle a pair of two-level emitters
or more received much attention as well �19–26�. Entangle-
ment of two particles inside an atomic cloud was demon-
strated in Ref. �19� while an entangled two-atom system can
be created via an overdamped optical cavity �20�. How to
entangle two distant atomic ensembles was shown in Ref.
�21�. The motion of 2N ions trapped in two separate single
mode cavities can be entangled via a two-mode squeezed
vacuum field �22�. Schemes to produce entangled motional
states for the two trapped ions in one or two cavities were
proposed too �23�. Interestingly, two initially entangled and
afterward not interacting qubits can become completely dis-
entangled in a finite time �24�. However, dark periods and
revivals of entanglement in a two-qubit system was shown to
occur via environmental vacuum modes �25�. In addition,
long-time entanglement between two arbitrary qubits can be

generated if they interact with a common thermal bath �26�.
Note, however, that in spite of a large amount of contribu-
tions to the subject still there are discussions on quantifying
entanglement. Therefore various criteria were formulated or
used to deal with the problem. Continuous variable entangle-
ment �27,28�, violation of Bell or Cauchy-Schwartz inequali-
ties �29,30� and entanglement of formation �31� are among
them.

Here we investigate the possibility to generate continuous
variable two-mode electromagnetic field �EMF� entangle-
ment via laser-driving a collection of two-level atoms in a
two-mode cavity. The atoms interact collectively via the sur-
rounding electromagnetic vacuum modes. In the good-cavity
limit the atomic subsystem reaches its steady-state faster
than the field variables and it can be eliminated to obtain a
master equation describing the cavity field modes only. Then
the equations of motion for the field variables are obtained
and, in the dispersive atom-cavity limit, the conditions to
arrive at the cavity-field steady-state are discussed. Below
the threshold the generated two-mode EMF consists of tens
of highly correlated photons per mode. We demonstrate that
the steady-state output two-mode EMF exhibits quantum fea-
tures, i.e., continuous variable entanglement.

The paper is organized as follows. In Sec. II we introduce
the model as well as the analytical formalism. Section III
describes the two-mode entanglement while its existence is
proved in Sec. IV. We finalize the article with Sec. V.

II. APPROACH

We consider a collection of laser-pumped two-level at-
oms, possessing the transition frequency �0, and interacting
with a two-mode optical cavity ��1 ,�2� via a four-wave mix-
ing process. The excited particles may decay spontaneously
during the transitions �2�↔ �1�, with a decay rate �, due to
interaction with the environmental vacuum modes. The col-
lisional damping rate of atoms which alter the phase of the
atomic state but not its population is given by �c. We shall
describe the laser-atom system in the dressed-state represen-
tation of a single particle �32,33�: �2�=cos � � + �−sin � �−�
and �1�=cos � �−�+sin � � + � where cot 2�=� / �2�0�. Here
�=�0−�L is the detuning of the laser frequency �L from the
atomic transition frequency �0 while �0 is the Rabi fre-
quency describing the strength of the atom-laser interaction.
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In the mean-field, dipole, Born-Markov and secular ap-
proximations the system is characterized by the following
master equation:

�̇ +
i

�
�H,�� = − �0�Rz,Rz�� − �+�R+−,R−+�� − �−�R−+,R+−��

− �
i��1,2	

�i�ai
†,ai�� + H.c., �1�

where H=Hf +Ha+Hint with Hf =��2a2
†a2−��1a1

†a1 being
the free electromagnetic field modes Hamiltonian, Ha
=��Rz is the free Hamiltonian of the laser-dressed atoms,
and

Hint = ��F cos2� − F† sin2��R+− + H.c.	 + �F + F†�Rz sin 2�/2

�2�

describes the interaction of the cavity modes with the dressed
atomic sample. Here �1=�L−�1, �2=�2−�L, �
=
�0

2+ �� /2�2, and F=��g1a1+g2a2�, where gi are the
atom-cavity couplings, while ai �ai

†� are the cavity photon
annihilation �creation� operators, and �ai ,al

†�=	il,
�ai ,al� 
�ai

† ,al
†�=0, �i , l�1,2	. The collective dressed-state

atomic operators R�� 
 � j=1
N R��

�j� 
 � j=1
N �� j��� j� describe the

transition between the dressed states ��� and ��� for ���
and population for �=� �� ,�� + ,−	, and obey the standard
commutation relations of su�2� algebra. Rz=R++−R−− is the
dressed-state inversion operator. The quantum dissipations
due to spontaneous emission into surrounding electromag-
netic field modes as well as collisional damping are de-
scribed by the terms proportional to �0= �� sin22�
+�c cos22�� /4, �+=� cos4�+�c sin22� /4 and �−=� sin4�
+�c sin22� /4, respectively. The last term in Eq. �1� charac-
terizes the damping of the cavity modes with �i being the
field decay rates of the mode i� �1,2	.

We assume an intense pumping field, i.e.,
�� �N� ,g1,2


N	, and a high quality cavity such that
�N��1,2. In this case the atomic subsystem achieves its
steady state on a time scale faster than the cavity field and,
thus, the atomic variables can be eliminated to arrive at a
master equation for the cavity field modes alone:

�̇ − i	 �
i��1,2	

�ai
†ai,�� = − �

i��1,2	
�Ai��aiai

† − ai
†�ai� + B̄i�ai

†ai�

− ai�ai
†�� + �

i�j��1,2	
�Ci�aj

†ai
†� − ai

†�aj
†�

+ Di��ai
†aj

† − aj
†�ai

†�� + H.c. �3�

Here 	= ��2−�1� /2, B̄i=Bi+�i �i�1,2	 and

A1 =
Ng1

2

�
�
0��̄1� + sin4�
−��̄1� + cos4�
+��̄1�� ,

B1 =
Ng1

2

�
�
0��̄1� + cos4�
−

*�− �̄1� + sin4�
+
*�− �̄1�� ,

C1 =
Ng1g2

4�
�sin22��
−

*��̄1� + 
+
*��̄1�� − 4
0�− �̄1�	 ,

D1 =
Ng1g2

4�
�sin22��
−�− �̄1� + 
+�− �̄1�� − 4
0�− �̄1�	 .

�4�

Further, A2, B2, C2, and D2 can be obtained from A1, B1, C1,

and D1 by replacing �̄1 with −�̄2, ��1 ,�2�0	, and g1↔g2,
respectively. Other parameters are


��z� =
�R�±R±��s/N

2

�̄� � i�2�̄ � z�
, 
0�z� =

�Rz
2�s/4N2

�̄� + iz
sin22� ,

�̄m= ��m
�s�−cos 2��Rz�s� /N �m� � , � 	, with ��

�s�=1+cos22�

+�c sin22� /� and �
�

�s�=1+sin22� /2+�c�1+cos22�� / �2�� be-
ing the corresponding single-particle decay rates, and scaled

parameters were introduced, i.e., �̄=� / �N��, �̄i=�i / �N��
�i�1,2	. Note that to obtain Eq. �3� we decoupled the in-
volved multiparticle correlators—an approximation valid for
larger N, i.e., N�1 �33�. The corresponding equation for
N=1 �or independent atoms� is identical to Eq. �3� but with
single-atom decay rates ���

�s� ,�
�

�s�	 instead of collective ones.
The steady-state expectation values for the atomic correlators
entering into the above expressions can be estimated from
the steady-state solution of the master equation describing
the strongly pumped atoms in the absence of the cavity, i.e.,

�s
�0� = Z−1 exp�− �Rz� , �5�

where 2�=ln��+ /�−� and Z is chosen such that Tr��s
�0�	=1.

Considering an atomic coherent state �n� denoting a symme-
trized N-atom state in which N−n particles are in the lower
dressed state �−� and n atoms are excited to the upper dressed
state �+ �, and that R−+ �n�=
n�N−n+1� �n−1�, R+− �n�
=
�N−n��n+1� �n+1�, and Rz �n�= �2n−N� �n� one can cal-
culate the expectation values of any atomic correlators of
interest �32,33� as soon as �� �N� ,g1,2


N	 and N���1,2.
The physical meaning of the parameters in Eq. �3� is as

follows. A �B̄� describes the process of increasing �decreas-
ing� of the photon number into cavity modes as well as the
Stark shift. On the other hand, C and D characterize the
creation and annihilation of a photon into each cavity mode
as well as their correlations induced by the four-wave mixing
effect.

Finally, our system can be implemented in principle using
pumped atomic fluxes passing through a high-quality cavity
or atomic ensembles trapped inside such resonators. We note
the existence of a number of recent experiments dealing with
many particles inside an optical cavity. For instance, genera-
tion of squeezed states of the electromagnetic field by a col-
lection of atoms within a high-finesse cavity was reported in
Ref.�34�. Observation of normal-mode splitting for smaller
as well as larger two-state atomic ensembles was described
in Refs. �35� and �36�, respectively. Anharmonicities of the
vacuum Rabi peaks in a many-atom system was experimen-
tally observed as well �37�. Other systems could be driven
solid state media inside optical cavities as the superradiant
emission of a thin solid sample in an optical resonator was
already observed �38�.
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In what follows, we shall analyze in detail the quantum
nature of the cavity electromagnetic field generated by
strongly pumping a collection of two-level emitters.

III. TWO-MODE ENTANGLEMENT

As was mentioned in the Introduction, the question
whether a particular system is entangled or not is still open.
However a complex system �s1 and s2� is entangled if the
join density operator � can not be written as: �=�npn�n

�s1�

� �n
�s2� with pn�0 and �npn=1. In order to establish the

existence of entanglement between the two cavity modes,
both initially in the vacuum state, we shall consider a suffi-
cient criteria for continuous variable entanglement as that
proposed in Refs. �27� and �28� since the field inside the
resonator is in a two-mode Gaussian state.

We define two field operators û=bx̂1− �1/b�x̂2 and v̂
=bp̂1+ �1/b�p̂2 with the quadratures x̂j = �aj +aj

†� /
2, and p̂j

=−i�aj −aj
†� /
2 �j� �1,2	�, respectively. The sum of quan-

tum fluctuations is denoted as: �= ���û�2�+ ���v̂�2�. Then,
one can show that �=2nb2+2m /b2−4 �c� where b is a state
dependent �nonzero� real-number while n= �a1

†a1�+1/2, m
= �a2

†a2�+1/2, and c= ��a1a2��. The cavity modes are en-
tangled if and only if the quantity � obeys

� � b2 + 1/b2, �6�

and, thus, the entanglement condition of the cavity field can
be represented as

E = 2nb2 + 2m/b2 − 4�c� − b2 − 1/b2 � 0, �7�

where b2=
�2m−1� / �2n−1�. It is actually evident that en-
tanglement occurs if

E = 4�
�a1
†a1��a2

†a2� − ��a1a2��� � 0, �8�

which indicates the quantum nature of the cavity electromag-
netic field.

The equations of motion for the field correlators in Eq. �8�
can be obtained with the help of Eq. �3� and using the prop-
erty �Q�=Tr�Q�	:

d

dt
�a1

†a1� = ��1 + �1
*��a1

†a1� + ��2�a1
†a2

†� + c.c.� + �1,

d

dt
�a2

†a2� = ��2 + �2
*��a2

†a2� + ��1�a1
†a2

†� + c.c.� + �2,

d

dt
�a1

†a2
†� = ��1

* + �2
*��a1

†a2
†� + �2

*�a2
†a2� + �1

*�a1
†a1� + �3

*,

d

dt
�a1a2� = ��1 + �2��a1a2� + �2�a2

†a2� + �1�a1
†a1� + �3,

�9�

where �i=Ai− B̄i− i	, �i=Ai+Ai
*, �i=Ci−Di �i�1,2�, and

�3=C1+C2.
In the next section we shall discuss the steady-state en-

tanglement of the two cavity modes using Eqs. �5�, �8�, and
�9�.

IV. RESULTS AND DISCUSSIONS

To elucidate the role the collectivity plays to entangles the
two field modes we shall consider further that g1=g2
g,
�1=�2
� and ��1 � ���2 � �g
N so that ��1−�2 � ��. We

assume also that ��̄1�2� � � �̄� and �2�̄± �̄1�2� � � �̄�. Then the
steady-state expectation values for the field correlators in
Eqs. �9� are

�a1
†a1� = �a2

†a2� =
�ḡ/
2��2

1 + ��	 + 	s�/��2 − �ḡ/��2 ,

�a1a2� = ��a1
†a2

†��* =
ḡ/2�

1 + ��	 + 	s�/��2 − �ḡ/��2

���	 + 	s�/� + i� . �10�

Here the effective coupling of the dressed atomic system to
the cavity modes, i.e., ḡ, and the frequency shift 	s due to the
dispersive atom-cavity interaction are represented as follows:

ḡ =
g2�̄�Rz�s/�N��

4�̄2 − �̄1
2

sin22� ,

	s =
g2�̄�Rz�s/�N��

4�̄2 − �̄1
2

�2 − sin22�� . �11�

To reach the cavity-field steady-state these parameters must
satisfy the inequality �ḡ /��2�1+ ��	+	s� /��2. The fre-
quency shift 	s can be compensated by slightly modifying 	,
i.e., �	+	s� /�=0, to arrive at ḡ /��1 or

�g2/����Rz�s/N

��0/N���3 + 4��/2�0�2�
1 + ��/2�0�2
� 1, �12�

if ��1 � =�0 �see Eq. �11��. This condition is satisfied for
single-atom systems as well as for collectively interacting
particles. However for single-particle systems a much higher
coupling g of the atom to the cavity modes is required. The
reason is that the effective coupling ḡ is proportional to the
dressed-state inversion operator �Rz�s and decreases for
larger values of � / �2�0�. The dressed quasilevels are
equally populated if � / �2�0�=0, that is �Rz�s=0 and, thus,
ḡ=0. The population can be transferred between the dressed
states by modifying � / �2�0��0 leading to ḡ�0 for strong
couplings g only. For instance, in order to fulfill the condi-
tion �ḡ /� � �1, i.e., Eq. �12�, for single-atom systems in the
whole frequency range −1�� / �2�0��1 then one should
approximately have g2 / ���0��6.7 with �c /�=0.2. The pa-
rameter g2 / ���0� will be even higher for larger values of
�c /�. On the other hand, for N=100, �ḡ /� � �1 if
Ng2 / ���0��3.2 and this parameter �Ng2 /��0� is almost in-
sensitive on �c /� for larger atomic samples. If, for example,
one considers pumped small-sized multiparticle atomic en-
sembles with N�1 and �0�N� in the dispersive limit dis-
cussed above then the cooperativity parameter C=Ng2 /��
will be well below 104. In principle, atom-cavity couplings
with C ranging from few hundreds to several thousands can
be achieved experimentally �34,36�. Thus multiparticle inter-
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actions mediated by the surrounding vacuum reservoir con-
tribute to an effective coupling that is enhanced by the col-
lectivity, i.e., 
Ng. Increasing the effective atom-field
coupling through many-atom interactions has a particular im-
portance at optical frequencies to generate strongly entangled
photons. Also, for many-particle samples the population can
be effectively transferred between the dressed states because
�Rz�s /N→1 ��Rz�s /N→−1� if � / �2�0��� �� / �2�0����
with ��1, and on a time scale proportional to N−1 for �
�0 �33�.

Figure 1 shows the average generated cavity photon num-

ber, N̄= �a1
†a1�+ �a2

†a2�, as function of laser and cavity modes
detunings, respectively, according to Eq. �10�. Below thresh-

old one has a steady-state output EMF with N̄�1. For in-
stance, if Ng2 /��0=3.2, �c /�=0.2, N=100 and 	 /�=−1
then we obtain more than 60 photons per mode in the steady
state �see Fig. 1�.

Next we shall focus on the quantum properties of the
cavity electromagnetic fields. The expression �8� characteriz-
ing the continuous variable field entanglement is given now
by

E =
2�ḡ/��†ḡ/� − 
1 + ��	 + 	s�/��2

‡

1 + ��	 + 	s�/��2 − �ḡ/��2 . �13�

If �	+	s� /�=0, then E→−1 when �ḡ /�� approaches unity.
Figure 2 depicts the steady-state behavior of the continuous
variable entanglement characteristics E as function of � /2�0
when 	 /�=−1 while other parameters are the same as in Fig.
1. One can see that the generated two-mode EMF is highly
correlated, i.e., entangled.

V. CONCLUSION

We have investigated the interaction of an ensemble of
two-level atoms with a two-mode cavity as well as with an
intense driving coherent field. The coupling to the cavity
modes is enhanced by the collective effects. In the dispersive
atom-cavity limit the nonlinearity entangles the output field.
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