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We introduce the definition of group velocity for a system with a discrete spectrum and apply it to a linear
resonator. We show that a positive, negative, or zero group velocity can be obtained for light propagating in the
whispering-gallery modes of a microspherical resonator. The associated group delay is practically independent
of the ring-down time of the resonator. We demonstrate “stopped light” in an experiment with a fused silica
microsphere.
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The group velocity is usually introduced in a class of
problems where responsivity of a material can be considered
as a continuous function of frequency. For instance, prob-
lems of propagation of narrowband light in systems like
atomic media belong to this class �1,2�. However, for the
broad class of systems with discrete spectra, the common
definition of the group velocity sometimes is not valid. An
optical resonator is an example of such a system. We show
here that the discreteness of the spectrum brings different
features to the notion of the group velocity defined as the
velocity of a train of optical pulses; namely, such a train can
be delayed by a linear resonator for much longer than the
ring-down time of the resonator. Such a delay is impossible
for a single pulse interacting with a linear lossless resonator,
even though linear resonators as well as their chains can
introduce a significant group delay �3–6�.

This peculiarity arises when a conceptual transition is
made from the framework of a distributed resonator to that
of a lumped resonator. While distributed resonators possess
an infinite number of modes, only a finite number of modes
are usually considered for their spectral studies, and often
only a single mode is retained for the sake of simplicity.
Such an approximation silently transforms the distributed ob-
ject to a lumped one, discarding multiple phenomena, one of
which is the subject of our study.

Propagation of slow light in a dispersive medium can be
characterized by the propagation of a beat note envelope of
two plain monochromatic electromagnetic waves �E1

= Ẽ exp�−i�1t+ ik1z�+c.c. and E2= Ẽ exp�−i�2t+ ik2z�+c.c.�
in the medium �2�. The beat note of the waves is described

by �E1+E2�2=2�Ẽ�2�1+cos���1−�2�t− �k1−k2�z��. The veloc-
ity of its propagation, Vg= ��1−�2� / �k1−k2�, corresponds to
the conventional definition of the group velocity �� /�k if
�1→�2 and the wave vector k is a continuous function of
frequency �.

Let us consider a lumped model of a resonator with a
transfer function

H��� =
� + i�� − �0�
� − i�� − �0�

, �1�

where � is the full width at half maximum and �0 is the
frequency of the resonance. A monochromatic signal with
frequency � acquires a phase shift arg�H���� when passing
through the resonator. The resonator delays the beat note of

waves E1 and E2 by an amount of time �g��1 ,�2��2/�. The
maximum delay is achieved for �1→�2, and, as a general
rule, �g��1 ,�2���1−�2��2�. As a result of the above con-
ditions, there is a general belief that the group delay intro-
duced by a linear resonator cannot exceed the ring-down
time of the resonator.

In what follows we show that this conclusion is not valid
for a distributed resonator such as a microsphere resonator
that supports whispering-gallery modes �WGMs�. The group
delay in such a resonator can exceed its ring-down time sig-
nificantly. This happens because a WGM resonator belongs
to the class of systems with a discrete optical spectrum. Such
a resonator can be described using a lumped model within
each spectral line. However, the model is not valid if the
light interacts with multiple modes. The usual definition of
the group velocity �� /�k does not hold in this case. For
example, the expression Vg= ��1−�2� / �k1−k2� is the only
correct definition of the group velocity for a bichromatic
field. A similar method should be applied to describe the
propagation of a generalized optical field that has a discrete
spectrum, e.g., a train of pulses, in a distributed resonator.
The spectrum of the field consists of a series of arbitrarily
narrowband �for an arbitrarily long train� lines enveloped by
the Fourier transform of an individual pulse. The number of
“significant” spectral lines that are not too strongly sup-
pressed by the envelope is given by essentially the duty cycle
of the pulse train. This number may be just a few for a dense
series of smooth �e.g., Gaussian� pulses. The group velocity
of the train can be extremely small if the spectrum of the
resonator with which the pulses interact is properly engi-
neered.

Let us now turn to a more formal discussion. We present
the electric field inside the microsphere resonator as

E = �e−i�t + c.c., �2�

where the spatial field distribution has the general form

� = �̄Pl
m�cos ��Jl+1/2�kl,qr�eim�/�r . �3�

� ,� ,r are the spherical coordinates; the indices l, m, and q
determine the spatial distribution of the field, m=0,1 ,2 , . . .
and q=1,2 , . . . are the azimuthal and radial quantization
numbers, respectively, and l=0,1 ,2 , . . . is the orbital mode
number. ��� ,� ,r� is the mode spatial profile, and
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kl,q 	
1

R

l + 	q� l

2
�1/3
 �4�

is the mode wave number, with kl,q=�n /c, where n is the
index of refraction of the resonator material, R the resonator
radius, and 	q the qth root of the Airy function: Ai�−	q�
=0. An example of the spectrum of the resonator evaluated
from Eq. �4� is shown in Fig. 1�a�.

We now show that the group velocity of light propagating
in the microsphere can have any desired value. We assume
that a microsphere is excited with a bichromatic light by
means of, e.g., a prism coupler �see Fig. 1�b��. The frequen-
cies of this light are resonant with two whispering-gallery
modes, for instance, modes a and b in Fig. 1�a�. Both modes
have a nonzero electromagnetic field at the surface of the
microsphere and, as a result, they interfere. One can observe
this interference by covering the microsphere with a fluores-
cent substance and taking advantage of the interaction of the
evanescent field of the modes with the substance. The sur-
face distribution of the power P scattered by the substance is
described by

P 	 P̃����1 + cos�
�abt − 
mab��� , �5�

where P̃��� is a normalization function, 
�ab=2�
�ab, and

mab= la− lb when the modes belong to the fundamental azi-
muthal family. According to Eq. �5�, 
mab is the number of
maxima of the interference pattern on the surface of the reso-
nator �Fig. 1�b��. The pattern moves with a velocity Vg
=R
�ab /
mab along the surface of the microsphere. This is
the velocity of the beat note of the bichromatic light propa-
gating in the resonator, i.e., the group velocity. Its value is
equal to 1.4�10−2c for the selected WGMs �a and b�. The
value of the group velocity is much smaller when the fre-
quency difference between the modes is small. The group
velocity goes to zero if �a−�b→0; i.e., in this case the light
is “stopped” inside the resonator. Finally, the group velocity
is negative when 
mab
0, or superluminal when R /
mab is
large enough.

We have discussed the propagation of the light field �E�
inside the resonator. Let us now find how the group velocity
inside the resonator compares to the effective group velocity

for the light that has passed through the resonator �the group
delay of the field Eout with respect to Ein�. Assuming that the
resonator is lossless and that the entrance and exit coupling
efficiencies are identical, we infer that each harmonic of the
bichromatic light that travels through the resonator experi-
ences a phase shift:

Eout a = Ein a exp�i2�ma� , �6�

Eout b = Ein b exp�i2�mb� . �7�

The beat note of the harmonics acquires a phase shift ��ma

−mb�, which corresponds to 2��la− lb� for the main mode
sequence. Keeping in mind that the light has traveled a dis-
tance 2�R, we find the group velocity Vg=R
�ab / �la− lb�.

The velocity can be either subluminal or superluminal de-
pending on the WGMs that the light interacts with. The
group delay �g=2��la− lb� /
�ab does not depend on the
spectral width of the modes, and consequently their ring-
down times, thus proving the assertion made above. It is easy
to find now the value of the product �g
�ab= la− lb, where
2�
�ab=
�ab. For the example presented in Fig. 1 this
value is equal to 11. For the lumped model of the resonator
this value is always less than 1.

It is possible to find three nearly equidistant modes in a
sphere of a given radius suitable for the delay of a beat note
formed by three monochromatic waves resonant with the
modes. For instance, using Eq. �4� and assuming that n
=1.4 and R=150 �m, we find that modes with �i� la=1368,
qa=1, �ii� lb=1319, qb=5, and �iii� lc=1270, qc=11 are
nearly equidistant ��b−�a	2��100 GHz, ��a+�c−2�b�

2��4 GHz�. Hence, if the quality factor of the modes is
low enough �the spectral width of the modes exceeds
4 GHz�, they can be considered as equidistant. The group
velocity of three monochromatic waves resonant with the
modes is Vg	7�10−3c.

We also find that modes of the same sphere with numbers
�i� la=1403, qa=1, �ii� lb=1354, qb=5, and �iii� lc=1305,
qc=11 completely overlap if their quality factor is less than
105. Hence, a running monochromatic wave interacting with
the modes will produce an interference pattern on the surface
of the resonator with zero group velocity. In what follows we
verify this particular case experimentally.

We have considered the possibility of the delay of a beat
note of two and three monochromatic waves. In principle, it
is possible to engineer the shape of the WGM resonator �not
necessarily a sphere� as well as the evanescent field coupler
in such a way that a beat note of more than two waves could
be delayed. It is possible to construct a WGM-resonator-
based delay line for a train of optical pulses, as well. The
effective dispersion of this system is envisioned by overlay-
ing Fig. 1�a� with an equidistant frequency spectrum of the
pulse train. All frequency components that happen to couple
into some mode produce a phase-shifted output similar to
Eqs. �6� and �7�: Eout j =Ein j exp�i2�mj�.

If the effective dispersion is linear, i.e., mj =
mj, the
change will amount to an overall delay �or advance, for
negative 
m� of the pulse train by �=2�
m /
�. Not sur-
prisingly, this is the same result we obtained for the bichro-

FIG. 1. �Color online� �a� WGM frequencies of a microsphere
with radius R=150 �m and index of refraction n=1.4. The carrier
frequency is equal to �0=478 THz �wavelength �=635 nm�, l0

=2078. The frequency difference between modes a �la=15, qa=5�
and b �lb=4, qb=6� is equal to ��ab=48 GHz. �b� An interference
pattern on the surface of the microsphere is created by modes a and
b. We have assumed that the modes are fundamental azimuthal, i.e.,
m= l for each mode.
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matic field. Let us point out that our extension of the defini-
tion for group velocity to the discrete spectra is consistent
with a very intuitive notion of group delay for a pulse train:
the delay of the train as a whole, that is, the delay of each of
its pulses.

Note that the effective dispersion can be nonlinear, in
which case the resonator would change the pulse shape as
well as the pulse train delay. Furthermore, some frequency
components may not find a suitable WGM to couple to, in
which case the resonator serves not only as a phase, but also
as an amplitude mask. However, before these effects are con-
sidered for a practical use, e.g., pulse delay with dispersion
compensation, etc., they need to be studied more thoroughly.
In particular, the required degree of control over the WGM
spectrum needs to be established and demonstrated. In what
follows we describe an approach to such control for a cylin-
drical resonator with radius R and height L.

The field distribution of the basic sequence of high-order
WGMs �l=m�1� belonging to the cylinder can be described
by an approximate equation in cylindric coordinates � ,� ,z,

�2�

��2 +
�2�

�z2 + �kl,q
2 −

l2

R2 − �� + A�z��
2l2

R3 �� = 0, �8�

where we have assumed that �=� exp�−il��, that the
modes are localized in the vicinity of the equator of the reso-
nator, and that the resonator radius changes as r=R+A�z�
�R� �A�z��� in the vicinity of the equator; and have intro-
duced a new variable �=r−R �R� ����. We separate vari-
ables, writing �=���z, and write

�2�z

�z2 − A�z�
2l2

R3 �z = − kh
2�z, �9�

�2��

��2 + �kl,q
2 − kh

2 −
l2

R2 − �
2l2

R3 ��� = 0. �10�

Assuming that A�z�=� jAj cos�2�jz /L�, where ��R /Ll�2

� �Aj /R�, we find

kl,q,j
2 	

1

R2
l + 	q� l

2
�1/3
2

+
�2j2

L2 +
Ajl

2

R3 . �11�

By changing L and Aj we are able to change the WGM
spectrum and shift selected mode families, creating se-
quences of equidistant modes required for the slow light ex-
periment.

To confirm this theoretical prediction, we have performed
an experiment with a WGM resonator to demonstrate the
case of stopped light, 
�ab=0. The resonator, a microsphere
with radius R=150 �m, is fabricated with optical grade
fused silica obtained from a multimode fiber. A taper is
manually pulled out from the fiber using a hydrogen-oxygen
microtorch. The thin end of the taper, approximately 50 �m
in diameter, is gradually heated in a hydrogen flame until a
sphere of the required size appears.

We use a single unmodulated 635 nm diode laser to dem-
onstrate zero group velocity of light, which should be seen as
a stationary interference pattern generated on the surface of
the microsphere by running monochromatic waves. The light

is sent into the resonator with an angle-cut fiber attached to a
micromanipulator. The frequency of the laser is swept in a
5 GHz frequency span at the rate of 20 scans per second.
The output of the fiber coupler is directed to an optical de-
tector �Thorlabs Det110�, and the signal from the detector is
observed on an oscilloscope screen. The setup allows excit-
ing different WGMs and selecting them by frequency. The
coupling efficiency is controlled by the gap between the cou-
pler and the surface of the silica resonator. Dry resonators
made in this way have an intrinsic quality factor Q�109

limited by the dust contamination of their surface. Nanom-
eter scale dust particles attach to the resonator surface, re-
sulting in an easily recognizable surface glow.

The fiber coupler and the resonator are placed inside a
fluidic minicell in the focal plane of a microscope for visu-
alization of the pattern. Visualization at 670 nm is made us-
ing a 1 �mol solution of the fluorescent dye Cy5 in metha-
nol. Elastically scattered radiation at 635 nm is blocked by a
thin film notch filter installed between the cell and the mi-
croscope. Spectral measurements are conducted while visu-
ally observing the fluorescence of the dissolved dye at the
surface of the resonator.

Absorption of light by the dye solution leads to a reduc-
tion of the Q factor to Q�106, which effectively eliminates
the residual frequency difference of nearly degenerate
WGMs belonging to different mode families. As a result,
monochromatic light can simultaneously interact with sev-

FIG. 2. �a�–�d� Interference patterns observed on the surface of
a 300-�m-diameter optically pumped microsphere. Note the static
interference pattern that exists despite the traveling-wave �clock-
wise� excitation. Light coupling is achieved with angle-cleaved fi-
bers. The second output beam is due to precession of light in the
WGM resonator. �c� and �d� are the same pattern observed by fo-
cusing the microscope on either the front or the back surface of the
microsphere. The transitions between patterns �a�, �b�, and �c� were
realized by tuning the coupling to allow the input light to interact
with different mode families.
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eral WGMs. The reduction of the Q factor also ensures the
absence of Rayleigh scattering on the resonator surface, pre-
venting light reflection inside the resonator.

The interference of different groups of modes resulted in
different stationary fluorescence patterns as seen in Fig. 2.
The observed patterns are created by the interference of more
than two spatially overlapping WGM frequencies, which are
within their spectral widths. The stationarity of these patterns
created by the running wave confirms the theoretical predic-
tion. In particular, the experiment allows observing the case
of stopped light. It is worth noting that the stopped light in
the resonator does not carry any information, unlike the light
stopped dynamically in atomic systems �7,8�, because it rep-
resents a beat note of several frequency-degenerate running
monochromatic waves. A numerical simulation of one of the
patterns is depicted in Fig. 3.

Our observations are not in contradiction to the well-
known fact that modes belonging to the same optical resona-
tor are orthogonal. Put in mathematical terms, given the
wave equation and the particular boundary conditions of the
resonator shape, one obtains a set of eigenvalues and eigen-
vectors which by definition have zero overlap in time and
space. Physically, this means that all resonator modes must
differ by either frequency or spatial distribution. This works
perfectly well for WGM resonators, and our observation
does not contradict it. We are able to observe the interference
pattern because modes overlap in space due to their finite
bandwidth, so a monochromatic light source simultaneously
excites several modes.

In conclusion, we have theoretically predicted the possi-
bility of realizing a group delay of a train of pulses in a linear
resonator that does not depend on the ring-down time of the
modes. We have also experimentally demonstrated stopped
light in a whispering-gallery-mode microsphere resonator us-
ing the results of that theory.
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