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Resonant activation in bistable semiconductor lasers
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We theoretically investigate the possibility of observing resonant activation in the hopping dynamics of
two-mode semiconductor lasers. We present a series of simulations of a rate-equation model under random and
periodic modulation of the bias current. In both cases, for an optimal choice of the modulation time scale, the
hopping times between the stable lasing modes attain a minimum. The simulation data are understood by
means of an effective one-dimensional Langevin equation with multiplicative fluctuations. Our conclusions
apply to both edge-emitting and vertical cavity lasers, thus opening the way to several experimental tests in

such optical systems.

DOI: 10.1103/PhysRevA.76.023815

I. INTRODUCTION

It is currently established that stochastic fluctuations may
have a constructive role in enhancing the response of nonlin-
ear systems to an external coherent stimulus. Relevant ex-
amples are the enhancement of the decay time from a meta-
stable  state  (noise-enhanced  stability) [1,2], the
synchronization with a weak periodic input signal (stochastic
resonance) [3], or the regularizaton of the response at an
optimal noise intensity (coherence resonance) [4].

Another instance is the phenomenon of resonant activa-
tion that was discovered by Doering and Gadoua [5]. They
showed that the escape of an overdamped Brownian particle
over a fluctuating barrier can be enhanced by suitably choos-
ing the correlation time of the barrier fluctuations them-
selves. In other words, the escape time from the potential
well attains a minimum for an optimal choice of such corre-
lation time. Since its discovery, the phenomenon has re-
ceived considerable attention from theorists (see, e.g., Refs.
[6-10]). Detailed studies by means of analog simulations
have also been reported for both Gaussian and dichotomous
fluctuations [11]. More recently, the phenomenon has been
shown to occur also for the case in which the barrier oscil-
lates periodically [12,13].

To our knowledge, experimental evidence of resonant ac-
tivation has been given only for a bistable electronic circuit
[14] and, very recently, for a colloidal particle subject to a
periodically modulated optical potential [15]. Tt is therefore
important to look for other setups where the effect could be
studied in detail. As a matter of fact, multimode laser sys-
tems are good candidates to investigate noise-activated dy-
namics like the switching among modes induced by quantum
fluctuations (spontaneous emission) [16]. In particular, semi-
conductor lasers proved to be particularly versatile for de-
tailed experimental investigation of modulation- and noise-
induced phenomena like stochastic resonance [17,18] and
noise-induced phase synchronization [19]. In those previous
studies, the resonance regimes are attained by a suitable ran-
dom modulation of the bias current which can be tuned in a
well-controlled way. It is thus natural to argue about the
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possibility of observing resonant activation with the same
type of experimental setup.

In this paper, we theoretically demonstrate the phenom-
enon of resonant activation in a generic rate-equation model
for a two-mode semiconductor laser under modulation of the
bias current. The basic ingredients that act in the theoretical
descriptions are a fluctuating potential barrier and some ac-
tivating noise. In the laser system, the latter is basically pro-
vided by spontaneous emission, while current fluctuations,
which appear additively in the rate equations, effectively act
multiplicatively if a suitable separation of time scales holds
[20]. In a previous paper [21], we have explicitly demon-
strated such multiplicative-noise effects on the mode-
hopping dynamics. This was shown by a reduction to a
bistable one-dimensional potential system with both multi-
plicative and additive stochastic forces. Several predictions
drawn from such a simplified model are in good agreement
with the experimental observations carried out for a bulk,
edge-emitting laser (EEL) [21]. In the present context, we
will show that this reduced description is of great help in the
interpretation of simulation data.

The outline of the paper is the following. In Sec. II we
recall the model for a two-mode semiconductor laser. In Sec.
IIT we present the numerical simulation for two physically
distinct cases displaying resonant activation. These results
are discussed and interpreted by comparing with the reduced
one-dimensional Langevin model mentioned above (Sec.
IV). We draw our conclusions in Sec. V.

II. RATE EQUATIONS

Our starting point is a stochastic rate-equation model for a
semiconductor laser that may operate in two longitudinal
modes whose complex amplitudes are denoted by E.. Both
of them interact with a single carrier density N that provides
the necessary amplification. The two modes have very simi-
lar linear gains, provided that their wavelengths are almost
equal and they are close to the gain peak. Let J(7) denote the
bias (injection) current; the model can be written as [21]

. 1 .
E, = 5[(1 + la)g+ - 1]E++ \QDS[’N&" (la)
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E_= %[(1 +ia)g_— 1JE_+\2D,,NE , (1b)
N= '}’[J(t)_N_g+|E+|2_g—|E—|2]v (1c)

where vy is carrier density relaxation rate and « is the line-
width enhancement factor [22]. The modal gains read

_ _Nze(N-N)
T 1+ s|EP+ |ES

8+ 2> (2)

where & determines the difference in differential gain among
the two modes while N, defines the carrier density where the
unsaturated modal gains are equal. The parameters s and ¢
are, respectively, the self- and cross-saturation coefficients.
The &, are two independent, complex white noise processes
with zero mean [(£,.(7))=0] and unit variance [<§,~(t)§;(t’)>
=08;;6(t—1")] that model spontaneous emission. The noise
terms in Egs. (l1a) and (1b) are gauged by the spontaneous
emission coefficient Dy,

All quantities are expressed in suitable dimensionless
units. In particular, time is normalized to the photons’ life-
time, which for semiconductor lasers is typically of the order
of a few picoseconds or less (see, e.g., [22-24]).

A detailed analysis of the stationary solutions of Egs. (1)
is reported in Ref. [25]. For a constant bias current J(r)=J,
and Dy,=0, Egs. (1) admit four different steady-state solu-
tions: the trivial one E,=0, two single-mode solutions E,
#0, E_=0, and vice versa, and a solution where both modes
are lasing, E, #0. For N.>1 and c>s, there exists a finite
interval of J;, values for which the two single-mode solutions
coexist and are stable while the E, # 0 is unstable (bistable
region). Here, for D ,>0 the laser performs stochastic mode
hopping, with the total emitted intensity remaining almost
constant while each mode switches on and off alternately at
random times. We point out that the emission in each mode
is nonvanishing even in the “off” state, as the average power
spontaneously emitted in each mode at any time is given by
4Dg,N [recall that Eqs. (1) are usually interpreted in the Itd
sense [23]]. Observation of this behavior has been reported
in several experimental works on EELs [26-28].

We remark that while Egs. (1) aim at modeling EELS, the
results presented henceforth would apply also to polarization
switching in vertical cavity surface-emitting lasers (VC-
SELs). Indeed, experimental data [29] show strong similari-
ties between this phenomenon and the longitudinal mode dy-
namics. On the theoretical side, this analogy is supported by
the fact that the polarization dynamics in VCSELs is de-
scribed by models that are mathematically similar to the one
discussed here [30-32].

In the following, we will focus on the effect of the exter-
nally imposed fluctuation and/or modulation of the injected
current. This situation is modeled by letting

J(t) = Jo+ 8J(1). (3)

The dc value J,, sets the working point and will be always
chosen to be in the bistability region. We focus on the case in
which 6J is an Ornstein-Uhlenbeck process with zero aver-
age (8J(1))=0 and correlation time 7:
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oJ 2D

o] = — &, “4)
T

T

which means
(8J(t)87(0)) = D, exp(— |t]/7). (5)

This choice is suitable to model a finite-bandwidth noise
generator. Notice that 7 and the variance of fluctuations D,
=(8J%) can be fixed independently.

Another case of experimental interest that we will con-
sider is using the current modulation

6 =A sin Q1. (6)

To assess the nature of the stochastic process at hand, it is
important to introduce the relevant time scales. We define
first of all the switching or relaxation time T as the typical
time for the emission to change from one mode to the other.
The main quantities we are interested in are the Kramers or
residence times 7', defined as the average times for which the
emission occurs in each mode. In semiconductor lasers T,
are generally much larger than T%. Typically, T, ~1-10 ns
while residence times may range between 0.1 and 100 us
[29,33]. The third time scale is of course given by the char-
acteristic time of the external driving, namely, 7 and 27/},
respectively.

In the following, we will study how the hopping dynamics
changes upon varying these latter parameters as well as the
strength of the perturbation.

III. NUMERICAL SIMULATIONS

In this section we present the outcomes of a series of
numerical simulation of Egs. (1). In Ref. [21] it was ob-
served that the sensitivity of each of the 7, on the imposed
current fluctuations may be notably different depending on
the parameter choice. This is a typical signature of the mul-
tiplicative nature of the stochastic process. In particular, one
can argue [21] that such “symmetry-breaking” effects mostly
depend on the ratio o/, where

o=——. (7)

The parameter o represents the gain saturation induced by
the total power in the laser, while & describes the reduction in
gain saturation due to partitioning of the power between the
two modes.

The possibility of obtaining qualitatively different re-
sponses depending on the actual parameters corresponds to
the different experimental observations reported for both
EELs [21,28,33] and VCSELSs [17,29]. Those two classes of
lasers were indeed found to display markedly different
symmetry-breaking effects under current modulation. To ac-
count for those features, we consider two different sets of
phenomenological parameters. For definiteness, in both cases
we fix e=0.1, s=1.0, N.=1.1, y=0.01, and change the values
of ¢ and Dy, (see Table I). The first set (6=0.05) corresponds
to the case in which added modulation changes the hopping
time scale in an almost symmetric way. On the contrary, in
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TABLE 1. The parameter values used in the two series of simu-
lations of Egs. (1); the other values are given in the text.

C Dxp ‘]0 5 g
1.1 0.7% 107 1.197 0.05 1.05
1.3 1.5%X107° 1.194 0.15 1.15

the second case (6=0.15) the asymmetry effect of the noise
is stronger [21]. We can thus consider the two as representa-
tive of the VCSELs and EELs cases, respectively. The value
of J, has been empirically adjusted to yield T,=T_=T, and
an almost symmetric distribution of intensities in the absence
of modulation. The actual values are about 10% above the
laser threshold. The spontaneous emission coefficient Dy, has
been chosen to yield a value of the residence times of the
same order of magnitude as the experimental ones.

In the following, we decide to set @=0, which is appro-
priate for our EEL model where the phase dynamics is not
relevant [21]. This choice may, however, not be fully justi-
fied for the VCSEL case. In this respect, the simulations
presented below are representative of the VCSEL dynamics
only in a qualitative sense. Nonetheless, it should be pointed
out that a one-dimensional Langevin model independent of «
describes also the VCSEL case [30,31]. Since resonant acti-
vation is mainly due to the multiplicative noise effect de-
scribed by such equations [see Eq. (9) below] we consider
this as an indirect proof that the phenomenology we will
report below should be observable also in the VCSEL case.

The largest part of the simulations were performed with
the Euler method with time steps 0.01-0.05 for times in the
range 107—10% time units depending on the values of 7 and
Q. For comparison, some checks with the Heun method [34]
have also been carried on. Within the statistical accuracy, the
results are found to be insensitive to the choice of the algo-
rithm.

A. Stochastic modulation

Let us start illustrating the results in the case of stochastic
current modulation [Eq. (4)]. In Figs. 1 and 2 we report the
measured dependence of the residence times 7, on the cor-
relation time 7 for the two parameter sets given in Table I
and different values of the noise variance D,. In all cases, the
curves display well-pronounced minima at an optimal value
of 7. This is the typical signature of resonant activation. The
minima are located almost between the relaxation time T
and the hopping time 7, (marked by the vertical dashed
lines). The values of Ty reported in the figures have been
estimated from the reduced model discussed in the next sec-
tion [see Eq. (14) below].

The effect manifests in a different way for the second
parameter set. In the case of Fig. 1 both times attain a mini-
mum, albeit with different values. On the contrary, the data
of Fig. 2 show that one of the two times is hardly affected by
the external perturbation regardless of the value of 7. In other
terms, we can tune the current correlation in such a way that
emission along only one of the two modes is strongly re-
duced (about a factor of 10 in the simulation discussed here).
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FIG. 1. (Color online) Simulations of the rate equations with
Ornstein-Uhlenbeck current fluctuations and parameter set with ¢
=1.1 (see text and Table I): residence times T, (squares) and 7_
(circles) for increasing values of the current variance D;. The values
of the relaxation time Ty and the hopping time 7 (in absence of
modulation) are marked by the vertical dashed lines.

B. Periodic modulation

Let us now turn to the case of sinusoidal current modula-
tion [Eq. (6)]. In Figs. 3 and 4 we report the measured de-
pendence of the residence times 7, on the frequency ) for
the two parameter sets given in Table I and different values
of the amplitude A. For comparison with the previous case,
we choose A such that the rms value of (6) is roughly equal
to the variance of (4), i.e., A=+2D,.

As in the previous case, the curves display resonant acti-
vation at an optimal value of (). For the second set of pa-
rameters, one of the two hopping times is more reduced than
the other (compare Fig. 4 with Fig. 2). It should also be
noticed that the data in Fig. 2 display some statistical fluc-
tuations while the curves for the periodic modulation are
smoother.

IV. INSIGHTS FROM A REDUCED MODEL

In order to better understand the activation phenomenon it
is useful to reduce the five-dimensional dynamical system
(1) to an effective one-dimensional system. This has been
accomplished in Ref. [21]. For completeness, we only recall
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FIG. 2. (Color online) Simulations of the rate equations with
Ornstein-Uhlenbeck current fluctuations with parameter set with ¢
=1.3 (see text and Table I): residence times T, (squares) and 7_
(circles) for increasing values of the current variance D;.

here some basic steps of the derivation. In the first place, we
introduce the change of coordinates

E.=rcos ¢pexpit,, E_=rsindexpiy._. (8)

In these new variables, r° is the total power emitted by the
laser, and ¢ determines how this power is partitioned among
the two modes. The values ¢=0, 7/2 correspond to pure
emission in modes + and —, respectively. The phases ¢, do
not influence the evolution of the modal amplitudes and car-
rier density and can be ignored.

In order to simplify the analysis, we assume that (i) the
difference between modal gains is very small, i.e., N.=1,
e<1, c=s; (ii) the laser operates close enough to threshold
so that 72 << 1 and the saturation term is small; in this limit, r
and N decouple to leading order from ¢; (iii) r and N can be
adiabatically eliminated; and (iv) only their fluctuations
around the equilibrium values due to J are retained. This last
assumption holds for weak spontaneous noise and amounts
to saying that r and N are stochastic processes given by
nonlinear transformations of J [see Eq. (16) in Ref. [21]].
This requires that J does not change too fast. For example, in
the case of the Orstein-Uhlenbeck process, Eq. (4), 7 should
be larger than the relaxation time of the total intensity. The
validity of the above reduction has been carefully checked

PHYSICAL REVIEW A 76, 023815 (2007)

6 ERTIT IR | vl vl vl el il

Residence times
T T TTTT0T
T

fr

3 cvnnd vl o = Tl v il vl

10
10 100 100 100 10" 100 10° 107 10°

Modulation period 27/€2

FIG. 3. (Color online) Simulations of the rate equations with
sinusoidal modulation of the current, parameter set with c=1.1 (see
text and Table I): residence times 7, (squares) and 7_ (circles) for
increasing values of modulation amplitude A.

against simulations of the complete model [21]. For the
scope of the present work, we performed a further check by
comparing the spectrum of fluctuations of r*> with the im-
posed one, Eq. (4). Indeed, the behavior is the same for 7
>Tx while for shorter 7 some differences are detected. This
means that the reduced description discussed below becomes
less and less accurate. On the other hand, in this regime
spontaneous fluctuation should dominate and this limitation
become less relevant for our purposes.

Altogether, the hopping dynamics is effectively one di-
mensional and is described by the slow variable ¢. Its evo-
lution is ruled by the effective Langevin equation

| 2Dy
b= E(a cos 2¢p+b)sin 2¢p + ta?lbc_b +\2Dyéy  (9)

where, together with (7), we have defined the new set of
parameters

]S:(1+0')NC—1’ (10)
g
a=—2(-). (11)
l+o0
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FIG. 4. (Color online) Simulations of the rate equations with
sinusoidal modulation of the current, parameter set with c=1.3 (see
text and Table I): residence times T, (squares) and T_ (circles) for
increasing values of modulation amplitude A.

&

b=—"2—(1-1),
+ 0

] (12)

(1+aJ)?
D= s - =

We recall in passing that the same equation (9) has been
derived by Willemsen et al. [30,31] to describe polarization
switches in VCSELSs (see also Ref. [35,36] for a similar re-
duction). The starting point of their derivation is the San
Miguel-Feng-Moloney model [37]. The physical meaning of
the variable ¢ is different from here as it represents the po-
larization angle of emitted light. This supports the above
claim that, upon a suitable reinterpretation of variables and
parameters, many of the results presented henceforth may
apply also to the dynamics of VCSELSs.

In the absence of modulation (87=0), Eq. (9) is bistable
in an interval of current values where it admits two stable
stationary solutions ¢, and an unstable one ¢, (double well).
This regime correspond to the bistability region of model (1).
Notice that for Jy=J,, b=0 the hopping between the two
modes occurs at the same rate. The above definition allows
an estimate of the relaxation time 7 defined above. This is
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the inverse of the curvature of the potential in ¢,. For J,
=J, this is straightforwardly evaluated to be

_(+0)

=51 (14)

R

For the two parameter sets given in Table I one finds Tp
=210 and 77.0, respectively. These are the values employed
to draw the leftmost vertical lines in Figs. 1-4.

The effect of a time-dependent current is to make the
coefficients a, b, and D, fluctuating. It can be shown [21]
that the effect on D, can be recast as a renormalization of the
intensity of the spontaneous-emission noise. However, for
the parameters employed in the present work it turns out that
this correction is pretty small and will be neglected hence-
forth by simply considering D, as constant [37,38]. For sim-
plicity, we also disregard the dependence of D4 on 6/ in the
drift term of Eq. (9). Under those further simplifications the
Langevin equation can be rewritten as

$==U'(¢) = V()T +\2Dyéy, (15)
where we have express the force term as derivatives of the
“potentials”

-1 ea(Jy—J,)
U= 61 +0) 4™ 14 0) 2%
—DylInsin2¢, (16)
Vi) o —2 cosdd——2T cos2. (17)
¢ __16(1+0') cos ¢)—4(1+0_) cos 2¢.

Langevin equations of the form (15) with (4) have been thor-
oughly studied in the literature (see, e.g., [7-11] and refer-
ences therein) as prototypical examples of the phenomenon
of activated escape over a fluctuating barrier. In view of their
non-Markovian nature, their full analytical solution for arbi-
trary 7 is not generally feasible. Several approximate results
can be provided in some limits.

For an arbitrary choice of the parameters, V has a differ-
ent symmetry with respect to U, meaning that the effective
amplitude of multiplicative noise is different within the two
potential wells. If this difference is large enough, current
fluctuation will remove the degeneracy between the two sta-
tionary solutions. This is best seen by computing the instan-
taneous potential barriers AU, (¢) close to the symmetry point
Jo=J,. For weak noise and 8J/<<(J,—1), they are given to
first order in 8J(¢) by

O0+2¢e0
+
8(1+0)

AU (1) = U= 1) sI(.  (18)

)
8(1+0)

Obviously, this last expression makes sense only when the
fluctuating term is subthreshold, i.e., whenever the system is
bistable. In the case of periodic modulation, formula (18)
allows an estimate of the range of amplitude values for a
subthreshold driving,
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A< ‘S(Js—l). (19)
ox2e0

Using this condition, along with the parameter values at
hand, we deduce that the cases displayed in the lower panels
of Figs. 3 and 4 correspond to superthreshold driving. How-
ever, while the minima are much more pronounced than in
the other panels, there is no qualitative difference in the sys-
tem response. In the case of stochastic modulation, the same
remark applies in a probabilistic sense for the last panels of
Figs. 1 and 2.

Altogether, the mode switching can be seen as an acti-
vated escape over fluctuating barriers given by Eq. (18). The
statistical properties of the latter process is controlled by the
current fluctuations. We now discuss the properties of vari-
ous regimes. For simplicity, we refer to the case of stochastic
modulations. Most of the remarks and formulas reported in
the following section should apply also to the periodic case
by replacing 7and D, with 277/ and A?/2 whenever appro-
priate.

A. Fast barrier fluctuations: 7<TR<T,

As we already pointed out, in this regime the reduction to
Eq. (15) is not justified. We may thus expect only some
qualitative insight into the behavior of the rate equations.
From a mathematical point of view, some analytical approxi-
mations for equations like (15) are feasible in this limit (see,
e.g., Ref. [8] for the stochastic case). For our purposes, it is
sufficient to note that in this regime the effect of &/ is hardly
detected for both types of driving (see again Figs. 1-4). Note
also that working at fixed D; means that for 7— 0 the fluc-
tuations become negligible.

B. Resonant activation: T, < 7<T,

If Tp <7 we are in the colored noise case. The problem is
amenable to a kinetic description, which amounts to neglect-
ing intrawell motion and reducing the problem to a rate
model describing the statistical transitions in terms of transi-
tion rates. If we consider 7 as the time scale of the external
driving, we can follow the terminology of Ref. [39] and refer
to this situation as the “semiadiabatic” limit of Eq. (15).

In this regime, the residence time is basically the shortest
escape time, which in turn correspond to the lowest value of
the barrier (the noise is approximately constant in the current
range considered henceforth). For the case of interest, &
<2eo we can use (18) to infer that the minimal values of
AU, should be attained for &Jo * \E respectively. This
yields

deg+ S \_E> 20)

T.=T,exp| - K
- s p( 1+0' D¢

where K is a suitable numerical constant. Notice that é con-
trols the asymmetry level: if §<<2eo the two residence times
decrease at approximately the same rate. This prediction is
verified in the simulations and also in the experiment [21].
As a further argument in support of the above reasoning,
we also evaluated the probability distributions of the resi-
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Cumulative distribution

10°T 10°T

FIG. 5. (Color online) Cumulative distributions of the residence
times in the resonant activation region; parameter set with ¢=1.3
(see text and Table I). Left panel: stochastic modulation with D,
=5X107%, 7=1.638 X 10°. Right panel: periodic modulation with
A=0.03 and period 1.286x 10*. We report only the histograms for
the times whose averages are denoted by 7, in the text. Solid line is
the cumulative Poissonian distribution with the same average.

dence times obtained from the simulation of the rate equa-
tions. In Fig. 5, we show two representative cumulative
distributions. The data are well described by a Poissonian
P(T)=1-exp(-T/T,) for both the stochastic and periodic
modulation cases. This confirms that hopping occurs prefer-
entially when a given (minimal) barrier occurs.

C. Slow barrier, frequent hops: TR <T.<7

This corresponds to the adiabatic limit in which the time
scale of the external driving is slower than the intrinsic dy-
namics of the system [39]. To a first approximation we can
here treat current fluctuations in a parametric way. Correc-
tion terms may be evaluated by means of a suitable pertur-
bation expansion in the small parameter 1/7 [10]. If &/ is
small enough for the expression (18) to make sense, the es-
cape time can be estimated as the average of escape times
over the distribution of barrier fluctuations, i.e., (T.)s. For
the case of Eq. (4), the variable 87 is Gaussian and we can
use the identity {exp Bz)=exp(B*(z*)/2) to obtain [11],

S+2e0)>
20 260) J) (1)

T,=T,ex
: p( (1+0)°D},

This reasoning implies that for large 7 the residence times
should approach two different constant values. A closer in-
spection of the graphs (in linear scale) reveals that this is not
fully compatible with the data of Fig. 1 even for the smallest
value of D,. In several cases, T, continue to increase with 7
and no convincing evidence of saturation is observed. We
note that the same type of behavior was already observed in
the analog simulation data of Ref. [11]. There, an increase of
the hopping time duration at large 7 was found. The authors
of Ref. [11] explained this as an effect of a too large value of
the noise fluctuation, forcing the system to jump roughly
every 7. We argue that the same explanation holds for our
case. This is also consistent with the fact that the exponential
factors in Eq. (21) evaluated with the simulation parameters
turn out to be much larger than unity.
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V. CONCLUSIONS

In this paper, we have explored numerically and analyti-
cally the effects of external current fluctuations on the mode-
hopping dynamics in a model of a bistable semiconductor
laser. To the best of our knowledge, this setup provides the
first theoretical evidence of resonant activation in a laser sys-
tem. As the phenomenon has hardly received any experimen-
tal confirmation in optics, we believe that our study may
open the way to future research in this subfield.

The model we investigated is based on a rate-equation
description, where the bias current enters parametrically into
the evolution of the modal amplitudes. We considered two
kinds of current fluctuations, namely, a stochastic process
ruled by Orstein-Uhlenbeck statistics, and a coherent, sinu-
soidal modulation. These choices are motivated by the aim of
proposing a suitable setup for an experimental verification of
our results. Upon varying the characteristic time scale of the
imposed fluctuations, we have shown that the residence
times attain a minimum for a well-defined value, which is the
typical signature of resonant activation. The magnitude of
the effect can be different depending on the parameters of the
model. Moreover, the response of the system appears very
much similar for both periodic and random modulations.

The reduction of the rate equations to a one-dimensional
Langevin equation allowed us to recast the problem as an
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activated escape over a fluctuating barrier. To first approxi-
mation, the fluctuating barrier (multiplicative term) is mainly
controlled by current modulations while the spontaneous
noise act as an additive source. This simplified description
has allowed us to make some predictions (e.g., the depen-
dence of residence times on noise strength) and to better
understand the role of the physical parameters. Given the
generality of the description, our results should apply to a
broad class of multimode lasers, including both edge-
emitting and vertical cavity lasers.

From an experimental point of view, driving the laser in
an orders-of-magnitude wide range of time scales is more
feasible in the case of a sinusoidal modulation than for a
colored, high-frequency noise. However, given the evidence
of a resonant activation phenomenon for such modulation,
our results indicate that it occurs almost for the same param-
eters in the case of colored noise, provided that the rms of
the modulations equals the amplitude of the added noise.
Thus, the phenomenon could be fully exploited along those
lines. Since the reported experimental evidence of the phe-
nomenon are so far scarce, we hope that the present work
might suggest a detailed characterization in optical systems
that allows for both very precise measurements and careful
control of parameters.
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