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Self-trapped modes in highly nonlocal nonlinear media
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Exact analytical solutions describing spatially localized self-trapped modes in highly nonlocal nonlinear

media are presented. We formulate the model in a coordinate-free form and show that it allows us to obtain
useful closed-form expressions for a large variety of mode structures and their interactions in a highly nonlocal

nonlinear medium.
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I. INTRODUCTION

In recent times there are strongly increasing activities on
the nonlinear light propagation in nonlocal media, both from
an experimental and theoretical side [1-13]. Among the new
physical effects attributed to nonlocality are, for example, the
suppression of beam collapse [14], and the stabilization of
nonlinear structures that are known to be unstable in realistic
local media [15], e.g., dipole solitons [16], vortex solitons
[17,18], Laguerre and Hermite cluster solitons [19], and azi-
muthons, that are intermediate structures between scalar
multipole solitons and pure vortex solitons [20,21].

Several approaches have been available to model propa-
gation in nonlocal nonlinear media. In particular, the highly
nonlocal limit occurs when the characteristic nonlocal re-
sponse is much larger than the beam size. Snyder and Mitch-
ell [1] introduced a simple theoretical model to describe the
propagation of solitons in a highly nonlocal nonlinear (HNN)
medium. In a beginning, the model was not fully explored,
mainly because of the apparent lack of a physical HNN me-
dium able to support such solitons. Nevertheless, in recent
years, the applicability of this model has witnessed a revival
of research interest [2] after the observation of optical soli-
tons in HNN nematic liquid displays [3,4], in photorefractive
media [5], and in lead glasses exhibiting self-focusing ther-
mal nonlinearity [6,7]. These experimental observations pro-
vide independent proofs of the highly nonlocal dynamics of
some physical systems and turns into reality the possibility
of observing the accessible solitons predicted in Ref. [1].

In this paper we present exact analytical solutions describ-
ing spatially localized self-trapped modes in HNN media, the
so-called Helmholtz-Gauss (HzG) modes. We follow a
coordinate-free approach rather than proposing solutions for
the nonlocal nonlinear Schrédinger equation in a particular
coordinate system. This formulation captures the essence of
the mode propagation and is therefore more robust. The
choice of coordinate system then enters into the model in a
later stage for describing several special cases. The model
provides deep insight into the wave dynamics in HNN media
and allows us to obtain useful closed-form expressions for a
large variety of self-trapped modes and their interactions.
The solutions also will be useful in different contexts both
for the case of strongly nonlocal media, which can be real-
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ized in experiments, and in the context of beam propagation
in linear graded index media. Finally, we remark that the
solutions presented in this work correspond effectively to
self-trapped modes in HNN media and cannot be called for-
mally solitons in the sense that the term soliton corresponds
to a nonlinear wave whose transverse structure is shape in-
variant under propagation.

II. SELF-TRAPPED HELMHOLTZ-GAUSS MODES

We begin by considering the amplitude E(r,z) of a beam
propagating in a nonlocal nonlinear medium along the z axis
of a coordinate system (r,z), where r=(x,y)=(r, 6) denotes
the transverse coordinates. The paraxial propagation of the
beam is governed by the nonlocal nonlinear Schrodinger
equation [1,2,15]

2
2ik% +V2E+ 2niE f R(r—r")|E(r',2)]%dx'dy’ =0,
0

(1)

where Vi is the transverse Laplacian, k is the wave number
in the linear medium, n is the linear part of the refractive
index, and R(r-r’) is the normalized radially symmetric
spatial nonlocal response function of the medium. For HNN
media, the function R(r—r’) is much wider than the beam
width, then it can be expanded using Taylor series with re-
spect to r' about r’=r. In the limit of strongly nonlocal
response only the dominant term of the series is kept, thus
Eq. (1) reduces to

J 24> K
(Zik— +V2 + —R,P - —yPr2>E(r,Z) =0, (2
(9Z I’lo no

where P=[|U(r)|>dxdy is the beam power, vy is a material
constant, and R, is the maximum of R(r). By letting
E(r,z)=U(r,z)expli(k/ng)RyPz] we finally obtain the model
useful for wave propagation in HNN media [1]

(2ikd, + V* - kK*a*r*)U(r,z) =0, 3)

where a is a parameter that depends on the beam power P
upon a’=yP/n.

Equation (3) is recognized to be the same as the equation
that describes the propagation in a graded-index (GRIN) me-
dium whose refractive index varies radially as n(r)=ny(1
—a*r?/2). Because the physics of this problem is well under-
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stood [22], it is easy to translate it into the context of soliton
propagation. The simplest solution of Eq. (3) was studied in
Ref. [1] and corresponds indeed to the azimuthally symmet-
ric Gaussian mode

Glr.z)= aq [ ikr? }, @)

ex
aqg cos(az) + sin(az) P 24¢(z)

where go=¢(0) is the initial complex beam parameter whose
dependence on z is given by

1 ) aqq cos(az) + sin(az)

q(z) = (—

a

cos(az) — aqq sin(az)” ®)

From Egs. (4) and (5), it is clear that this fundamental
beam preserves its Gaussian shape but its width breathes
sinusoidally (with pitch period L=27/a) in propagation. For
a critical power P=P, the beam diffraction can be balanced
by self-focusing and then the beam width remains constant
under propagation. This is the case of soliton propagation.
By letting w, be the beam width, we see from Eq. (5) that
soliton condition is reached when go=—ikw}/2=—i/a (or
equivalently P.=4/v*k*wg) for which g(z)=—i/a becomes
constant.

Equation (4) describes the axial propagation of a Gaussian
beam in HNN media. An arbitrary initial field (not necessar-
ily azimuthally symmetric about the origin) can be formally
expressed as a superposition of Gaussian beams. To preserve
the highly nonlocal condition we assume that the spatial ex-
tent of each constituent beam, as well as the distance be-
tween them, is negligible compared to the characteristic non-
local response length. The centroid (i.e., the first-order
moment) of the initial field defines the center of the induced
parabolic medium and propagates in a straight line by virtue
of the conservation of transverse momentum.

In attempting to obtain a more general description of the
field evolution in HNN media we first note that Gaussian
localization is essential to propagation in a HNN medium,
then to solve Eq. (3) we introduce the following ansatz:
U(r,z)=V(r,z)G(r,z), where W(r,z) is a modulating func-
tion to be determined. Substituting this ansatz into Eq. (3),
we get the following equation for W(r,z):

2ik
q(2)

The standard approach to solve an equation like Eq. (6)
consists of assuming a separable solution of the form ¥
=f(x;)g(xy)h(z), where (x;,x,) are two particular orthogonal
coordinates in the transverse plane. This procedure leads to
pure soliton solutions described by Hermite-Gaussian and
Laguerre-Gaussian functions [23]. To follow a coordinate-
free approach rather than proposing solutions in a particular
coordinate system, we will consider a general field of the
form W(r,z)=W(r,z){(z), where W(r,z) accounts for the
transverse beam structure and admits the following general
plane wave expansion:

2ikd, ¥ + V2 W+ —(V,¥-r)=0. (6)
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W(r,z) = fﬂ A(g)explir(z)(x cos ¢ +y sin ) |dp, (7)

where «(z) is the characteristic transverse wave number to be
determined, and A(¢) is the arbitrarily complex angular spec-
trum of the beam [24-26]. In assuming W(r,z) as Eq. (7) we
are setting the center of the parabolic medium, defined as the
first moment of the intensity profile |UJ%, to be located at r
=0. Substitution of Egs. (5) and the ansatz into Eq. (6) leads
to {(z)=exp[—i sin(az)kyx(z)/2ka], and

agoKo
aqq cos(az) +sin(az)’

Kk(z) = (8)
where «,=k(0) is the initial transverse wave number and, as
expected, the function W(r,z) must to satisfy the two-
dimensional (2D) Helmholtz equation ViW+ KX (z)W=0.

Collecting the partial solutions provides the desired ex-
pression for U(r,z), namely,

irok(z)sin(az)

S } G(r,z)W(r,x). (9)

U(r,z) = exp{—
Equation (9) permits an arbitrary HzG mode to be propa-
gated in closed form through a HNN medium. The field
U(r,z) results from the product of three factors. The expo-
nential factor is just a complex amplitude depending on z
only. The Gaussian factor G(r,z) ensures the transverse con-
finement and finite beam power. Whereas G(r,z) includes
only the possibility of circularly symmetric Gaussian spots
and spherical phase fronts [1], the factor W(r, k) allows for
the possibility of much more complicated transverse pat-
terns. The inclusion of this term creates maxima and minima,
and possibly beam nulls, in the amplitude distribution. Math-
ematically, W(r,k) is an arbitrary solution of the two-
dimensional Helmholtz equation and physically can be asso-
ciated to the transverse shape of an ideal nondiffracting
beam, including, for example, profiles belonging Bessel,
Mathieu, or parabolic nondiffracting beams [24-26]. In gen-
eral, the shape of the HzG modes in HNN media will change
under propagation because k, and « are not proportional to
each other through a real factor, leading to different profiles
of the function W. Nevertheless, « and g vary periodically
with a period L=2m/a, therefore the initial field self-
reproduces after this distance.

III. PHYSICAL DISCUSSION

Physical insight into the propagation of HzG modes in
HNN media is gained by observing that U(r,z) can be
viewed as a superposition of tilted Gaussian beams whose
mean propagation axes follow the geometrical sinusoidal
path around the optical axis predicted by the ray propagation
theory in GRIN media [22]. In general the width of the con-
stituent Gaussian beams will oscillate as field propagates,
however, if the soliton condition is satisfied (i.e., gq
=—ikw}/2=—i/a) then each constituent Gaussian beam be-
comes a constant-width soliton. For this condition, Egs. (5)
and (7) reduce to g(z)=—i/a and k(z)= K, exp(~iaz), respec-
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FIG. 1. (Color online) (a) Propagation and interaction of three
solitons launched in parallel into a HNN medium with a=1. (b)
Helical trajectories of the three solitons launched with the appropri-
ate skew.

tively, and the expression for U(r,z) takes the particularly
simple form

U(r,z) = f(z)exp(= rPIw)) W(r, k), (10)
where f(z)=exp[—iaz—i K% sin(az)exp(—iaz)/2ka] depends
on z only, and the constant Gaussian width is related to beam
power by w(2,=2/7k\5P

Equation (10) represents a general expression to describe
the propagation of (2+1)D solitons and their interactions in
HNN media. The field U(r,z) is characterized by two trans-
verse characteristic lengths, namely, w, for the Gaussian en-
velope, and 1/k, for function W. The physical meaning of
these parameters is important; whereas w, adjusts the width
of the Gaussian modulation, the parameter «, governs the
oscillatory behavior of the function W in the transverse di-
rection.

We identify two important cases. The first one occurs
when wy>1/k,, i.e., when the Gaussian width is much
larger than the transverse beam oscillations. As an example,
let us discuss the interaction of three solitons of total power
P launched in parallel into a HNN medium as shown in Fig.
1(a). The solitons see a parabolic medium (with parameter
a=\yP/ny) whose axis coincides with the center of the
circle crossing over the soliton maxima, thus they are equally
displaced from the optical axis. The field is given by Eq. (10)
with W=E?=1Aj explixr cos(6—6,)], where A;={1,1 314
6,={20°,80°,230°}, ky=—i2m, and wy=1. In propagation,
the solitons will interact by undergoing sinusoidal trajecto-
ries about the optical axis and will suffer periodic collisions
at positions z,=L(m+1/2)/2, where m=0,1,2,..., while
maintaining its width constant. Note that the entire propaga-
tion of the three solitons is described in closed form by Eq.
(10). Since the sinusoidal trajectories are independent of the
individual initial phases, these affect the interference pattern
at planes z,, only. By inducing an appropriate initial skew to
the solitons, they will spiral about the axis of the parabolic
medium, and will undergo rotation as propagate, as shown in
Fig. 1(b). Interaction of a large number of solitons with dif-
ferent launching amplitudes and phases can be described in a
similar way. More complex structures can be also modeled
using a superposition of beams of the form (10) with differ-
ent K.
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FIG. 2. (Color online) Quasi-invariant (a) dipole and (b) quad-
rupole vortex self-trapped HzG beam. (c) Rotating propagation of
an elliptic vortex self-trapped HzG beam constructed with a helical
Mathieu beam.

The second case occurs when wy<<1/k, i.e., when the
transverse beam oscillations are much larger than the Gauss-
ian width. In this case, the variation in the field shape on
propagation is very small (<5%), making possible the for-
mation of quasipropagation-invariant solutions. For example,
Figs. 2(a) and 2(b) shows the intensities and phases of two
vortex self-trapped beams carrying angular momentum. The
fields are described by Eq. (10) with (a) W(r,0)=J,(k,r)
X (cos 6+i0.75 sin #) where J,, is the nth order Bessel func-
tion, and (b) W(r,0)=J,(kyr)[cos(26)+i0.75 sin(26)]. Both
profiles are azimuthally asymmetric and propagate through
the HNN medium maintaining its shape to within a very
good approximation. The intensity patterns in Figs. 2(a) and
2(b) closely resemble those reported in Refs. [16] and [21]
for dipole solitons and four-peaks azimuthons.

The result in Eq. (10) is general in the sense that function
W is an arbitrary solution of the two-dimensional Helmholtz
equation, and thus it is not associated to a particular coordi-
nate system. This fact allows us to express a large variety of
self-trapped modes and phenomena in closed and elegant
form. For example, in Fig. 2(c) we show the rotating propa-
gation of an elliptic vortex self-trapped beam with topologi-
cal charge of 2 built with the helical Mathieu beam [27] in
elliptical coordinates (&,7), W(r,z)=Je,,(&;&)ce,(7;¢€)
+iJo,,(&;€)se,,(7n;€), where Je,, and Jo,, are the even and
odd radial Mathieu functions with ellipticity e, and ce,, and
se,, are the even and odd angular Mathieu functions, respec-
tively. Whereas the ellipticity of the beam can be adjusted
with the parameter € of the Mathieu functions, the rotation is
determined uniquely by the strength of the power and the
beam width through a=\yP/n,,.

The solutions presented in this paper are strictly valid for
the limiting case of propagation in HNN media. It is natural
to ask whether it is possible to obtain these solutions in re-
alistic nonlocal media if the HNN limit fails. To investigate
this case, we have solved numerically the nonlinear nonlocal
Schrodinger equation [Eq. (1)] by applying an accurate
Fourier-based split-step beam propagation method [16,17,21]
and taking as initial shapes several HzG profiles [Eq. (10)
with z=0]. We have used a nonlocal nonlinear response in
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FIG. 3. (Color online) Propagation dynamics of an elliptic vor-
tex self-trapped HzG beam in a nonlocal nonlinear medium. (a), (b)
High nonlocality (the Gaussian width nonlocal response is three
times larger than the maximum beam width). Here the beam re-
mains self-trapped and many periods of rotation can be observed.
The maximum value of the normalized intensity oscillates but re-
mains within a finite range. (c) Intensity and phase profiles for low
nonlocality (the Gaussian width nonlocal response is equal to the
maximum beam width). (d) The beam diffracts decreasing its maxi-
mum normalized intensity and there is not significant intensity
rotation.

the form of a normalized Gaussian function in Eq. (1)
[11,19]. We first considered a very large nonlocality. The
numerical analysis revealed that under appropriate condi-
tions of enough degree of nonlocality, our numerical solu-
tions behave very close to the theoretical prediction given by
the highly nonlocal limit [Eq. (10)]. As the strength of the
nonlocality is decreased, the beam begins to exhibit slight
changes in its pitch period and its rotation velocity, as shown
in Figs. 3(a) and 3(b), where we illustrate the propagation of

PHYSICAL REVIEW A 76, 023814 (2007)

the same rotating elliptic vortex HzG mode shown in Fig. 2.
Although the intensity maximum oscillates stronger than the
corresponding oscillations in a HNN medium [Fig. 3(b)], the
beam essentially remains self-trapped. By decreasing the
nonlocality even more, we found that there is a threshold
where the initial profile will diffract without rotation, as
shown in Figs. 3(c) and 3(d). Beyond this point, the HzG
model cannot be considered as a useful model to describe
nonlocal beam propagation. The stability analysis of HzG
profiles propagating in nonlinear media with arbitrary nonlo-
cality is still an open problem that is currently under study by
the authors.

IV. CONCLUSIONS

In conclusion, we introduced an elegant description of
(2+1)D self-trapped beam phenomena in HNN media. The
formalism is coordinate-free and offers a simple way of rep-
resenting a variety of new kinds of self-trapped mode struc-
tures in a closed form, including, for example, noncircularly
symmetric patterns, rotating patterns, and necklace beams.
Our results shed light on the connection between soliton
propagation in HNN media [1-4,6,7], the linear propagation
in GRIN media [22], and the nondiffracting propagation in
free space [24]. The model can be applied in nonlinear
propagation in different physical systems featuring highly
nonlocal response (e.g., thermal and liquid crystal media
[3,4,6,7]) assuming the natural restrictions that effects of
boundaries and anisotropy are not taken into account in the
model, and that the center of mass of the beam must be
located at the origin as the beam propagates.
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