
Continuous-variable entanglement in a nondegenerate three-level laser
with a parametric oscillator

Eyob Alebachew*
Department of Physics, Addis Ababa University, P. O. Box 33085, Addis Ababa, Ethiopia and Departimento di Scienze Fisiche,

Universita di Napoli “Federico II”, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
�Received 15 February 2007; revised manuscript received 5 April 2007; published 13 August 2007�

We consider a nondegenerate three-level cascade laser with a subthreshold nondegenerate parametric oscil-
lator coupled to a vacuum reservoir. Applying the pertinent master equation, we analyze the squeezing and
entanglement properties of the two-mode light produced by this quantum optical system inside and outside the
cavity. We also determine the normalized second-order correlation function for the two-mode light as well as
for individual mode. We find that the light generated by this system is in a two-mode squeezed state and the
state of the system is strongly entangled at steady state. Moreover, the presence of the parametric oscillator
leads to an increase in the degree of squeezing and entanglement. We also find that the intermode correlation
decreases as the injected atomic coherence decreases in the system.
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I. INTRODUCTION

Extensive research has been carried out on the quantum
analysis of the light generated by optical parametric oscilla-
tors �1–14�. These studies show that optical parametric am-
plifiers generate light in a squeezed state with a maximum
intracavity squeezing of 50% below the vacuum level. It has
also been studied that three-level cascade lasers can be con-
sidered as a source of squeezed light under certain condi-
tions. In such lasers, the squeezing is due to the atomic co-
herence which can be introduced either by initially preparing
the three-level atoms in a coherent superposition of the top
and bottom level �15–20� or coupling these levels by external
coherent light �21–23�. When a three-level atom makes a
transition from the top to bottom level through the interme-
diate level, two highly correlated photons are generated. If
these photons are identical, the laser is referred to as a de-
generate three-level laser, and a nondegenerate three-level
laser, which is considered in this paper, otherwise.

In recent years, the topic of continuous-variable entangle-
ment has received a significant amount of attention as it
plays an important role in all branches of quantum informa-
tion and communication protocols �24�. The efficiency of
quantum information schemes highly depends on the degree
of entanglement. A nondegenerate parametric oscillator op-
erating below, near, and above threshold has been theoreti-
cally predicted to be a source of light in an entangled state
�12,25�. Recently, the experimental realization of the en-
tanglement in nondegenerate parametric oscillator has been
demonstrated by Zhang et al. �26�. On the other hand, Xiong
et al. �27� have recently proposed a scheme for an entangle-
ment amplifier based on a nondegenerate three-level laser
when the three-level atoms are injected at the lower level and
the top and bottom levels are coupled by a strong coherent
light. They have found that a nondegenerate three-level laser
can generate light in macroscopic entangled state applying
the entanglement criterion for bipartite continuous-variable

states �28�. Moreover, Tan et al. �29� have extended the work
of Xiong et al. and studied the generation and evolution of
the entangled light in the Wigner representation using the
sufficient and necessary inseparability criterion for a two-
mode Gaussian state proposed by Duan et al. �28� and Simon
�30�. Tesfa �31� has considered a similar system when the
atomic coherence is induced by superposition of atomic
states and studied the entanglement at steady state. More
recently, Ooi �32� has studied the steady state entanglement
in a two-mode � laser.

In this paper, we seek to analyze a nondegenerate three-
level cascade laser with a subthreshold nondegenerate para-
metric oscillator coupled to a vacuum reservoir. In contrary
to the previous studies �27,29� where they have considered
driven atomic coherence, we consider the injected atomic
coherence which can be introduced by initially preparing the
atoms in a coherent superposition of the top and bottom lev-
els. In addition to exhibiting a two-mode squeezed light, this
combined system produces light in an entangled state. To this
end, the aim of this paper is to study the squeezing and
entanglement properties of the two-mode light inside and
outside the cavity at steady state.

Applying the master equation, we obtain equations of
evolution of the expectation values for the cavity mode vari-
ables. The resulting equations are then used to calculate the
quadrature variance for the two-mode light at steady state.
Moreover, using the entanglement measure developed in Ref.
�28�, we investigate the entanglement of the two modes in-
side and outside the cavity at steady state. We also determine
the second-order correlation function for the individual mode
and for the superposition of the two modes. Finally, we cal-
culate the linear correlation coefficient between the two
modes.

II. HAMILTONIAN AND MASTER EQUATION

We consider a nondegenerate three-level cascade laser
with a subthreshold nondegenerate parametric oscillator
coupled to a vacuum reservoir through the port mirror. The
three-level cascade atoms initially prepared in a coherent su-*yob_a@yahoo.com
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perposition of the top and bottom levels are injected into the
cavity at a constant rate ra and removed from the cavity after
a certain time �. We represent the top, intermediate, and bot-
tom levels of a three-level atom by �a�, �b�, and �c�, respec-
tively. We assume that the transitions between levels �a� and
�b� and between levels �b� and �c� to be dipole allowed, with
direct transitions between levels �a� and �c� to be dipole for-
bidden. We consider the case for which the two cavity modes
are at resonance with the two transitions �a�→ �b� and
�b�→ �c� having transition frequencies �ab and �bc, respec-
tively �see Fig. 1�. On the other hand, a pump mode photon
of frequency �=�ab+�bc directly interacts with the nonlin-
ear crystal �NLC� to produce the signal-idler photon pairs
having the same frequencies as the two cavity modes. Fur-
thermore, we consider the case for which the pump mode
emerging from the NLC does not couple the top and bottom
levels. This could be realized by putting on the right-hand
side of the NLC a screen which absorbs the pump mode.

A subthreshold nondegenerate parametric oscillator, with
the pump mode treated classically, can be described by the
Hamiltonian

Ĥ1 = i��â†b̂† − âb̂� , �1�

in which �, considered to be real and constant, is propor-

tional to the amplitude of the coherent light, and â and b̂ are
the annihilation operators for the two cavity modes. The
master equation associated with this Hamiltonian has the
form

d

dt
�̂ = ��â†b̂†�̂ − �̂â†b̂† − âb̂�̂ + �̂âb̂� . �2�

Moreover, the interaction of a three-level atom with the two
cavity modes can be described by the Hamiltonian

Ĥ2 = ig�â†�b��a� + b̂†�c��b� − â�a��b� − b̂�b��c�� , �3�

where g is the atom-cavity mode coupling constant assumed
to be the same for both transitions. In this paper, we take the
initial state of a single three-level atom to be

��A�0�� = Ca�0��a� + Cc�0��c� �4�

and, hence, the density operator for a single atom is

�̂A�0� = �aa
�0��a��a� + �ac

�0��a��c� + �ca
�0��c��a� + �cc

�0��c��c� , �5�

where �aa
�0�= �Ca�0��2, �cc

�0�= �Cc�0��2 are, respectively, the prob-
abilities for the atom to be initially in the upper and lower
levels, and �ac

�0�=Ca�0�Cc
��0�=�ca

�0�� represents the initial
atomic coherence of the atom. Using Eqs. �3� and �5� and
taking into account the interaction of the cavity modes with
the vacuum reservoir, we obtain the master equation for the
laser cavity modes in the good-cavity limit ���g� and in the
linear and adiabatic approximation schemes. By combining
the resulting equation with Eq. �2�, the master equation for
the cavity modes of the system under consideration turns out
to be

d

dt
�̂ = ��â†b̂†�̂ − �̂â†b̂† − âb̂�̂ + �̂âb̂�

+
A�aa

�0�

2
�2â†�̂â − ââ†�̂ − �̂ââ†�

+
�

2
�2â�̂â† − â†â�̂ − �̂â†â�

+
1

2
�A�cc

�0� + ���2b̂�̂b̂† − b̂†b̂�̂ − �̂b̂†b̂�

+
A�ac

�0�

2
��̂â†b̂† + â†b̂†�̂ − 2â†�̂b̂†�

+
A�ca

�0�

2
��̂âb̂ + âb̂�̂ − 2b̂�̂â� , �6a�

where

A = 2g2ra/�2 �6b�

is the linear gain coefficient, �, assumed to be the same for
the two modes, is the cavity damping constant, and � is the
spontaneous atomic decay rate assumed to be the same for all
three levels. The terms proportional to �aa

�0� and �cc
�0�, respec-

tively, describe the gain for mode a and loss for mode b, the
terms proportional to the �ac

�0�, describe the coupling of the
two modes due to atomic coherence induced by the initial
superposition of the top and bottom levels of the three-level
atoms and are responsible for the squeezing obtained in the
cascade laser system. Furthermore, the terms proportional to
� describe the cavity modes’ loss through the port mirror.
Applying this master equation we have derived the equations
of evolution for the moments of the cavity mode variables in
Appendix A.

Now it proves to be more convenient to introduce a new
parameter defined by

�aa
�0� =

1 − 	

2
�7�

with −1
	
1. In view of the fact that �aa
�0�+�cc

�0�=1 and
�ac

�0�2=�aa
�0��cc

�0�, one easily finds

�cc
�0� =

1 + 	

2
�8�

and

�����
�
�����
�����
�
����
�����
��
�

�
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FIG. 1. Schematics of a nondegenerate three-level cascade laser
with a subthreshold nondegenerate parametric oscillator.
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�ac
�0� =

1

2
�1 − 	2, �9�

where we have assumed �ac
�0� to be real for convenience. We

want to carry out our analysis at steady state. Thus, with the
aid of Eqs. �7�–�9�, the steady-state solutions of Eqs.
�A2�–�A9� can be expressed as

�â�ss = �b̂�ss = 0, �10�

�â2�ss = �b̂2�ss = �âb̂†�ss = 0, �11�

�â†â�ss =
�� + A	��16�2 − A2�1 − 	2��
4�2� + A	���2 + �A	 − 4�2�

+
A�1 − 	��2� + A	��2� + A�1 + 	��

4�2� + A	���2 + �A	 − 4�2�
, �12�

�b̂†b̂�ss =
��4� + A�1 − 	2�2

4�2� + A	���2 + �A	 − 4�2�
, �13�

�âb̂�ss =
��4� + A�1 − 	2��2� + A�1 + 	��

4�2� + A	���2 + �A	 − 4�2�
. �14�

We observe that Eqs. �12� and �13� respectively represent
the steady state mean photon number of the cavity modes a
and b. These equations are physically meaningful if
��2+�A	−4�2��0, where ss stands for steady state. We
then interpret

4�2 = �2 + �A	 �15�

as the threshold condition for the system under consider-
ation. According to Eq. �15�, the expression on the right-
hand side cannot be negative. This holds true provided that
	= ��cc

�0�−�aa
�0���0 �since �A�. Moreover, since we have

considered a subthreshold nondegenerate parametric oscilla-
tor, the value of � is constrained by the inequality ��� /2.

III. QUADRATURE SQUEEZING

In this section, we seek to determine the quadrature vari-
ance for the two-mode light inside and outside the cavity.

A. Quadrature variance of the two-mode light
in the cavity

We define the intracavity quadrature operators for the
two-mode light as

ĉ+ = ĉ† + ĉ , �16�

ĉ− = i�ĉ† − ĉ� , �17�

in which

ĉ =
1
�2

�â + b̂� . �18�

Using Eqs. �16� and �17� the intracavity quadrature vari-
ance of the two-mode light can be expressed as

�c±
2 = �ĉ±

2� − �ĉ±�2. �19�

In view of Eq. �10� along with Eqs. �16�–�18�, we easily see
that

�ĉ±�2 = 0 �20�

and hence Eq. �19� reduces to

�c±
2 = �ĉ±

2� . �21�

Making use of Eqs. �16�–�18�, we easily find

�c±
2 = 1 + �â†â� + �b̂†b̂� + �â†b̂� + �âb†� ± 1

2 ��â2� + �b̂2� + �â†2�

+ �b̂†2� + 2�âb̂� + 2�â†b̂†�� . �22�

On account of Eq. �11�, the steady-state intracavity quadra-
ture variance of the two-mode light becomes

�c±
2 = 1 + �â†â�ss + �b̂†b̂�ss ± 2�âb̂�ss. �23�

Thus, with the help of Eqs. �12�–�14�, the above equation
takes the form

�c±
2 = 1 +

�4� + A�1 − 	2��8�� + A	�4� − A�1 − 	2��
4�2� + A	���2 + �A	 − 4�2�

+
A�1 − 	��2� + A	��2� + A�1 + 	��

4�2� + A	���2 + �A	 − 4�2�

±
2��2� + A�1 + 	���4� + A�1 − 	2�

4�2� + A	���2 + �A	 − 4�2�
. �24�

In Fig. 2, we plot the intracavity quadrature variance �c−
2

for the two-mode light vs � and 	. This figure indicates that
the system under consideration exhibits two-mode squeezing
and the degree of squeezing increases with the parameter �
which represents the parametric oscillator. Moreover, rela-
tively better squeezing occurs for small values of 	, that is,
when slightly more atoms are initially in the lower level than
in the upper level. On the other hand, Fig. 3 clearly shows
that the effect of the presence of the parametric oscillator is
to increase the intracavity degree of squeezing for small val-
ues of 	. The dotted curve in this figure indicates that
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FIG. 2. �Color online� A plot of the intracavity quadrature vari-
ance of the two-mode light, �c−

2, vs � and 	 for �=0.8 and for
A=100.
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squeezing vanishes for 	=0 and 	=1 which corresponds to
maximum injected atomic coherence, �ac

�0�=1/2, and no in-
jected atomic coherence, �ac

�0�=0, respectively. However, as
can be seen from the solid curve, the presence of the para-
metric oscillator leads to some degree of squeezing for 	
=0.

In Fig. 4, we plot the intracavity quadrature variance of
the two-mode light vs 	 for �=0.38 and for different values
of the linear gain coefficient. We easily see from this figure
that the degree of squeezing increases with the linear gain
coefficient. In addition, as the linear gain coefficient in-
creases, the values of 	 at which the minimum value of the
quadrature variance occurs approaches zero. We thus realize
that better squeezing can be achieved by initially preparing
the atoms in such a way that slightly more atoms are in the
lower level than in the upper level and by increasing the
linear gain coefficient.

B. Quadrature variance of the two-mode light
outside the cavity

The variance of the output mode quadrature operators

ĉ+
out = ĉout

† + ĉout, �25�

ĉ−
out = i�ĉout

† − ĉout� , �26�

in which

ĉout =
1
�2

�âout + b̂out� �27�

with

âout = ��â, b̂out = ��b̂ �28�

can be expressed as

�c±,out
2 = �ĉ±,out

2 � − �ĉ±,out�2. �29�

Now applying Eqs. �25�–�28� and �20�, the steady quadra-
ture variance of the two-mode light outside the cavity can be
put in the form

�c±,out
2 = 1 + ��â†â�ss + ��b̂†b̂�ss ± 2��âb̂�ss. �30�

Upon substituting Eqs. �21� and �23� into Eq. �30�, we get

�c±,out
2 = 1 +

�A�1 − 	��2� + A	��2� + A�1 + 	��
4�2� + A	���2 + �A	 − 4�2�

+
��4� + A�1 − 	2��8�� + A	�4� − A�1 − 	2��

4�2� + A	���2 + �A	 − 4�2�

±
2�2�2� + A�1 + 	���4� + A�1 − 	2�

4�2� + A	���2 + �A	 − 4�2�
. �31�

We clearly see from Fig. 5 that the degree of squeezing of
the two-mode light outside the cavity is less than that of the
intracavity. For instance, for A=100, �=0.8, and �=0.38 the
intracavity squeezing is found to be 69.2% which occurs at
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FIG. 3. Plots of the intracavity quadrature variance of the two-
mode light, �c−

2, vs 	 for �=0.8, A=100 and in the presence of the
parametric oscillator with �=0.38 �solid curve� and in the absence
of the parametric oscillator ��=0� �dotted curve�.
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FIG. 4. Plots of the intracavity quadrature variance of the two-
mode light �c−

2 vs 	 for �=0.8, �=0.38 and for different values of
the linear gain coefficient.
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FIG. 5. �a� A plot of the quadrature variance of the two-mode
light outside the cavity, �c−,out

2 , vs 	 for �=0.8, �=0.38, and A
=100. �b� A plot of the quadrature variance of the two-mode light
inside the cavity, �c−

2, vs 	 for �=0.8, �=0.38, and A=100.
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	=0.108 and for the same parameters the output mode
squeezing is calculated to be 55.3% at 	=0.110. We then see
that the output mode squeezing is less by nearly 14% than
that of the intracavity. It is known that the photons in the two
cavity modes are generated pairwise and highly correlated
and this correlation is the source of squeezing in this system.
However, when photons leave the cavity through the port
mirror, correlated pairs of photons may not leave at the same
time, and hence, there is some finite probability of observing
an odd number of photons inside and outside the cavity. It is
obvious that the probability of observing an odd number of
photons outside the cavity is greater than the intracavity one
�21�. As a result of this, the correlation between the photon
pairs could be destroyed to some extent depending on the
property of the port mirror �or the value of ��. This leads to
the decrease in the degree of squeezing of the output mode.

IV. ENTANGLEMENT ANALYSIS
OF THE TWO-MODE LIGHT

In this section, we wish to study entanglement properties
of the two modes inside and outside the cavity. It is known
that a state of a system � of two modes a and b is said to be
entangled or not separable if it is not possible to express in
the form

� = 	
i

Pi�i
�a�

� �i
�b�, �32�

where �i
�a� and �i

�b� are assumed to be the normalized density
operators of modes a and b, respectively, with Pi�0 and
	iPi=1. A maximally entangled continuous variable state
can be expressed as a co-eigenstate of a pair of Einstein-
Podolsky-Rosen �EPR�-type operators �33� such as x̂a− x̂b
and p̂a+ p̂b. Thus the sum of the variances of these operators
is reduced to zero for the maximally entangled continuous
variable state �28�.

A. Entanglement of the two modes in the cavity

In order to verify the entanglement of the two modes, we
apply the criterion presented in Ref. �28�. According to this
criterion, a quantum state of a system is said to be entangled
if the sum of the variances of the two EPR-like operators û
and v̂ of the two modes satisfy the inequality

�u2 + �v2 � 2, �33�

in which

û = x̂a − x̂b, �34�

v̂ = p̂a + p̂b, �35�

with x̂a= �â†+ â� /�2, x̂b= �b̂†+ b̂� /�2, p̂a= i�â†− â� /�2, and

p̂b= i�b̂†− b̂� /�2 being the quadrature operators for modes a
and b.

The variance of operators û and v̂ can be put at steady
state in the form

�u2 = �v2 = 1 + �â†â�ss + �b̂†b̂�ss − 2�âb̂�ss. �36�

Thus, in view of Eqs. �23� and �24�, the sum of the variances
of the operators û and v̂ takes the form

�u2 + �v2 = 2�c−
2 = 2 +

A�1 − 	��2� + A	��2� + A�1 + 	��
2�2� + A	���2 + �A	 − �2�

+
�4� + A�1 − 	2��4�� + A	�4� − A�1 − 	2��

2�2� + A	���2 + �A	 − 4�2�

−
��2� + A�1 + 	���4� + A�1 − 	2�

�2� + A	���2 + �A	 − 4�2�
. �37�

We easily see from Fig. 6 that �u2+�v2 is less than 2 for
all values of 	 except for 	=1, hence the entanglement cri-
terion �33� is satisfied. This indicates that the state of the
system is entangled at steady state provided that there is
injected atomic coherence. Moreover, the degree of entangle-
ment increases with the linear gain coefficient. On the other
hand, comparison of Figs. 4 and 6 shows that there is a
strong entanglement of the two modes in the cavity when
there is a substantial degree of squeezing. This strong en-
tanglement is observed for relatively small values of 	, that
is, when slightly more atoms are in the lower level at the
initial time. It is also easy to see that the entanglement dis-
appears when the squeezing vanishes. This is due to the fact
that the squeezing and entanglement are directly related as
given in Eq. �37�. Furthermore, Fig. 7 clearly shows that the
degree of entanglement increase due to the presence of the
parametric oscillator.

B. Entanglement of the two modes outside the cavity

The EPR-like operators for the output modes have the
form

ûout = x̂a
out − x̂b

out �38�
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FIG. 6. Plots of �u2+�v2 of the two-mode light in the cavity as
steady state vs 	 for �=0.8, �=0.38, and for different values of the
linear gain coefficient.
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v̂out = p̂a
out + p̂b

out �39�

in which x̂a
out=���â†+ â� /�2, x̂b

out=���b̂†+ b̂� /�2, p̂a
out

= i���â†− â� /�2, and p̂b
out= i���b̂†− b̂� /�2 are quadrature op-

erators for the output modes. Hence, the entanglement crite-
rion for the output modes can be written as

�uout
2 + �vout

2 � 2. �40�

The steady-state variance of the operators ûout and v̂out can
then be expressed as

�uout
2 = �vout

2 = 1 + ��â†â�ss + ��b̂†b̂�ss − 2��âb̂�ss �41�

so that on account of Eqs. �30� and �31�, the total variance of
the operators ûout and v̂out becomes

�uout
2 + �vout

2 = 2�c−,out
2 = 2 +

�A�1 − 	��2� + A	��2� + A�1 + 	��
2�2� + A	���2 + �A	 − 4�2�

+
��4� + A�1 − 	2��8�� + A	�4� − A�1 − 	2��

2�2� + A	���2 + �A	 − 4�2�

−
�2�� + A�1 + 	���4� + A�1 − 	2�

�2� + A	���2 + �A	 − 4�2�
. �42�

Figure 8 shows that the entanglement criterion for the
output modes, Eq. �40�, is satisfied �except 	=1 as before�.
In addition, as can be seen from the same figure, the degree
of entanglement of the output modes is less than that of the
cavity modes. This is because the degree of squeezing of the
output modes is less than that of the cavity modes.

V. NORMALIZED SECOND-ORDER CORRELATION
FUNCTIONS

In this section we analyze the second-order correlation
function for the separate mode as well as for the superposi-
tion of the two modes. Moreover, we calculate the linear
correlation coefficient between the cavity modes. The nor-
malized second-order correlation function for the two-mode
light can be expressed as

g�a,b�
�2� �0� =

�â†âb̂†b̂�

�â†â��b̂†b̂�
. �43�

Since Eqs. �A2� and �A3� are linear differential equations,

we see that â and b̂ are Gaussian variables. Moreover, on

account of Eq. �10�, â and b̂ are Gaussian variables with
vanishing mean. One can then express Eq. �50� in the form
�34�

g�a,b�
�2� �0� = 1 +

�âb̂��â†b̂†� + �âb̂†��â†b̂�

�â†â��b̂†b̂�
. �44�

With the aid of Eqs. �11�–�14�, the steady-state second-order
correlation function takes the form
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FIG. 7. Plots of �u2+�v2 of the two-mode light in the cavity at
steady state vs 	 for �=0.8, A=100, and in the presence of the
parametric oscillator with �=0.38 �solid curve� and in the absence
of the parametric oscillator �=0 �dotted curve�.
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g�a,b�
�2� �0� = 1 +

��2� + A�1 + 	��2

�
, �45a�

where

� = �� + A	��16�2 − A2�1 − 	2��

+ A�1 − 	��2� + A	��2� + A�1 + 	�� . �45b�

We plot, in Fig. 9, the second-order correlation function
for the two-mode light in the presence and absence of the
parametric oscillator. We easily see from this figure that
g�a,b�

�2� �0� increases with 	 in both cases. We also see from the

same figure that the effect of the parametric oscillator is to
decrease the second-order correlation function. As this func-
tion deals with the correlation between the photon numbers,
as already seen in the plots, it would not be a direct measure
of the squeezing as well as entanglement in this system.
However, as we will see below, it could be an indirect infer-
ence for the existence of squeezing and entanglement as it
exhibits quantum correlation that violates certain classical
inequalities.

It is then essential to calculate the second-order correla-
tion function for the individual mode to have an insight for
the previous result. To this end, the second order correlation
function for mode a is given by

g�a,a�
�2� �0� =

�: n̂an̂a:�
�n̂a�2 , �46�

where :: represent normal ordering and n̂a= â†â is the photon
number operator for mode a. Since â is a Gaussian variable
with vanishing mean, one can easily verify with the help of
Eq. �11� that

g�a,a�
�2� �0� = 2. �47�

Similarly, the second-order correlation function for mode b is
found to be

g�b,b�
�2� �0� = 2. �48�

We note that expressions �47� and �48� represent the
second-order correlation function for light in a chaotic state.
Thus, the cavity modes are separately in a chaotic or thermal
state. Now comparing �g�a,b�

�2� �0��2 with g�a,a�
�2� �0�g�b,b�

�2� �0� we

easily see that �g�a,b�
�2� �0��2�g�a,a�

�2� �0�g�b,b�
�2� �0�. This is a viola-

tion of the Cauchy-Schwarz inequality �34�. Therefore, we
infer from this result that the two-mode light exhibits
quantum-mechanical correlation which is the source for the
squeezing as well as entanglement in our system.

In order to quantify the correlation between the two
modes, we introduce the linear correlation coefficient defined
as �35�

J�n̂a, n̂b� =
cov�n̂a, n̂b�
��na

2��nb
2

, �49�

where �na
2 and �nb

2 are the variances of the photon number
for modes a and b, respectively. The covariance of the pho-
ton numbers is defined by

cov�n̂a, n̂b� = �n̂an̂b� − �n̂a��n̂b� . �50�

It can be verified, using the fact that â and b̂ are Gaussian
variables, in the steady state that

cov�n̂a, n̂b� = �âb̂�ss�â†b̂†�ss. �51�

Further, since the cavity modes are separately in a chaotic
state the variances of the photon numbers obey the relation
for a chaotic state, �na

2= �n̂a�+ �n̂a�2 and �nb
2= �n̂b�+ �n̂b�2. On

account of this fact and Eq. �51�, the linear correlation coef-
ficient takes the form

J�n̂a, n̂b� =
�âb̂�ss�â†b̂†�ss

��n̂a�ss + �n̂a�ss
2 ��n̂b�ss + �n̂b�ss

2
. �52�

In Fig. 10, we plot the linear correlation coefficient vs the
parameter 	. We clearly see from this figure that the inter-
mode correlation is maximum at 	=0 and minimum at 	
=0 which correspond to the maximum injected atomic co-
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FIG. 9. Plots of the normalized second-order correlation func-
tion for the two-mode light, g�a,b�

�2� �0�, at steady state vs 	 for �

=0.8, and A=10, in the absence �dotted curve� and in the presence
�solid curve� of the parametric oscillator.
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herence, �ac
�0�=1/2, and no injected atomic coherence, �ac

�0�

=0. It is also easy to see that the degree of intermode corre-
lation decreases with 	 similar to the injected atomic coher-
ence which varies according to Eq. �9�. Moreover, the degree
of intermode correlation increases with the linear gain coef-
ficient which is consistent with the squeezing and entangle-
ment. We notice that there is a critical value of the atomic
coherence �or degree of intermode correlation� that exhibits
maximum squeezing and entanglement in this system. In
general, the degree of squeezing and entanglement increases
with the atomic coherence �or degree of intermode correla-
tion�. Furthermore, to see the effect of the parametric oscil-
lator on the degree of intermode correlation, we plot in Fig.
11, the linear correlation coefficient vs 	 for different values
of � �which represents the parametric oscillator in our sys-
tem�. We notice from this figure that the presence of the
parametric oscillator enhances the intermode correlations.
This is due to the fact that the nondegenerate parametric
oscillator produces highly correlated pairs of photons.

VI. CONCLUSION

We have studied the entanglement and squeezing proper-
ties of the two-mode light generated by a nondegenerate
three-level laser with a subthreshold nondegenerate paramet-
ric oscillator. We have obtained the master equation in the
good-cavity limit and in the linear and adiabatic approxima-
tion schemes. Applying the master equation, we have derived
equations of evolution of the moments of the cavity mode
variables. Making use of these equations we have calculated
the quadrature variance for the two-mode light inside and
outside the cavity at steady state. We have also analyzed at
steady state the entanglement of the two modes inside and
outside the cavity. The normalized second-order correlation
function has been calculated for the individual mode as well
as for the superposition of the two modes. Finally, we have
calculated the linear correlation coefficient between the two
modes.

We have found that the two-mode light exhibits a two-
mode squeezing at steady state when the three-level atoms
are initially prepared in such a way that more atoms are in

the lower level than in the upper level. A relatively better
squeezing has been observed for large values of the linear
gain coefficient and in the vicinity of 	=0, that is, when very
slightly more atoms are in the lower level at the initial time.
We have also found that the effect of the parametric oscilla-
tor is to increase the degree of squeezing over and above the
squeezing obtained from the nondegenerate three-level laser.
Furthermore, it is found that the state of the system is
strongly entangled at steady state. We have shown that the
degree of entanglement in the two-mode light is directly re-
lated to the two-mode squeezing. Whenever there is squeez-
ing in the two-mode light, there exists entanglement in the
system. Since the parametric oscillator introduces additional
squeezing to the system, the degree of entanglement in the
system has been enhanced. We have noticed that the normal-
ized second-order correlation of two-mode light increase as
the degree of squeezing increase, in general. However, the
linear correlation coefficient, which quantifies the intermode
correlation present in the system, increases with the degree
of squeezing. Moreover, the presence of the parametric os-
cillator enhances the intermode correlation over the laser sys-
tem.
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APPENDIX A: EQUATIONS OF EVOLUTION OF CAVITY
MODE EXPECTATION VALUES

In this Appendix, we derive equations of evolution for the
moments of the cavity mode variables applying the master
equation obtained in Sec. II. We note that equation of evolu-

tion for expectation value of an operator Ô can be expressed
in terms of the master equation as

d

dt
�Ô� = Tr
d�̂

dt
Ô� . �A1�

Applying the master equation, Eq. �6a� and using this rela-
tion, we readily obtain the following equations:

d

dt
�â� = −

1

2
�� − A�aa

�0���â� +
1

2
�2� − A�ac

�0���b̂†� , �A2�

d

dt
�b̂� = −

1

2
�� + A�cc

�0���b̂� +
1

2
�2� + A�ac

�0���â†� , �A3�

d

dt
�â2� = − �� − A�aa

�0���â2� + �2� − A�ac
�0���âb̂†� , �A4�

d

dt
�b̂2� = − �� + A�cc

�0���b̂2� + �2� + A�ac
�0���â†b̂� , �A5�
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FIG. 11. Plots of the linear correlation coefficient J�n̂a , n̂b� at
steady state vs 	 for �=0.8, A=10, and for different values of �.

EYOB ALEBACHEW PHYSICAL REVIEW A 76, 023808 �2007�

023808-8



d

dt
�â†â� = − �� − A�aa

�0���â†â� + A�aa
�0� +

1

2
�2� − A�ac

�0����âb̂�

+ �a†b̂†�� , �A6�

d

dt
�b̂†b̂� = − �� + A�cc

�0���b̂†b̂� +
1

2
�2� + A�ac

�0����âb̂� + �â†b̂†�� ,

�A7�

d

dt
�âb̂†� = −

1

2
�2� + A��cc

�0� − �aa
�0����âb̂†� +

1

2
�2� + A�ac

�0���â2�

+
1

2
�2� − A�ac

�0���b̂†2� , �A8�

d

dt
�âb̂� = −

1

2
�2� + A��cc

�0� − �aa
�0����âb̂� +

1

2
�A�ac

�0� + 2�� +
1

2
�2�

+ A�ac
�0���â†â� +

1

2
�2� − A�ac

�0���b†b̂� . �A9�

�1� G. S. Agarwal and G. Adam, Phys. Rev. A 39, 6259 �1989�.
�2� R. Vyas and S. Singh, Phys. Rev. A 40, 5147 �1989�.
�3� L. I. Plimak and D. F. Walls, Phys. Rev. A 50, 2627 �1994�.
�4� J. Anwar and M. S. Zubairy, Phys. Rev. A 45, 1804 �1992�.
�5� K. Fesseha, Opt. Commun. 156, 145 �1998�.
�6� M. J. Collett and C. W. Gardiner, Phys. Rev. A 30, 1386

�1984�.
�7� L. A. Lugiato and G. Strini, Opt. Commun. 41, 67 �1982�.
�8� G. J. Milburn and D. F. Walls, Opt. Commun. 39, 401 �1981�.
�9� G. J. Milburn and D. F. Walls, Phys. Rev. A 27, 392 �1983�.

�10� S. Chaturvedi, K. Dechoum, and P. D. Drummond, Phys. Rev.
A 65, 033805 �2002�.

�11� P. D. Drummond, K. Dechoum, and S. Chaturvedi, Phys. Rev.
A 65, 033806 �2002�.

�12� M. D. Reid and P. D. Drummond, Phys. Rev. Lett. 60, 2731
�1988�; P. Grangier, M. J. Potasek, and B. Yurke, Phys. Rev. A
38, 3132 �1988�; B. J. Oliver and C. R. Stroud, Phys. Lett. A
135, 407 �1989�.

�13� Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, Phys.
Rev. Lett. 68, 3663 �1992�; S. F. Pereira, Z. Y. Ou, and H. J.
Kimble, Phys. Rev. A 62, 042311 �2000�.

�14� H. H. Adamyan and G. Yu. Kryuchkyan, Phys. Rev. A 74,
023810 �2006�.

�15� M. O. Scully, K. Wodkiewicz, M. S. Zubairy, J. Bergou, N.
Lu, and J. Meyer ter Vehn, Phys. Rev. Lett. 60, 1832 �1988�.

�16� K. Fesseha, Phys. Rev. A 63, 033811 �2001�.
�17� N. Lu, F. X. Zhao, and J. Bergou, Phys. Rev. A 39, 5189

�1989�.
�18� N. Lu and S. Y. Zhu, Phys. Rev. A 40, 5735 �1989�.
�19� C. A. Blockley and D. F. Walls, Phys. Rev. A 43, 5049 �1991�.

�20� E. Alebachew, Opt. Commun. 273, 488 �2007�.
�21� N. A. Ansari, J. Gea-Banacloche, and M. S. Zubairy, Phys.

Rev. A 41, 5179 �1990�.
�22� N. A. Ansari, Phys. Rev. A 48, 4686 �1993�.
�23� E. Alebachew and K. Fesseha, Opt. Commun. 265, 314

�2006�.
�24� Quantum Information Theory with Continuous Variables, ed-

ited by S. L. Braunstein and A. K. Pati �Kluwer, Dordrecht,
2003�; C. H. Bennet, Phys. Today 48 �10�, 24 �1995�; D. P.
DiVincenzo, Science 270, 255 �1995�; A. Furusawa et al.,
ibid. 282, 706 �1998�.

�25� K. Dechoum, P. D. Drummond, S. Chaturvedi, and M. D. Reid,
Phys. Rev. A 70, 053807 �2004�.

�26� Y. Zhang, H. Wang, X. Li, J. Jing, C. Xie, and K. Peng, Phys.
Rev. A 62, 023813 �2000�.

�27� H. Xiong, M. O. Scully, and M. S. Zubairy, Phys. Rev. Lett.
94, 023601 �2005�.

�28� L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev.
Lett. 84, 2722 �2000�.

�29� H.-T. Tan, S.-Y. Zhu, and M. S. Zubairy, Phys. Rev. A 72,
022305 �2005�.

�30� R. Simon, Phys. Rev. Lett. 84, 2726 �2000�.
�31� S. Tesfa, Phys. Rev. A 74, 043816 �2006�.
�32� C. H. Raymond Ooi, eprint arXiv:quant-ph/0703084.
�33� A. Einstein, B. Podolsky, and R. Rosen, Phys. Rev. 47, 777

�1935�.
�34� D. F. Walls and G. J. Milburn, Quantum Optics �Springer-

Verlag, Berlin, 1994�.
�35� C. Gerry and P. L. Knight, Introductory Quantum Optics

�Cambridge University Press, Cambridge, England, 2005�.

CONTINUOUS-VARIABLE ENTANGLEMENT IN A… PHYSICAL REVIEW A 76, 023808 �2007�

023808-9


