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The emission characteristics of a vertical-cavity surface-emitting laser �VCSEL� coupled to an external
cavity with a diffraction grating as a frequency-selective element are theoretically analyzed. We introduce
envelope functions for the set of external-cavity modes based on the loci of modes with extremal gain or
frequency in the proper parameter space. Replacing the set of discrete stationary solutions by these envelope
functions, simple analytical expressions are derived for the existence of bistability between a lasing state
strongly affected by the feedback and a state close to the solitary laser emission �in particular the nonlasing
state� and for the frequency of the VCSEL in the grating-controlled regime. It is shown how the initial jump of
the laser intensity during abrupt turn-on can be maximized. By a control of the feedback change, the width of
the hysteresis loop can be increased significantly. The scheme under consideration can be useful in all-optical
photonic switching applications.
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I. INTRODUCTION

This paper is devoted to theoretical investigations of the
influence of delayed spectrally filtered optical feedback on
the operation characteristics of a vertical-cavity surface-
emitting laser �VCSEL�. In edge-emitting semiconductor la-
sers, external frequency-selective optical feedback along is
known to provide stabilization of single-longitudinal mode
operation �1–4� but also to induce bi- or multistability be-
tween different emission states of the laser �5–9�. In particu-
lar, in Ref. �7� a filter-induced bistability between solitary
laser and external cavity states was observed.

Bistability between lasing and nonlasing states and as a
result an abrupt turn-on at threshold was studied experimen-
tally and theoretically in a recent paper for a VCSEL with
optical feedback from a diffraction grating �10�. The bista-
bility arises due to the interplay of the frequency selectivity
of the grating, phase-amplitude coupling and thermal shifts
of the emission frequency. In this paper, we are going to
provide an analytical treatment of these phenomena. In par-
ticular, we will consider the conditions for the existence of
on-off bistability and abrupt turn-on, estimate the rate of fre-
quency shift in the grating-controlled regime, and readdress
the stability analysis of the system and how stability proper-
ties can be tailored by a suitable control of the feedback
phase. The results could serve as guidelines for new experi-
ments and for the design of optimized devices.

This type of bistability could be useful for all-optical
switching in photonic applications. In broad-area devices, the
bistable characteristic might give rise spatial self-localized
emission states �cavity solitons� �11�, which are considered

as “bits” in future all-optical information processing schemes
�12�. Also, frequency-selective feedback provides additional
possibilities for the design of laser schemes with higher con-
trollability in comparison to conventional external optical
feedback �e.g., for chaotic encryption applications�, espe-
cially in conjunction with polarization degrees of freedom.

II. MODEL

Polarization and spin dynamics of a VCSEL based on a
quantum-well active medium can be described in framework
of the so-called spin-flip-model �SFM� �13�. The modified
rate equations describing the polarization dynamics in a VC-
SEL with frequency selective optical feedback from a distant
diffraction grating have the following form �10�:

d

dt
Ē = Ĝ · Ē + F̄ + W̄E,

d

dt
N̄ = �̄ + Ŝ · Ī − W̄N. �1�

Here, the components of the column vector Ē��E+ ,E−� de-
note the slowly varying amplitudes of the left and right cir-

cularly polarized components of the optical field; Ēopt�t�
=Re(Ē�t�exp�i�0t�), where �0 is an arbitrary reference fre-
quency. They are connected to the x̂- and ŷ-linearly polarized
components of the field Ex and Ey by E±= �1/�2��Ex± iEy�.
We introduce also formal vectorial notations Ī, N̄ and �̄ in
order to write the material equations in a compact form.

Thus, Ī���E+�2 , �E−�2� represents the intensity. The vector

N̄��N ,D� represents the carrier populations, where N is the
total population difference between the conduction and va-
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lence bands, D is the difference of the population differences
for the two allowed transitions between the magnetic sublev-
els associated with right and left circularly polarized light.
The vector �̄�����−N� ,−�sD� represents pumping and re-
laxation processes, where � is the normalized injection cur-
rent, which takes the value 1 at the solitary laser threshold.
�s is the decay rate for the difference D which is reduced by
both spontaneous emission and spin-flip relaxation pro-
cesses, � is the decay rate of the total carrier population N
�we use a typical value of 1 /���e=1 ns�. The matrices

Ĝ = ���1 + i���N+ − 1� + i��0 − �

− � ��1 + i���N− − 1� + i��0
	 ,

�2�

Ŝ = − ��N+ N−

N+ − N−
	 , �3�

describe gain, nonlinear refractive index and relaxation pro-
cesses. Here, N±=N±D are the population differences for the
two allowed transitions. �=�a+ i�p denotes the anisotropies.
�a is the anisotropy of the field loss rate �positive �a gives
the ŷ-polarized component a lower threshold�. �p represents
the linear birefringence of the cavity �which gives opposite
frequency shifts for the different linearly polarized fields of
the solitary laser�. � is the mean of the decay rates of the two
linearly polarized components of the field; � is the linewidth
enhancement factor. ��0 is the solitary laser frequency,
which is measured—as all optical frequencies—with respect
to the reference frequency �0. Due to the shift of the cavity
resonance because of joule heating, the solitary laser fre-
quency has the following phenomenological dependence on
the injection current �see, e.g., �8,9��:

��0 = ��0
th − k��� − 1� , �4�

where ��0
th is the value of the frequency at the onset of

lasing and the coefficient k� can be obtained from experi-
ments �corresponding experimentally observed value kJ
= �k� /2	� /Jth and Jth is the solitary laser threshold current�.
The effect of filtered feedback from a diffraction grating is
calculated as

F̄�t� =
1

2	



−


+


d� K̂���

−


+


dt�Ē�t��exp�i��t − t��� , �5�

where K̂��� is the full matrix transfer function of the external
cavity. Only one field round-trip in the external cavity is
considered here. The polarization principal axes of the grat-
ing are aligned with the ones of the VCSEL, but the diffrac-
tion efficiency is anisotropic. The operation frequency of the
laser with feedback will be denoted by �. Hence, the transfer
function can be represented as

K̂��� = �̂h���exp�− i��� + �0�� , �6�

where � is the external cavity round-trip time, and

�̂ =
1

2
��x + �y �x − �y

�x − �y �x + �y
	 . �7�

Here, �x,y represent the feedback strength for the x- and
y-polarized components, where �x,y = �1−r2

2�rx,y / �r2�in�. r2 is
the amplitude reflectivity of the outcoupling mirror of the
VCSEL and rx,y are the corresponding values for the grating
�on peak� for the two orthogonal polarization components,
�in is the VCSEL cavity round-trip time. h��� is a normal-
ized frequency dependent part of the transfer function. For
the Littman configuration considered in the experiment de-
scribed in �10� the light emitted by the VCSEL undergoes a
double reflection from the diffraction grating before return-
ing into the laser. Hence, the transfer function h��� is given
as square of a normalized reflection coefficient of the grat-
ing:

h��� = �exp�− iT�� − �m��
sin T�� − �m�

T�� − �m� 	2

. �8�

Here, �m is the frequency of the main grating maximum. 1/T
is the grating bandwidth. It is related to the half width at half
maximum �HWHM� of the double-reflection transfer func-
tion h���, Eq. �8�, by T=x0 /HWHM, where x0 is the root of
the equation �sin x0 /x0�4=1/2 and x0�1.0019. For an arbi-
trary filter with a profile described by the normalized func-
tion 
�w� �see the Appendix for details�, the corresponding
value of x0 for the determination of the HWHM can be ob-
tained from the equation: 
2�x0�=1/2.

For the use in simulations, the above integral equation for

the feedback term F̄�t� is reformulated as a system of differ-
ential equations with delay terms. Making use of the fact that
the Green function describing the effects of a single reflec-
tion from the grating is G�t�=exp�i�mt��sgn�t�−sgn�t
−2T�� / �4T� �see, e.g., �9��, the double reflection from the
grating can be described by two coupled differential equa-
tions �10�:

d

dt
F̄1�t� =

1

2T
�Ē�t − �/2� − Ē�t − �/2 − 2T�exp�i�m2T��

+ i�mF̄1�t� ,

d

dt
F̄2�t� =

1

2T
�F̄1�t − �/2� − F̄1�t − �/2 − 2T�exp�i�m2T��

+ i�mF̄2�t� . �9�

Then, F̄�t�= �̂ exp�−i�0��F̄2�t�.
We take into account the Langevin noise sources W̄E

��W+ ,W−� and W̄N��WN ,WD� that arise from spontaneous
emission processes only, because it is not expected that the
results depend on the details of the noise process. They have
the following form �14�: W±=��n�N±�±�t� and W�N,D�
= �� /2���W+

*E+±W−
*E−+c.c.�, where �n is the spontaneous

emission factor �the normalized fraction of the spontaneously
emitted photons that goes into the lasing modes�; �± are two
independent complex noise sources with zero mean and the
correlation ��±�t��±

*�t��
=2��t− t��. In numerical simulations
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they are represented as �±�t�=�± /��t, where �± are complex
Gaussian random variables �with zero mean and standard
deviation ��i�i

*
=2�, and �t is the time interval over which
the noise is held constant.

To integrate numerically the model equations, a fourth-
order variable-step method has been used. Typical values of
the parameters that have been taken for the numerical simu-
lations of the time evolution of the system are presented in
Table I. The value of k� corresponds to a frequency drift of
kJ=100 GHz/mA for a threshold current of Jth=6 mA �10�.

Normalization. The analysis performed below is per-
formed conveniently in normalized variables. Hence we in-
troduce w as the normalized value of the operating
frequency,

w = T�� − �m� . �10�

Correspondingly, w0
th=T���0

th−�m� denotes the normalized
initial detuning between the �average� cavity resonance and
the grating at the threshold of the solitary laser. Then the
normalized detuning, wm, for a linearly polarized state is
given by

wm = T���0 − �m − �− ��a + �p��− 1�l� , �11�

where l=0�1� corresponds to x̂- �ŷ-� polarized states. Similar
the normalized initial detuning, �, for a linearly polarized
state is

� = w0
th − T�− �� −

k�

�
	�a + �p��− 1�l = wm +

k�

�
m .

�12�

Here, we introduced in addition the normalized values for
the injection current �m� and for the population inversion �n�:

m � T���� − 1� − �− 1�l�a� , �13�

n � T���N − 1� − �− 1�l�a� . �14�

Finally, a normalized feedback strength is

� � �1 + �2T� . �15�

Note that it includes the filter bandwidth and does not de-
pend on the filter shape. It also includes phase-amplitude
coupling.

Steady states �monochromatic solutions� of the system �1�
and �5� in the absence of noise are found in the form E±
=Q±e±i�+i�t. Generally, they can be linearly polarized as well
as elliptically polarized. Below, we consider the case of a
strong linear birefringence of active medium when the syn-
chronization of the two linearly polarized components of the
field is difficult. In that situation, the x- and y-linearly polar-
ized steady-state solutions �or external cavity modes� are
more typical. They were given in �10� and are reproduced in
normalized form in the Appendix.

III. RESULTS

In this section, we concentrate on presenting and discuss-
ing the results that are based on analytical calculations repro-
duced in the Appendix.

Section III A is devoted to the consideration of the steady
state solutions �external cavity modes�. Introducing their en-
velopes as the geometrical locations of the steady-state
points with extremal gain or frequency in the spaces
���0, N� or ���0, ��, we connect the bistability of the en-
velopes with the bistability between an emission state
strongly affected by the feedback and the solitary laser state.
Then, we show when this bistability occurs between the non-
lasing state and a high-amplitude grating-controlled state
�on-off bistability� and an abrupt turn-on of the laser can be
observed.

Conditions for bistability are analyzed in Sec. III B. It is
shown, that they depend only on two generalized parameters
of the system and on the filter shape. Complementary con-
siderations of the laser threshold yield the regions of on-off
bistability and the conditions for maximizing the jump of
amplitude at the abrupt turn-on event.

In Sec. III C, we investigate stability properties of the
external cavity modes and suggest a way to increase the hys-
teresis loop by a control of the feedback phase. Results of
numerical simulations are presented in order to elucidate the
findings.

A. Steady-state solutions and simulations: Basic scenario

The envelope approximation. The analysis starts with a
calculation of the steady-state solutions. A typical example is
presented in Fig. 1�a�, where we analyze the space spanned
by the solitary laser frequency ��0 and the output laser fre-
quency �, and Fig. 1�b�, where we display the space spanned
by the frequency ��0 and the total population inversion N.
In the printed version, dark gray lines �red and green for x-
and y-polarized modes in the online version� denote the lo-
cation of modes satisfying the threshold condition ���th or
m�mth as given by Eqs. �4� and �A14�. In the domain

TABLE I. Table of parameters.

Parameter Description

�=300 ns−1 Mean field decay rate

r2=0.9975 Outcoupling mirror reflectivity

�in=28 fs Laser cavity round-trip time

�=1 ns−1 Decay rate of total carrier population

�=5 Linewidth enhancement factor

�a=0.5	 ns−1 Anisotropic field loss rate

�p=25	 ns−1 Linear birefringence of medium

�s=40 ns−1 Decay rate for difference D

�x=60 ns−1 Feedback strength for x axis

�y =10 ns−1 Feedback strength for y axis

�=1.4 ns External cavity round-trip time

�n=10−5 Spontaneous emission factor

�t=10 ps Noise-constant interval

HWHM=24	 GHz Filter half width at half maximum

k�=2	�600 GHz Normalized thermal frequency drift
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���0, N�, the threshold line has the simplest shape: ��0
=��0

th−k��N−1�.
The envelopes of the steady state sets in the spaces ���0,

N� or ���0, �� are the geometrical locations of the extremal
�maximal or minimal� steady-state points in the correspond-
ing space. They are calculated in the Appendix; see Eqs.
�A19� or �A22� and �A23�. The black lines in Fig. 1 denote
the ���0, ��- and ���0, N�-lower envelopes �Ewl and Enl

correspondingly�, which are considered below in more detail.
Bistability. The envelopes Ewl and Enl in Figs. 1�a� and

1�b� are S-shaped. The two limit points are denoted by open
circles ��� and are obtained from Eqs. �A19� and �A27�.
Hence, in the area between the two limit points there is the
possibility of bistability between two different emission
states with the same polarization. One is strongly affected by
the feedback, whereas the other one corresponds essentially
to the emission of the solitary laser �see the frequencies in
Fig. 1�a��. In between there is a third steady-state solution
which is always unstable �the two others might be stable or
unstable depending on parameters�.

Crosses ��� denote the threshold points where the laser
switches on, if the current is increased from zero. They are
given by Eqs. �A35� and �A36� under the condition m=n. In
the domain ���0, N�, the determination of threshold is par-
ticularly simple: For the nonlasing solution, increasing the
current corresponds to a movement along the line N
=−��0 /k�+1+��0

th /k� starting in the lower right corner.
The threshold is encountered where this line intersects with
the envelope of the set of steady states. The slope is given by
−1/k� which is fixed for a specific device, but the threshold
can be varied by changing the threshold solitary-laser fre-
quency ��0

th, which corresponds to moving the line up and
down. In particular, it can be arranged that the threshold
point is between the two limit points. In that case, there is
bistability between the feedback-effected state and the off-
state between the threshold point and the right limit point. An
abrupt �subcritical� turn-on of the laser is encountered to a
high-amplitude emission because the threshold steady-state
�cross� is unstable and the laser moves to the state on the
lower envelope.

Numerical simulation. The above statement becomes
more obvious by looking at Fig. 2. It is presenting the evo-
lution of the averaged intensities and of the averaged fre-
quencies for the Ex- and Ey-polarized components, when the
injection current is increased or decreased. The analytically
obtained steady-state set is superimposed in the same plot.
Figure 2 demonstrates that the off-state becomes unstable at
about ��0.946, where an antimode with the minimal inten-
sity collides with the off-state, but that lasing x-polarized
external cavity modes appear considerably below this thresh-
old at ��0.9213. At that point, a saddle-node bifurcation
occurs in the phase space far above the zero intensity level
resulting in the appearance of a mode and an antimode. If the
injection current is increased, more and more modes arise
and the region in phase space with external cavity modes
expands. As it is shown below, the modes with maximal
intensities are stable as a rule. As indicated, the nonlasing
off-state is also stable up to the threshold point. In between,
there is bistability between the stable nonlasing state and
stable lasing states of finite amplitude.

For increasing pump current, the averaged laser intensity
is approximately equal to zero �i.e., showing only spontane-
ous emission noise� up to the threshold point. Then the
x-polarized component switches on rather abruptly to a high-
amplitude state �Fig. 2, lowermost panel�. After that, the in-
tensity of the x-polarized component decreases gradually
again because the operating frequency shifts away from the
frequency of the grating. The laser stays in the grating-
controlled regime with significant amplitude roughly as long
the operating frequency remains within the bandwidth of the
filter. Obviously, the jump of the intensity at turn-on event is
maximal �optimal� or minimal �zero� in the envelope ap-
proximation, when the threshold point coincides with the left
�right� limit point of Fig. 1.

The uppermost panel of Fig. 2 shows that the switch-on of
the laser is accompanied by a significant frequency shift of
the laser �below the switch-on the frequency is the peak of
the amplified spontaneous emission at the cavity resonance�.
At this point, the laser goes from freely running operation
into the grating-controlled regime. Within the grating-
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FIG. 1. �Color online� Sets of the steady states in the domains
�a� ���0 ,�� and �b� ���0 ,N�. Dark gray lines in the printed ver-
sion �red and green lines for x- and y-polarized modes in the on-line
version� denotes lasing modes �above threshold�. Black lines denote
Ewl and Enl envelopes, open circles ��� and crosses ��� denote
limit and threshold points in the envelope approximation. ��0

th

=30	 ns−1, �0�=0, �m=0 other parameters are given in the text.
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controlled regime, the shift rate of emission frequency with
current is changed in comparison to the one for the freely
running regime.

Some details of this scenario and the complications due to
polarization effects are discussed in �10�. This work gives
also experimental evidence for the abrupt turn-on as well as
the change in frequency involved. It is the purpose of the
present paper to study these transitions analytically in the
envelope approximation.

B. Bistability condition

Domains of bistability. Figure 3�a� presents the bistability
domain in the space spanned by the normalized full detuning
wm and the normalized feedback strength �. The left �right�
curve �Bl and Br� �calculated from Eqs. �A19� and �A27��
contains the left �right� limit point of the bistable envelope
�Fig. 1�. They correspond to situations were the jump of the
intensity at the abrupt turn-on event is maximal �or minimal,

i.e., zero�. The shape of the bistability domain in the normal-
ized parameter space �wm ,�� does not depend on any param-
eter of the system and is a function of the filter shape 
�w�
only. Asymptotic expression for the domain boundaries for
the case of a high normalized feedback strength are pre-
sented in the Appendix. The corresponding curves are de-
picted by thin lines in Fig. 3�a�. The bistability domain for a
Lorentzian filter �
�x�=1/�1+x2� is shown also for
comparison.

According to the bistability condition �A30�, bistability
can be found �in an appropriate interval of the initial detun-
ing� only, if the normalized feedback strength is greater than
a value �min=1/y1 determined by the filter shape only. In
Fig. 3�a�, this bistability threshold �min can be identified as
the minimal value of � where the curves emerge. The cor-
responding numerical values for the case of double reflection
from the grating �Littman configuration�, a single reflection
from the grating �Littrow configuration� and for a Lorentzian
filter are �min�1.9, 2.3, and 2.6, respectively. Reformulated
for the original variables, the bistability condition �A30�
reads

�1 + �2�

HWHM
�

1

x0y1
, �16�

where the variables on the right hand side are again only
determined by the filter profile. The corresponding numerical
values for the case of the Littman configuration, the Littrow
configuration and for a Lorentzian filter are 1/ �y1x0�=1.848,
1.648, and 2.598, respectively. Equation �16� confines the
values of the feedback strength ���, of the filter width
�HWHM� and of the line-width enhancement factor ���. The
interval of values of the frequency ��0 where the bistability
exists increases with increasing feedback strength and in-
creasing linewidth enhancement factor, and with narrowing
the grating bandwidth.

Equation �A33� connects the averaged frequency shift rate
in the grating controlled regime r−1 with the normalized
feedback strength � �Eq. �15��. More exactly, r is the ratio of
the frequency shift rates in the free running and in the grating
controlled regimes and can be easily found in the experi-
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FIG. 2. �Color online� Evolution of the averaged intensities
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2� and of the averaged frequencies ���x
 and
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� for Ex- and Ey-polarized components �averaging time is
200 ns with sampling step 0.08 ns� versus �b� injection current or
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results obtained from numerical simulations for the x and y compo-
nent, respectively �in the online version the curves for the x and y
component are black and blue, respectively�. The thin lines denote
the analytically obtained steady-state solutions �x: light gray in print
version; green in online version�. �n=10−5, the other parameters are
the same as for Fig. 1.
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�A46� for the parameters of Fig. 1.
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ment. For this characteristic, the bistability condition can be
written in a very simple form r�2 �Eq. �A34��. In the above
mentioned experiment �10� the ratio r was about 2.5. Hence
the observed shift rate and the observation of bistability are
self-consistent.

Threshold conditions. To find the domain of bistability
between the off-state and a grating-controlled state �denoted
short as on-off bistability domain in the following� we have
to add the threshold conditions determined by Eqs. �A35�
and �A36� to the above considerations. Figure 4 presents the
normalized threshold injection current m and the correspond-
ing normalized output laser frequency w versus the initial
detuning � for the normalized feedback strength �=4.08 for
the parameters of Fig. 1 �for the x-polarized component�. The
functional forms of the threshold conditions �A35� and �A36�
in the space �� ,m� and of Eqs. �A22� and �A23� for the
envelope curve En

l in the space �wm ,n� are the same. The
only difference is that the parameter � is replaced by ��. The
numerical values of the parameters used here are �=5 and
��=−7.6. Hence the main minimum in the �� ,m� domain
�Fig. 4� is somewhat more pronounced and is slanted in the
opposite direction compared to the curve En

l in the space
�wm ,n� �Fig. 1�. Obviously, bistability exists only in a limited
interval of initial detunings. A change in slope of the operat-
ing frequency versus initial detuning is also apparent in the
grating controlled region.

On-off bistability regions. Finally, Fig. 5 combines the
bistability domain in the �� ,wm� space �black bold curves�
and the threshold curves �T� corresponding to different ini-
tial detuning �. The threshold curves presented in the figure
can be divided into four groups depending on the value of
the initial detuning �. The first group �curves 1, 2, 3, 4�
includes curves touching the right bistability boundary �Br�
and intersecting the left one �Bl� �see the Appendix for de-
tails�. The corresponding normalized detunings are smaller
than a critical detuning ��3� �����3�� given by Eq. �A47�
�the reason for this notation will become clear below�. The
on-off bistability domain for these detunings is situated be-
tween the right bistability boundary Br and the threshold
curve T above �and to the right of� the contact point. The
latter is the on-off bistability threshold for a fixed initial de-
tuning �. At this point, the conditions for the bistability

boundary and for the threshold curve coincide, i.e., it corre-
sponds to a codimension-2 point requiring the tuning of two
parameters. Hence we denote it by �wm�2�, ��2�� �the corre-
sponding value of the detuning � is denoted as ��2��. It is
given by Eqs. �A45�, �A19�, and �A27�. The point corre-
sponds to a transition between supercritical and subcritical
�below or above the point, respectively� turn-on behavior,
where the jump of the laser intensity is still zero at the
codimension-2 point. For stronger feedback levels �, the
threshold curves T tend to the asymptotic line given by Eq.
�A40��.

For the initial detuning �=��3� the threshold curve T
�curve 5� passes through the bistability threshold �or the cusp
point�. The superscript �3� indicates that a tuning of three
parameters is necessary to achieve this situation.

The third group of threshold curves �T� with ��3���
�	 �curves 6, 7, 8� touches the left bistability boundary �Bl�
and intersects the right one �Br�. �For the curves 6 and 7, the
points of contact are rather close to the cusp of the bistability
curve B and difficult to resolve in Fig. 5. The corresponding
values of wm�2� can be retrieved also from Fig. 3�b�. For the
curve 8, this point is outside the displayed region at �
�29.9.� Again, the threshold T is supercritical below the
point of contact �wm�2� ,��2�� and subcritical above. The
asymptotic behavior for strong feedback is in agreement with
Eq. �A40�.

In some interval of �, these curves contain a point of
self-intersection creating a loop with the shape of a swallow-
tail �curves 5, 6, 7; see Appendix for details; in curve 5 the
swallowtail loop is very small but present at the kink around
�wm ,����3.75,8.9��. This intersection is denoted by
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FIG. 4. The normalized threshold injection current m vs the
normalized initial detuning � �solid line� and the corresponding
normalized output laser frequency w �dashed line� for �=4.08
��=0.8� in accordance with Eqs. �A35� and �A36�; the other
parameters are the same as for Fig. 1.
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FIG. 5. �Color online� Bistability domain in the space spanned
by the normalized feedback strength � and the normalized full de-
tuning wm �thick line�, and threshold curves �thin lines� correspond-
ing to different normalized initial detuning � in the same parameter
space. The curves 1 ,2 , . . . ,9 correspond to �= �−6.45,−4.82,
−3.19,−1.56,−0.1333,0.83,1.69,2.89,3.32�. �For comparison, the
frequency ��0

th=30	 GHz−1 from Fig. 1 corresponds to the nor-
malized detuning �=−2.45.� The other parameters are the same as
for Fig. 1. The inset shows an enlargement around the point of
self-intersection of curve 8.
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�wc
m ,�c� and arises at ���1+�2 /z1 due to a swallowtail

catastrophe. �Here, z1 is again a constant determined by the
filter shape only; see Eq. �A44� and the subsequent discus-
sion for details.� Curve 5 depicts the situation just beyond the
catastrophe took place.

The “swallowtail triangle” disappears starting from the
lower angle when the detuning increases between values cor-
responding to the curve 7 and 8, but the point of self-
intersection persists as a point of intersection of two
branches of the curve. For curve 8, one of the branches is
hardly distinguishable from the Bl curve, both running al-
most vertically on the scale of the full frame of Fig. 5. It
is—as well as the point of self-intersection at �wc

m ,�c�
��3.0,13.6�—resolved in the inset. For curve 9, the point of
self-intersection is at �wc

m ,�c���5.8,23.8�, i.e., outside of
the range of the figure. The destruction of the swallowtail
loop is related to the fact that the threshold curve is only
defined with respect to the lower envelope En

l so that one of
the branches of the curve 8 and 9 visible in the figure termi-
nates at the points �2.9, 13.2� and �3.3, 15.7�, correspond-
ingly. Only the parts of the T curves to the right of the point
�wc

m ,�c� are interesting for our considerations.
A special point ��c

�2� ,�c
�2�� is defined by the event when

the point of contact �wm�2� ,��2�� coincides with the point of
self-intersection �wc

m ,�c�. For ���c
�2� and ���c

�2�, the
jump of the laser intensity from the off-state is maximal at
the point of contact. The on-off bistability domain lies be-
tween the curves Br and T above the point of their intersec-
tion, i.e., the on-off bistability threshold in this case. For the
detunings �c

�2����	, the feedback strength ��2� becomes
larger than �c, and the point �wc

m ,�c� has to be considered
as the exchange point between sub-����c� and super-
����c� critical switch-on.

Eventually, for ��	 �curve 9�, the threshold curves T do
not touch the curve Bl at all, and the corresponding
switch-on of the laser is supercritical up to the point �wc

m ,�c�
where the supercritical branch of T intersects the subcritical
one with the asymptotic behavior �A40�. Above that point
the switch-on is subcritical.

For higher values of the normalized feedback strength �
�which are not shown in the figure� the threshold curves in
the considered parameter space can demonstrate a more com-
plex behavior due to the influence of the side maxima of the
grating transfer function.

As a summary, Fig. 3�b� depicts the values of ��2� and
m�2� versus the normalized full detuning wm, i.e., the values
of the normalized initial detuning � and the normalized
threshold injection current m where the threshold coincides
with the bistability boundaries.

C. Stability of external-cavity modes and phase control

On-off hysteresis. Returning to the numerical simulations
displayed in Fig. 2, we see that the high-intensity states can-
not be traced far below the switch-on point, if the current is
decreased again. The width of the hysteresis loop does not
exceed the distance between two adjacent saddle-node points
where the corresponding adjacent external-cavity modes dis-

appear. The width of this interval can be roughly evaluated
as 2	r / ��k�� �for a variation of current�. This means that
below the threshold the system prefers—after the destruction
of an external-cavity mode by a saddle-node bifurcation—to
switch to the stable off-state rather than to the adjacent stable
mode with higher intensity, i.e., the trivial off-state is more
attractive. The disappearance of the mode by a saddle-node
bifurcation is related to the change in the full feedback phase
� �determined by Eq. �A12�� accompanying the current-
induced frequency shift.

Hence we investigate the possibility to control the phase
�0��� ��0��0�� in order to keep the system on the same
external-cavity mode. This is achieved by making �0��� cur-
rent dependent in order to fulfill the condition �−

n, Eq. �A24�,
for all currents. In the experiment, this might be imple-
mented using a piezo-electric transducer on the feedback
mirror. Results taking into account this phase control �0���
are shown in Fig. 6. The system evolves close to the
���0 ,N� envelope without switchings and hysteresis phe-
nomena on a single external-cavity mode with fixed polar-
ization. The turn-on–turn-off hysteresis loop is much wider
than in the case without phase control, its size approaching
the maximal possible one given by the distance between the
limit and threshold points. Nevertheless, the system switches
to the off-state evidently before the limit point at ��0.925,
if the current is decreased �see Fig. 6�.

Stability of high-intensity modes. A closer inspection
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FIG. 6. �Color online� The same as Fig. 2, but with additional
phase control in accordance with Eq. �A24�.
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shows that the system evolves—after the abrupt turn-on—
typically not towards the maximal gain mode but to an adja-
cent one and stays on it on average. For the parameters con-
sidered here, this winning mode is the third one labeled
according to decreasing power �the maximal gain mode or
envelope mode would be the first one in this terminology�. It
is the second one labeled by the value of the frequency
�counting from the mode with minimal frequency�. The an-
timodes are not included in these enumerations because they
form continues branches with the corresponding mode. Thus
the simulations indicate that the system reaches approxi-
mately the saddle-node point for the considered winning
mode, if the current is decreased, and again switches off to
the more attractive off-state. Let us note that the external-
cavity modes displayed in Fig. 6 also obey the phase depen-
dency �A24�.

Figure 7 presents the first four external cavity modes with
their stability in the ���0 ,�� and �� , �E�2� domains when the
phase control is turned on. The external-cavity antimodes
connected with these modes are also shown partially. Stable
solutions are marked by � and unstable ones by �. We have
calculated Lyapunov exponents for the marked points and
give here only the final results regarding the modes stability
omitting the details. For convenience, we will denote the
mode by two numbers like 1�4� referring to the enumeration
using the frequency �intensity� as a reference. For these pa-

rameters, the combinations are 1�4�, 2�3�, 3�1�, and 4�2�. In
the figure, we do not show the complete intervals of � and
��0 analyzed, but for a better visual resolution of the modes
we limit the displayed area to a smaller range, though we
will discuss the full range.

The minimal frequency mode 1�4� is unstable for all val-
ues of current except the small interval of �
� �1.005,1.00731� �or ��0� �12 GHz,10.614 GHz��, being
in the close vicinity of the saddle-node bifurcation point of
the mode at ��1.00732 ���0�10.607 GHz�. The winning
mode 2�3� is stable for both intervals directly adjacent to its
saddle-node points: �1� �� �1.023,1.027� ���0

� �1.4 GHz,−1.4 GHz��; �2� �� �0.925,0.956� ���0

� �60.2 GHz,41.3 GHz��. The envelope �maximal gain�
mode 3�1� is stable for the intervals: �1� �� �1.08,1.104�
���0� �−33 GHz,−47.3 GHz��; �2� �� �1.046,1.061�
���0� �−12.6 GHz,−21.5 GHz��; �3� �� �0.922,0.968�
���0 : �61.7 GHz,34.3 GHz��. The saddle-node point for this
mode is ��0.921 ���0�62.2 GHz�. The mode 4�2� is al-
ways unstable.

Attractive mode. Analyzing the stability of the modes for
low injection currents ��1, we can conclude that the rather
wide stability interval for the winning mode 2�3� is included
in the even wider stability interval of the envelope mode
3�1�. Both these modes are stable for the threshold current
corresponding to the abrupt turn-on event. Nevertheless, as
the numerical simulations have shown, the redshifted mode
2�3� is more attractive. Moreover, moving along this state,
the system frequently displays small oscillations in the vicin-
ity of the mode, which on average give the frequency and
intensity of this mode. Comparing the characteristic expo-
nents of the external-cavity modes in their instability inter-
vals, it can be readily observed that the number of the expo-
nents with positive real part �and, for unambiguity, with
positive imaginary part� is equal to one for the most reddish
mode 1�4�. This number reaches two for the winning mode
2�3� for a subinterval of its instability interval, three for the
envelope mode 3�1�, and four for the mode 4�2�. Thus we
can conclude that more bluish modes are more unstable in
terms of the dimension of the unstable manifold.

It is worth noting, that the switch-on event is a stochastic
process and depending on noise-realization different stable
final states can be reached though the mode 2�3� seems to
have the greatest basin of attraction by far. In particular, we
have also observed the transition to the most reddish mode
1�4�. If it has been selected in the transient, the system will
also remain on it, if the current is changed.

Let us shortly list other qualitative regularities observed
for the stability of the modes. �1� Considering the instability
of the envelope mode 3�1� for rather high injection currents,
we observe that it is connected with perturbations by or-
thogonally polarized components. �2� For injection currents
between the limit point and the left Hopf point of the enve-
lope mode, we could not find stable solutions in numerical
simulations even if the phase is varied. �3� In tendency, the
chances to find a stable mode are better close to its saddle-
node point than far away from it.

Figure 8 demonstrates the typical observation that the
mode with maximal or highest gain can be unstable for the
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case of frequency-selective feedback in contrast to conven-
tional feedback �15�. Modes close to the maximal gain mode
with smaller gain but lower frequency can be more stable
than the maximal gain one. In addition, the smaller gain
mode can be also unstable due to a Hopf instability and the
system demonstrates small-amplitude periodic oscillations
instead of stable emission. This situation is hardly affected
by a variation of the feedback phase. For the purpose of
demonstration, in Fig. 8 the injection current was chosen to
be rather high to be in the domain where all modes are un-
stable in linear approximation �right-hand side of Fig. 7�.

We summarize that the amplitudes of the modes chosen
by the system are rather similar to the one of the envelope
mode. In addition, the reduction of the bistability domain due
to the instability of the envelope mode in the vicinity of the
limit point is very small. We demonstrated also that, at least
with phase control, the mode structure can be assessed to a
great extent. Hence we conclude that the envelope approxi-
mation should provide a rather accurate description of the
dynamical behavior under consideration.

IV. SUMMARY AND CONCLUSION

In this work, we derived simple analytical conditions for
the existence of on-off bistability and the abrupt turn-on in
VCSELs with frequency-selective optical feedback in the en-
velope approximation. In addition, the conditions for achiev-
ing a maximal jump of the laser intensity during the abrupt
turn-on are elucidated. Contrary to the case of conventional
feedback the modes adjacent to the maximal gain one can be
more stable. For low injection currents, the vicinity of the
lasing limit point can be unstable. Nevertheless, the envelope
approximation seems to allow for a good qualitative descrip-
tion of the bifurcation structure. It is demonstrate that the
stability properties can be largely altered and wide hysteresis
loops can be obtained, if the value of the feedback phase is
controlled.

We think that these results are valuable in planning further
experiments on bi- and multistability in VCSELs with

frequency-selective feedback. From the point of view of self-
organization in broad-area lasers, it appears to be interesting
to see whether the bistability can lead to localized solutions
�cavity solitons�, i.e., different emission characteristics in
different areas of the device. Another application are photo-
nic devices for all-optical switching.
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APPENDIX

Normalization. The normalized value of the frequency
�w�, the injection current �m�, and for the population inver-
sion �n� are defined in Eqs. �10�, �13�, and �14�. In addition,
we will use the following definitions, which were partially
already introduced in the text, but are repeated for conve-
nience:

w0
th � T���0

th − �m� , �A1�

� � T� , �A2�

� � �1 + �2� , �A3�

�� � � − k�/� , �A4�

�i � �− ��a + �p��− 1�l, �A5�

�i� � �− ���a + �p��− 1�l, �A6�

� � w0
th − T�i�, �A7�

wm � � −
k�

�
m , �A8�
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FIG. 8. Transient dynamics.
�a� The amplitude of x-polarized
component �Ex�, �b� the total popu-
lation inversion N, and �c� the in-
stant frequency �x vs time. The
initial conditions are at the mode
with maximal gain. The param-
eters are �=0.995 and �n=10−8;
the other parameters are the same
as for Fig. 2. The small-amplitude
oscillations for large times are an
asymptotically stable state.
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wm = T���0 − �m − �i� . �A9�

Steady-state solutions. The x- and y-linearly polarized
steady-state solutions of the model were given in �10�. They
are given here in normalized form. The frequency w of a
linearly polarized solution is determined from the transcen-
dent equation:

w − � +
k�

�
m = − �
�w��� cos � − sin �� , �A10�

where 
�w� is the normalized absolute value of the filter
reflectivity �the filter shape or the filter profile�: 
�w�
��h�w /T+�m��, and ��arg�h�−���+�0� is the full feed-
back phase. For the case of a double reflectivity from the
grating �Littman configuration�, the filter profile is


�w� = �sin w/w�2 �A11�

and the full feedback phase

� = − 2w − ��� + �0� . �A12�

The steady inversion and the threshold current are

n = − �
�w�cos � , �A13�

mth = n . �A14�

Instead of Eq. �A10�, the following equation can be used:

w − wm − �n = �
�w�sin � . �A15�

Steady states and threshold curves. The ellipselike curve
containing the steady states of the system under consider-
ation in the space �w, n� has the following shape �from Eqs.
�A13� and �A15��:

n2 + �w − wm − �n�2 = �2
2�w� . �A16�

Taking into account the threshold condition �A14� gives the
following ellipselike curve containing threshold solutions of
the system in the space �w, m�:

m2 + �w − � − ��m�2 = �2
2�w� . �A17�

Envelope approximation. The envelopes of the solution
�or mode� structure in the spaces �m, w� and �m, n� can be
obtained from the corresponding extrema of the curve of
steady states �A16�. Below, having in mind the relation �A8�
between m and wm, we will frequently identify �m, w� and
�wm, w� spaces and the corresponding envelopes. The same
holds for the �m, n� and �wm, n� spaces and their envelopes.
Geometrically, these envelopes can be envisaged as the ex-
trema of the projections of the steady-state surface �A16� in
the three-dimensional �wm, w, n� space onto corresponding
two-dimensional subspaces.

�m ,w� envelope. The envelope Ew in the space �m ,w�
can be found by differentiation d /dn from Eq. �A16� and
using dm /dn=dw /dn=0 �or by taking d /dw and using
dn /dw=
 and dm /dw= finite�. This results in

n − ��w − wm − �n� = 0. �A18�

This expression with taking into account Eq. �A16� results in
the following equation for the envelope:

w − wm = ± �
�w� . �A19�

Here, the upper and the lower signs correspond to the upper
�Ewu� and the lower �Ewl� boundaries of the mode structure
in the space �wm ,w� �or to the maxima and minima for
w�wm��. That is, an arbitrary solution wa of the system �A13�
and �A15� in this space lies between these two envelopes
�or boundaries�. This can be easily understood also directly
from Eq. �A10� leading to

�w − wm� � �
�w� . �A20�

The value of the full feedback phase � corresponding to the
real modes belonging to the upper �Ewu� and lower �Ewl�
envelope is the same as for the case of conventional
feedback:

�±
w = �1 ± 1�

	

2
− �� �A21�

correspondingly, where tan ��=1/�.
�m ,n� envelope. Analogously, the envelope En in the do-

main �m ,n� can be found by differentiation d /dw from Eq.
�A16� and using dm /dw=dn /dw=0 �or by taking d /dn and
using dw /dn=
 and dm /dn= finite�, which results in

w − wm = �
�w��±��1 − �2
�2�w� + �
��w�� ,

�A22�

n = ± �
�w��1 − �2
�2�w� . �A23�

Again, the upper and the lower signs correspond to the upper
�Enu� and the lower �Enl� boundaries of the mode structure
in the space �wm ,n�. These equations can be rewritten using
the value of the full feedback phase � corresponding to the
modes belonging to the envelope: sin �n=�
��w� or

�±
n = �1 ± 1�

	

2
− arcsin �
��w� , �A24�

giving expressions similar to those in Eqs. �A10� and �A13�:

w − wm = − �
�w��� cos �n − sin �n� , �A25�

n = − �
�w�cos �n. �A26�

Bistability. Now, let us consider the lower envelope Ewl

�A19� in the space �wm ,w� in more detail. The limit points
�or bistability boundaries� are determined by dwm /dw=0,
which results in

�
��w� = − 1. �A27�

The limit points lie on the blue side of filter maximum where

��w��0, if this derivative of the profile exists. �If not, the
limit point corresponds to the point of discontinuity of the
derivative 
��w�.� Thus the bistability domain is given by
the inequality:

�
��w� � − 1. �A28�

To obtain the bistability boundaries �B�, Eq. �A27� has to be
solved along with Eq. �A19�. For example, for the case of a

NAUMENKO, LOIKO, AND ACKEMANN PHYSICAL REVIEW A 76, 023802 �2007�

023802-10



double reflection from the grating, the asymptotic behavior
��→ + 
 � of the boundaries is the following. For w→0:�
�wm�3/ �2w� �right boundary in the domain �wm ,�� ,Br�.
For w→	 :��−	2 / �2�w−	�� and wm��	+w� /2, and,
therefore, ��	2 / �4�	−wm�� �left boundary in the domain
�wm ,��, Bl�. These are the boundaries associated with the
main maximum of the transfer function of the grating. For
stronger feedback, analogous bistability boundaries can be
found for any side maximum of the grating choosing the
normalized frequency w inside the corresponding frequency
interval. For the central maximum of an arbitrary filter with a
symmetric profile 
�w�, the asymptotic behavior of the right
bistability boundary Br in the domain �wm ,�� is the same:
i.e., at w→0,

� � wm � −
1


��0�
1

w
. �A29�

This behavior of the right bistability boundary Br means that
the value of the detuning between the solitary laser fre-
quency and the grating frequency on the boundary tends to
the maximal frequency shift ��1+�2 induced by feedback,
which is rather obvious.

Bistability condition and frequency shift rate. From the
above considerations, we can obtain the bistability condition:

� � 1/y1, �A30�

where y1=−min 
��w�. It is obtained from 
��x1�=0 as y1

=−
��x1�. In other words, the bistability threshold corre-
sponds to w=x1, �=1/y1, and wm=x1+y2, where y2
=
�x1� /y1. For this point, the right Br and left Bl boundaries
touch each other forming a “beak” due to a cusp catastrophe.
For the case of a double reflection from the grating consid-
ered here and for the main grating maximum
�x1� �0,	�� : x1=1.30308. . . and y1=0.540116. . . . �The bi-
stability thresholds corresponding to the side grating maxima
for stronger feedback are given by the same formula and
searching for x1 in the corresponding frequency intervals.�
Hence bistability of the envelope function exists only if the
condition �A30� is satisfied. In this case, the bistability do-
main is determined by Eqs. �A28� and �A19�. The bistability
condition in unnormalized variables is discussed in the text,
Eq. �16�.

Introducing ��= ��−1/y1�y1 as a small normalized mea-
sure of the feedback strength � exceeding the bistability
threshold, the bistability boundaries �A27� and �A19� in the
vicinity of the cusp point can be approximately expressed as

w1,2 � x1 � y3����1/2, �A31�

w1,2
m � �x1 + y2� + y2�� ±

2

3
y3����3/2, �A32�

where y3=�2y1 /
�3��x1�. Here, the indexes “1” and “2” in
the left-hand side of the equations correspond to the right
�Br� and left �Bl� bistability boundaries. The first term in Eq.
�A32� is the threshold value of the detuning wm, the second
one describes the common shift of the points w1

m and w2
m at

the boundaries Br and Bl with an increase of � and the touch

of the boundaries in the cusp point, and the third one relates
to the relative shift of these points with respect to each other.

After the subcritical switch-on, the laser frequency moves
along the envelope on average �see Fig. 2; this takes place on
the red side of the filter maximum where 
��w��0�. So, the
shift rate in the grating controlling regime can be roughly
approximated as

r � ����0�/�� � dwm/dw = 1 + �
��w� � 1 + �y1.

�A33�

Here, we have replaced the averaged shift rate by the instan-
taneous rate, and the latter one by its maximal value. The last
equality in Eq. �A33� is correct for a symmetrical profile of
the filter. With this definition, the bistability condition �A30�
can be rewritten as:

r � 2. �A34�

A mean shift rate more convenient for the measurements
would be determined as �r
= �wmax

m −wmin
m � / �wmax−wmin�,

where wmax and wmax
m could be chosen as the frequency and

the detuning exactly after the abrupt switching on event, and
wmin and wmin

m —as the frequency and the detuning for the
state when the laser transits from the grating control regime
to the free running operation. Use of the right limit point
�wr ,wr

m� �corresponding to the Br� instead of the point �wmax,
wmax

m � results in the lower estimation of the mean rate �r

�1+�K�, where K�=
�wr� / �wr−wmin� with wr� �0,x1�
determined from Eq. �A27� �here we neglect by 
�wmin�
which is assumed to be close to 0�. The coefficient K�

��1/−wmin��1−1/wmin
��0��� with �→ +
. For the
“square sinc” profile, the point wmin can be determined, e.g.,
as −	 and the coefficient K� is quickly saturated from the
value �0.123 �wr=x1� at the bistability threshold to the
value 1/	�0.318 �wr=0� with increase of �. Taking into
account of the real switching on point �wmax, wmax

m � together
with the fact that for the high values of the feedback strength
�, the envelopes Enl and Ewl �the loci of the maximal gain
modes and of the minimal frequency modes, correspond-
ingly� can appreciably differ each from other and that the
system tends to evolve more close to Enl, can complicate the
estimation of the mean rate �r
.

Threshold condition. Using Eqs. �A22� and �A23� for the
lower envelope Enl and Eqs. �A8� and �A14�, we can obtain
the threshold condition in the envelope approximation:

w − � = − �
�w�����1 − �2
�2�w� − �
��w�� ,

�A35�

m = − �
�w��1 − �2
�2�w� . �A36�

At a fixed value of the initial detuning ���, Eqs. �A35�
and �A36� along with Eq. �A8� �or Eq. �A22� with the lower
sign� determine the threshold curves T in the space �wm, ��.
Note that Eq. �A35� is reduced to a quadratic equation with
respect to �2 with the additional condition ����−w
+�2

���0 �� and 
 are positive by definition�. For the
case of an arbitrary symmetrical filter profile 
�x�, the
asymptotic behavior of the threshold curves for the main
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central maximum �
��0��0, 
��0�=0, 
�0�=1� at w→0
��→ +
 and � is fixed� is the following:

��1 + ��2 �
1


��0�
��

w
−

�

��
, �A37�

m�1 + ��2� � −
1


��0�
��

w
− ��� −

1

��
	� , �A38�

wm�1 + ��2� �
1


��0�
���� − ���

w
+ �2 −

�

��
+ ���	� ,

�A39�

and, therefore,

� �
− �1 + ����� + �1 + ��2�wm

�1 + ��2�� − ���
, �A40�

� � −
��

�1 + ��2
� − �1 + ��2m . �A41�

Hence, as for the asymptotic behavior of the �right� bistabil-
ity boundary Br �at w→0, Eq. �A29��, the asymptotic behav-
ior of the threshold T �or switch-on event� for strong filtered
feedback in the space �unnormalized feedback strength �,
threshold solitary-laser frequency ��0

th and/or injection cur-
rent �� does not depend on the filter bandwidth and shape
and can be obtained from simple geometrical considerations
�e.g., starting from Fig. 1�b��. Physical considerations put the
following limitations on the parameters: ��0, ��k� /�
=�−���0. The asymptotic expressions �A37�–�A39� are
valid for the case ���0 and w�0 or for the case ���0 and
w�0. The first case corresponds asymptotically to the sub-
critical threshold �abrupt switch-on� and the second one to
the usual supercritical threshold. �The value of ��, see Eq.
�A4�, considered in the numerical section is ��=5−4	
�−7.6 in accordance with �10�. Therefore, the main atten-
tion is put to the case ���0.� Comparing Eqs. �A40� and
�A29�, we can conclude that the slope of the asymptotic
threshold line T is always greater than the one for the right
bistability line Br in the space �wm, �� �with respect to the wm

axis�, except for the case ��=−1/� when these angles are
equal to each other. Hence, for the case ���0, the domain of
on-off bistability is asymptotically between these two lines in
the space �wm, ��. More exactly, the domain can be found
between the right bistabilty boundary Br described by Eqs.
�A27� and �A19� and a part of the threshold curve T obtained
from Eqs. �A35�.

Metamorphoses and catastrophes of the envelopes. Let us
start from some rather obvious characteristics of the enve-
lope En. The fact that the square root in the Eqs. �A22� and
�A23� for the �wm, n� envelope En is defined only for posi-
tive arguments leads to restrictions on the possible values of
the frequency w for the case ��1/y1, namely �
��w� �
�1/�. For lower values of the filtered feedback strength
���1/y1�, the lower Enl and upper Enu branches of the
envelope are continuous functions of the frequency w, and
the normalized inversion n�w� vanishes together with 
�w�
only. This is the situation depicted in Fig. 1. For stronger

levels of feedback, the lower Enl and upper Enu branches of
the envelope corresponding to the opposite signs of Eqs.
�A22� and �A23� are joining each other at the points
wj : �
��wj� � =1/� �see Fig. 9�a� and the enlargement in �b��.
As a result a gap in frequency values w is formed for which
�
��w� � �1/� and the envelope Enl is not defined �see Fig.
9�c��. Let us denote the left point wj as wj1 �0�wj1�x1� and
the right one as wj2 �wj2�x1�. The corresponding values of
the inversion n and of the detuning wm in the points wj are:
n=0 and wj

m=wj +�
�wj� �for wj �0 and 
��wj��0�, at
which wj2

m �wj1
m . �The equations for these points are equiva-

lent to Eqs. �A27� and �A19� for the bistability boundaries
with the replacements: �→�, w→wj, wm→wj

m. See also the
corresponding approximations �A31� and �A32� in the vicin-
ity of the cusp.� Thus the envelope curve Enl in the �wm ,n�
domain �for wm�0� splits into �two� continuous parts, “in-
tersecting” each other, with the distance between the parts in
wm-direction approximately determined by �wj1

m −wj2
m �, which

at the beginning of the splitting is �� 2
3

��1/y3
2��wj2−wj1�3, see

Figs. 9�b� and 9�c�. It can be imagined as a tilted projection
of the transparent 3D pinwheel �or spin top� -like surface
�A16� when the pinwheel rim partly hides the pinwheel axis.
Below, we will be interested in the right point wc

m �wc
m

�wj1
m � of the envelope pseudo-self-intersection Enl�wc1�

=Enl�wc2� with wc1�wc2 �i.e., wm�wc1�=wm�wc2��wc
m and

n�wc1�=n�wc2��nc�. We use the term “pseudointersection”
when the intersection of two curves takes place only in the
corresponding two-dimensional projection and is absent in
the three-dimensional space with the third coordinate w, i.e.,
the curves have different frequencies w in the point of
intersection.

Asymptotically, in accordance with the above consider-
ations �see, e.g., Eq. �A29��, the right point wj1

m of the junc-
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FIG. 9. The envelopes En in ��a� and �b�� the domain �wm ,n�
and in �c� the domain �wm ,w� for �=2.1 �thick lines� calculated by
Eqs. �A22� and �A23�. The thin line in �a� and �b� is the threshold
line for �=0 �Eqs. �A8� and �A14��. Other parameters are given in
the text. Open circles ��� denote limit points calculated by Eq.
�A27�, the triangles gives the limit point �Eq. �A43�� arising due to
the envelope metamorphoses, and squares denote the points where
Enl and Enu are joined due to the metamorphoses.

NAUMENKO, LOIKO, AND ACKEMANN PHYSICAL REVIEW A 76, 023802 �2007�

023802-12



tion of envelopes �with n=0 and minimal frequency wj1� at
�→ +
 tends asymptotically towards the filtered feedback
strength �:

wj1
m � � � −

1

wj1
��0�
. �A42�

In this situation, the branch of the envelope En with fre-
quency w� �−wj1 ,wj1� forms a closed ellipse-like-curve �see
Eq. �A16�� and the branch with w�wj2 �wm�wj2

m � forms a
continuous curve intersecting the first one. In the presence of
additional side maxima of the grating �as for the “square-
sinc” profile�, stronger levels of feedback lead to analogous
metamorphoses of the envelopes near these maxima.

Let us now consider in more detail the events preceding
the splitting of the envelops �for ��1/y1�. For that we need
to find all possible extremal �limit� points of the Enl enve-
lope. The derivative dwm /dw of Eq. �A22� is factored in two
multipliers. The zeros of the first one give exactly the limits
points considered above for the bistability boundaries �Eq.
�A27��. The zeros of the second multiplier are determined
from the following equation:

�21

2
�
2�w��� = 1. �A43�

Analogously, the first multiplier of the derivative dn /dw
from Eq. �A23� gives simply the extremal points of the pro-
file function 
�w�, and the zeros of its second multiplier are
exactly determined by Eq. �A43�. Equation �A43� has solu-
tions only in the case

� � 1/z1, �A44�

where z1=max�1
2 �
2�w���. The corresponding value of the

frequency w=xs can be found from �
2�xs���3�=0. �For the
“square-sinc” profile: xs=1.54687 and z1=0.581026.� Thus,
when the feedback strength � exceeds the threshold value
1/z1, two additional extremal points �a maximum and a mini-
mum� arise both for the dependency wm�w� given by Eq.
�A22� and for the dependency n�w�, Eq. �A23�. Since the
minimum of one function coincides with the maximum of
the other one, and vice versa, the behavior of the envelope
En in the space �wm ,n� near the corresponding extremal
�limit� points has a cusplike shape. These two limit points
collide with each other and disappear, when the feedback
strength � tends to the threshold value �1/z1�+0, and the en-
velope En has a swallowtail-like shape here. For the “square-
sinc” profile under consideration, the above mentioned self-
intersection point �wc

m ,nc� also arises for this value of the
feedback strength �. Similar as in the vicinity of the bista-
bility cusp point, introducing a normalized deviation ��
= ��−1/z1�z1, the above extremal points of the envelope near
the threshold of their appearance are described by formulas
analogous to Eqs. �A31� and �A32�. In particular, w
�xs� �2/�s��−�
2�ws���4��−1/2����1/2. Geometrically, the
formation of the considered swallowtail-like configuration
corresponds to the situation when for the projection of the
pinwheel-like surface �A16�, the pinwheel rim only starts to
hide two diametrically opposite points of the pinwheel axis.

With increasing feedback strength �, one of the cusplike ex-
tremal points of Enl and the corresponding one for Enu tend
to zero level of the normalized inversion n and to each other,
up to the value of �=1/y1 where these envelops are joining
and split �see above�.

Analogous metamorphoses take place for the threshold
dependencies ��w� and m�w�, Eqs. �A35� and �A36� �with
the replacements n→m, wm→�, and �→���, i.e., two ad-
ditional extremal points arise at �=1/z1 and w=xs for these
dependencies also. Thus, in the three-dimensional control pa-
rameter space �wm, �, ��, the point �=1/z1 �and w=xs� with
the corresponding values of ws

m and �s �calculated from Eqs.
�A22� and �A35�� can be considered as a swallowtail catas-
trophe point �where two lines of cusp points are meeting�.
The normalized detunings ws

m and �s depend only on the
profile shape and on the values of � and ��. �For the “square-
sinc” profile and the values of � and �� under consideration,
ws

m�3.793 and �s�−0.2355.�
On-off bistabilty threshold and optimal switch-on. A

codimension-two condition occurs when the threshold curves
T �described by Eq. �A35�� touch the bistability boundaries
B �determined by Eqs. �A19� and �A27�� which corresponds
to the points, where the supercritical switch-on of the laser
transforms to the subcritical one and vice versa. The corre-
sponding normalized initial detuning ��� can be determined
from the following equation:

��2� − wm =
�

1 + �2

k�

�
�w − wm� , �A45�

which has to be solved together with Eqs. �A19� and �A27�.
The corresponding normalized threshold current �m� is given
by

m�2� =
�

1 + �2 �w − wm� . �A46�

A codimension-three condition, for which the laser thresh-
old coincides with the bistability threshold �A30�, takes place
for the following values of initial detuning ��� and of injec-
tion current �m�:

��3� = x1 + y2�1 −
��

1 + �2	 , �A47�

m�3� = −
�

1 + �2 y2, �A48�

where ��k� /� as defined before.
Thus, the value of initial detuning �=��3� determines a

threshold curve in the space �wm ,�� passing through the bi-
stability threshold. In the case ���0, threshold curves with
����3� touch the right bistability boundary Br �but do not
intersect it� and pseudointersect the left bistability boundary
Bl. The point of contact �wm�2� ,��2�� at Br can be determined
as an on-off bistability threshold for the fixed initial detuning
�. That is, the on-off bistability �between lasing and nonlas-
ing state� takes place only for feedback strength ����2�, in
the interval of full detunings wm �or of injection currents m�
between the parts of the threshold T and of the bistability Br
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curves above the point. Below the point, the threshold be-
haviour is supercritical.

The threshold curves with ����3� touch the left bistabil-
ity boundary Bl �but do not intersect it� and pseudointersect
the right bistability boundary Br. A particular shape of the
filter profile can lead to the existence of an upper limit of the
detuning ��max

con � for this behavior. For example, for the
“double-sinc” profile, the value of wm �with the frequency
value w� on the boundary Bl asymptotically tends to 	
�the first zero of the filter profile�, and therefore, �max

con =	.
Due to the catastrophic metamorphoses of the envelope

Enl and, in particular, due to the existence of the pseudo-
self-intersection of Enl in the point �wc

m ,nc� for the values of
feedback strength ��1/z1, the corresponding threshold
curves T can pseudo-intersect themselves in the point
�wc

m ,�c� forming a swallowtail-view loop in the space
�wm ,��, which disappears due to the swallowtail catastrophe

when �c���→1/z1+0. For stronger feedback levels �→ +


and small positive frequencies w→0+0, the threshold curves
T tend to the asymptotic lines �A40�.

The optimal condition for the subcritical switch-on event,
i.e., the condition where the jump in the intensity is maximal,
is achieved in the point of contact �wm�2� ,��2�� of the thresh-
old curve T and the left bistability boundary Bl for �
�1/z1 and �� ���3� ,�max

con �. The upper limit of the optimum
definition can be extended up to the value of �=�c

�2��1/z1

when the left limit point of the envelope Enl coincides with
the point �wc

m ,nc� of its pseudo-self-intersection. The corre-
sponding value of � is reached when the threshold T passes
through the point �wc

m�2� ,�c
�2��: �c

�2���max
con . For stronger feed-

back levels ���c
�2�, this optimum is achieved in the point

�wc
m ,�c� for ���c

�2�.
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