
Quantum vortices in optical lattices

P. Vignolo,1,2 R. Fazio,3,1 and M. P. Tosi1
1NEST-CNR-INFM and Scuola Normale Superiore, I-56126 Pisa, Italy

2INFN, largo B. Pontecorvo 3, I-56127 Pisa, Italy
3International School for Advanced Studies (SISSA), via Beirut 2-4, I-34014 Trieste, Italy

�Received 27 March 2007; published 30 August 2007�

A vortex in a superfluid gas inside an optical lattice can behave as a massive particle moving in a periodic
potential and exhibiting quantum properties. In this paper we discuss these properties and show that the
excitation of vortex dynamics in a two-dimensional lattice can lead to striking measurable changes in its
dynamic response. It would be possible by means of Bragg spectroscopy to carry out the first direct measure-
ment of the effective vortex mass. In addition, the experiments proposed here provide an alternative way to
study the pinning to the underlying lattice and the dissipative damping.
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I. INTRODUCTION

The understanding of the static and dynamical behavior of
vortices has been crucial to describe numerous different situ-
ations in superfluids ranging from liquid helium to high-
temperature superconductors �1,2�. These defects can be cre-
ated by means of an applied magnetic field in
superconductors and by putting the sample into rotation in
superfluid helium, or they can be thermally excited in low-
dimensional systems where the unbinding of vortex-
antivortex pairs is at the core of the Berezinskii-Kosterlitz-
Thouless transition. Low-dimensional superconductors and,
in particular, Josephson junction arrays �JJAs� have been for
many years a natural playground for studying classical and
quantum properties of vortices �3�. A vortex in a JJA behaves
as a massive particle moving in a periodic potential and sub-
ject to dissipation �4�, and under appropriate conditions vor-
tices can show quantum properties such as interference or
tunneling. Among the most interesting experiments per-
formed with vortices in JJAs we mention the observation of
ballistic motion �5�, the measurement of the Aharonov-
Casher effect for a vortex going around a charge �6�, and the
Mott-Anderson insulator of vortices �7�.

Optical lattices for atomic gases, which currently are un-
der intense investigation �8–10�, can behave as tunneling
junction arrays. Experimental evidences of the analogy be-
tween cold atoms and Josephson junctions were the observa-
tion of an oscillating atomic current in a one-dimensional
Bose-Einstein condensate array �11�, and, more recently, the
vortex pinning in a rotating Bose-Einstein condensate in a
square lattice �12�. Theoretically the equilibrium properties
of a vortex in a rotating optical lattice was studied near the
superfluid-Mott insulator transition by Wu and collaborators
�13�.

In this paper we analyze vortex excitations in an optical
lattice in the superfluid regime and show that a superfluid gas
in an optical lattice offers a unique opportunity for a direct
measurement of vortex properties �such as the mass, the cou-
pling to its environment, or the pinning potential� via a
Bragg spectroscopy experiment. This is in contrast to the JJA
case, where only indirect measurements based on transport
properties are available. The Bragg spectroscopy technique

�14–16� has been appealed to for a variety of experiments on
ultracold atomic gases, as, for instance, to probe the dynamic
structure factor of a Lieb-Liniger gas �17�, the effect of a
confining harmonic potential on a one-dimensional Bose gas
�18�, or to detect the presence of Cooper pairs in ultracold
Fermi gases �19�. In optical lattices Bragg spectroscopy has
been considered for a measurement of the excitation spec-
trum of a Bose gas in the Mott-insulator phase �20�, and of
its coexistence with a superfluid phase in a dishomogeneous
cloud �21�.

We consider a Bose gas in the superfluid phase inside a
lattice �22,23�, in a regime where the hopping and the on-site
repulsion between the bosons are competitive. Quantum
fluctuations due to the interplay of the local repulsions and of
the hopping have dramatic consequences for vortex dynam-
ics. In this case a vortex behaves as a macroscopic quantum
particle, moving in a periodic potential with a mass that we
evaluate and show to be directly measurable by Bragg spec-
troscopy. At variance from other recent studies of vortices in
frustrated optical lattices �24–29�, we discuss the dynamical
properties of an individual vortex. In order to achieve this
regime one can either apply a very low frustration by means
of a rotation of the lattice �12� generating only a few and
very weakly interacting vortices, or create a vortex excitation
by means of phase inprinting �30,31�. Of particular relevance
is the very recent observation of vortex pinning in corotating
optical lattices by Tung et al. �12�, which indicates that what
we propose here is within reach of experimental verification.

II. MODEL

We consider a Bose gas at zero temperature inside a
square lattice with lattice constant a and Ns lattice sites. We
assume that the system can be described by a single-band
Bose-Hubbard Hamiltonian �32�

H = −
J

2�
�ij�

b̂i
†b̂j + H.c. + U�

i

n̂i�n̂i − 1� − ��
i

n̂i, �1�

where b̂i
† and b̂i are the creation and annihilation operators

for a boson on the ith site and n̂i= b̂i
†b̂i is the number

operator. The coupling constant U describes the local inter-
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action between bosons, � is the chemical potential, and J is
the matrix element for hopping between nearest-neighbors
sites. The on-site interaction energy and the hopping energy
are given by U=g�dr	w0�r−Ri�	4, J=−��2 /2m�−1�dr w0

*�r
−Ri��2w0�r−R j�, in terms of the Wannier function w0�r� �Ri

is the coordinate of the ith site�. Here g=4��2asc /
�
2�ml�� is the repulsive interaction strength in the case
where the transverse size l� of the lattice is larger than the
scattering length asc.

If the average number of bosons per site n̄ is much larger
than one, the system is equivalent to an array of superfluid
islands. In this regime, which can be easily achieved in the
actual experiments �n̄�104 in Ref. �12��, the field operators

can be approximated as b̂i�
n̄ exp�i�̂i�, with �̂i being the
phase operator on the ith site. The Bose-Hubbard model can
be recast into the quantum phase Hamiltonian

Ĥ = − Jn̄�
�i,j�

cos��̂i − �̂ j� + U�
i

�n̂i
2 − �̃�

i

�n̂i, �2�

where �̃=2U−�−1. The number operator has been ex-
pressed in terms of the fluctuations around its average value
n̄, n̂i= n̄+�n̂i. The number fluctuation operator and the phase
are canonically conjugate variables, ��n̂i ,e

±i�j�=�ije
±i�j. The

regime that we consider throughout this work is Jn̄�U: the
system is deep in the superfluid region, but quantum fluctua-
tions are present and play a crucial role in the vortex dynam-
ics.

III. VORTEX PROPERTIES

The presence of a static vortex inside the lattice can be
described to a good approximation by a phase distribution of
the boson field given by

�i = arctan� yi − y

xi − x
 , �3�

where x ,y are the coordinates of the center of the vortex.
Deep in the superfluid regime and at temperatures much
lower than Jn̄ /KB, phase rigidity ensures that again to a good
approximation, a moving vortex can still be described by Eq.
�3� but with a time-dependent position of the vortex center.
The existence of a vortex mass can be understood qualita-
tively by noting that if a vortex moves of a distance of the
order of a in a time �t=a /v, v being its velocity, the phase
difference ��ij at each bond changes in time as ��ij =�ij�t
+a /v�−�ij�t�. Due to the commutation relation between the
number and phase operators, a time-dependent phase leads to
a contribution to the energy, which is quadratic in the vortex
velocity �see the second term of the right-hand side of Eq.
�2��. The problem of calculating the vortex mass can then be
reduced to find the phase differences across junctions at
times t and t+a /v.

An effective action for a vortex in a lattice can then be
obtained by inserting Eq. �3� in the Bose-Hubbard model in
Eq. �2� and then expressing the resulting action in terms of
the vortex coordinates r�t�= �x�t� ,y�t�� �4�. The on-site repul-
sion term provides a kinetic energy term T= �Mv /2�ṙ2, where
the vortex mass in a lattice of size L is

Mv =

2�l�w2

4asca
2 m ln�L/a� . �4�

The vortex mass thus scales linearly with the boson mass,
increases with the width w of the Wannier function, and de-
creases with the scattering length. Therefore the vortex mass
for the case of bosons in an optical lattice can be easily tuned
either by varying the thickness of the pancake-shaped exter-
nal confinement or by exploiting Feshbach resonances to
control the scattering length. This versatility of such a system
is another advantage over Josephson junctions.

Let us consider for an illustration the 87Rb lattice realized
by Greiner and co-workers �23�, in the case V0=4Er, where
V0 and Er are the well depth of the optical lattice and the
recoil energy, respectively. For such a system in 2D we have
a=426 nm, w�96 nm, l�=5 �m, asc=5.5 nm, and L
=75 �m, and the vortex mass is

Mv � 29m ln�L/a� � 150m � 2.2 � 10−20 gr. �5�

The behavior of the vortex mass as a function of the potential
well depth �which affects w� and of the size of the lattice is
depicted in Fig. 1.

Let us point out that usually in the JJAs, the main inter-
action term entering in the vortex mass is that between adja-
cent sites. Unlike the case of a Bose gas characterized by
short-range interactions, where only on-site interactions are
relevant, in a JJA, intrasite capacities are greater than those
on site. If this condition is fulfilled, the vortex mass does not
depend on the lattice size �4�, on the opposite of Eq. �4�. A
superfluid atomic gas with dipole-dipole interactions would
be closer to a JJA experimental setup.

The effective potential seen by the vortex has been nu-
merically evaluated in the context of JJAs and, in the case of
a vortex moving in the x direction inside a large two-
dimensional array the effective potential is periodic �33�,

Uv�x� = 0.1Jn̄�cos�2�x/a� − 1� . �6�

The potential depth for the vortex is directly proportional to
the hopping term for atoms as a consequence of the fact that
the number fluctuation operator and the phase are canoni-
cally conjugate variables.

In the presence of a vortex the whole array thus behaves
as a macroscopic particle of mass Mv moving in a periodic
potential. For such a macroscopic object one has to also take

Mv/m

L/a

V0/Er

Mv/m

0

200

400

600

50
150

250

54.543.532.521.51

350
300
250
200
150
100
50

FIG. 1. �Color online� The vortex mass Mv �in units of the
boson mass m� as a function of V0 /Er and L /a, for the case a
=426 nm, l�=5 �m, and asc=5.5 nm.
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into account the interaction with the environment, and the
main source of damping is due to the interaction with the
long-wavelength phase modes that are excited during vortex
motion. This damping has been analyzed in detail in the
context of JJAs �see, for example, �34,35��. In this paper for
simplicity we shall just comment on how our results are
modified in accounting for dissipation.

IV. DYNAMIC STRUCTURE FACTOR

We turn to a calculation of the dynamical response of the
Bose gas inside a lattice, both in the absence and in the
presence of a vortex. The central quantity of interest is the
dynamic structure factor, which in a tight-binding scheme
takes the form

S�q,	� =� dtei	t�
i,j

e−iq·�Ri−Rj���n̂i�t��n̂j�0�� . �7�

This spectrum can be measured in experiments of Bragg
spectroscopy �14,15�: two probe laser beams, with frequen-
cies 	1 and 	2=	1+	 and wave vectors k1 and k2=k1+q,
scatter on the boson gas and the spectrum measures the prob-
ability of momentum transfer �q at energy �	 �16�. The
f-sum rule gives the first spectral moment M1�q� as M1�q�
��S�q ,	�	 d	= 1

2� �0	��n̂q� , �Ĥ ,�n̂q
†�	0�, �n̂q being the Fou-

rier transform of �n̂i.
We first consider the case in which no vortex is present.

Inside the superfluid regime �Jn̄�U�, it is enough to con-
sider long-wavelength phase fluctuations, as described by ex-
pansion of the cosine in the phase Hamiltonian up to second
order. In this limit the Hamiltonian is easily diagonalized in
Fourier space by means of the transformations �̂k
= �UNs / ��
k��1/2�âk+ â−k

† � /
2 and n̂k= �Ns�
k /U�1/2�âk

− â−k
† � / i
2, with the result

Ĥ = �
k�BZ

�
k�âk
†âk +

1

2
 , �8�

where 
k
2 = �2Jn̄U /�2��2−cos�kxa�−cos�kya��. Here the qua-

simomentum k= �kx ,ky� is inside the first Brillouin zone. By
taking into account the time dependence of the particle num-
ber fluctuation operator dictated by Eq. �8�, it is straightfor-
ward to obtain the dynamic structure factor as

S�q,	� =
�
q

2U
��	 − 
q� . �9�

The physical interpretation of Eq. �9� is clear: small-q ab-
sorption occurs at a frequency corresponding to the disper-
sion relation of the Goldstone sound mode in the lattice. In
this case M1�q�= �Jn̄ /���2−cos�qxa�−cos�qya��.

The presence of a vortex can induce, besides changes in
the sound wave spectrum, specific contributions associated
with excitations of vortex motions. Several different situa-
tions can be envisaged for the latter, but here we discuss the
interesting case in which the hopping parameter J is suffi-
ciently large that the vortex is pinned to a minimum of the
periodic potential given by Eq. �6�. At variance with the

dynamics of a single vortex in the absence of a lattice that
undergoes precessional motion around the condensate axis
�36�, in this case the vortex dynamics is associated with
small oscillations around its equilibrium position. Thus it can
be described by the harmonic oscillator Hamiltonian

Hv =
1

2
Mvṙ2 +

1

2
Mv
v

2r2, �10�

where we have defined 
v= �0.1Jn̄ /Mv�1/22� /a. By noting
that

��n̂i�t1��n̂j�t2�� =
U2

�2 ���̇
ˆ

i�t1���̇
ˆ

j�t2�� , �11�

using the expression given in Eq. �3� for the phase distribu-
tion and performing the average over the vortex degrees of
freedom with the help of Eq. �10�,

�. . .� =
� e−�0

�Hvd�
¯ Dpath

� e−�0
�Hvd�Dpath

, �12�

where � is the imaginary time, it is possible to write the
contribution of the vortex to the dynamic structure factor as

Sv�q,	� =
�2
v

U2

4�2�

Mva4q2��	 − 
v� . �13�

Instead of a q-dependent resonance as in Eq. �9�, the Bragg
scattering acquires a resonance at a well defined frequency

v indicating that the whole lattice responds collectively
having the properties of a single macroscopic particle, the
vortex. This is the main result of this paper. Under the con-
ditions specified above, the presence of a vortex induces a
resonance at a frequency that allows access to the vortex
mass. Let us remark that this resonant behavior is related to
the presence of the lattice and to the existence of quantum
fluctuations originating from the local repulsion. The Bragg
spectrum of a vortex in a Bose-Einstein condensate is other-
wise determined by a dispersion relation �16�. The peculiar
dependence of the spectral strength in Eq. �13� on the trans-
ferred momentum q is due to the coupling between the ex-
citing radiation and the lattice: at low momentum all phases
in the lattice are excited and the dynamic response is en-
hanced. We finally should comment on the fact that Eq. �13�
does not fulfill the f-sum rule: this should come as no sur-
prise, as this expression is valid only at low energy.

The coupling to long-wavelength phase fluctuations pro-
vides the main dissipation mechanism for the vortex motions
�34,35,37�. To a first approximation this results in Ohmic
damping on the vortex. In the presence of dissipation the
delta function in the dynamical response is smeared and ac-
quires a finite width proportional to the dissipation strength.

V. DISCUSSION AND CONCLUSIONS

In summary, in this paper we have discussed some main
aspects of quantum dynamics of a vortex in an atomic super-
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fluid gas inside an optical lattice. This physical system is
similar to the condensed-matter standard one of a vortex in
JJAs. The main differences between atomic superfluid gases
in optical lattices and JJAs are �i� the role of the on-site
interaction energy in the vortex mass; �ii� the control of this
interaction term, and thus of the vortex mass, via Feshbach
resonances and/or the strength of the transverse confinement;
�iii� the access to the direct measurement of vortex proper-
ties, such as the mass, the coupling to its environment, or the
pinning potential.

We have specifically considered the situation in which the
vortex is pinned by the lattice potential and only executes
small oscillations around its energy minimum. We have
shown that the dynamical response of this system has a reso-
nance frequency, which is q-independent, in contrast with
the case without a vortex. The resonance frequency in the

presence of a vortex, instead, depends on the vortex mass,
and thus a Bragg spectroscopy experiment should allow a
direct measurement of the vortex mass itself.

One can envisage other situations in which to study vor-
tex dynamic: the regime Jn̄�U where vortex tunneling is
important, in the presence of several vortices including
vortex-vortex interactions, or the vortex dynamic in the pres-
ence of defects. Experiments on quantum tunneling or coher-
ence of vortices seem to be within experimental reach.
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