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We analyze a recently proposed method to create fractional quantum Hall �FQH� states of atoms confined in
optical lattices �A. Sørensen et al., Phys. Rev. Lett. 94, 086803 �2005��. Extending the previous work, we
investigate conditions under which the FQH effect can be achieved for bosons on a lattice with an effective
magnetic field and finite on-site interaction. Furthermore, we characterize the ground state in such systems by
calculating Chern numbers which can provide direct signatures of topological order and explore regimes where
the characterization in terms of wave-function overlap fails. We also discuss various issues which are relevant
for the practical realization of such FQH states with ultracold atoms in an optical lattice, including the presence
of a long-range dipole interaction which can improve the energy gap and stabilize the ground state. We also
investigate a detection technique based on Bragg spectroscopy to probe these systems in an experimental
realization.
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I. INTRODUCTION

With recent advances in the field of ultracold atomic
gases, trapped Bose-Einstein condensates �BECs� have be-
come an important system to study many-body physics such
as quantum phase transitions. In particular, the ability to dy-
namically control the lattice structure and the strength of
interaction as well as the absence of impurities in BECs con-
fined in optical lattices has led to the recent observation of
the superfluid-to-Mott-insulator transition �1–5�. At the same
time, there has been a tremendous interest in studying rotat-
ing BECs in harmonic traps; at sufficient rotation an Abriko-
sov lattice of quantized vortices has been observed �6� and
realization of strongly correlated quantum states similar to
the fractional quantum Hall states has been predicted to oc-
cur at higher rotation rates �7–9�. In these proposals, the
rotation can play the role of an effective magnetic field for
the neutral atoms, and in analogy with electrons, the atoms
may enter into a state described by the Laughlin wave func-
tion, which was introduced to describe the fractional quan-
tum Hall effect. While this approach yields a stable ground
state separated from all excited states by an energy gap, in
practice this gap is rather small because of the weak interac-
tions among the particles in the magnetic traps typically
used. In optical lattices, the interaction energies are much
larger because the atoms are confined in a much smaller
volume, and the realization of the fractional quantum Hall
effect in optical lattices could therefore lead to a much higher
energy gap and be much more robust. In a recent paper �10�,
it was shown that it is indeed possible to realize the frac-
tional quantum Hall effect in an optical lattice and that the
energy gap achieved in this situation is a fraction of the
tunneling energy, which can be considerably larger than the
typical energy scales in a magnetic trap.

In addition to being an interesting system in its own right,
the fractional quantum Hall effect is also interesting from the

point of view of topological quantum computation �11�. In
these schemes quantum states with fractional statistics can
potentially perform fault-tolerant quantum computation. So
far, there has been no direct experimental observation of
fractional statistics although some signatures have been ob-
served in electron interferometer experiments �12,13�.
Strongly correlated quantum gases can be a good alternative
where the systems are more controllable and impurities are
not present. Therefore, realization of fractional quantum Hall
�FQH� states in atomic gases can be a promising resource for
topological quantum computations in the future.

As noted above the FQH effect can be realized by simply
rotating and cooling atoms confined in a harmonic trap. In
this situation, it can be shown that the Laughlin wave func-
tion exactly describes the ground state of the many-body
system �7,14�. In optical lattices, on the other hand, there are
a number of questions which need to be addressed. First of
all, it is unclear to what extent the lattice modifies the frac-
tional quantum Hall physics. For a single particle, the lattice
modifies the energy levels from being simple Landau levels
into the fractal structure known as the Hofstadter butterfly
�15�. In the regime where the magnetic flux going through
each lattice � is small, one expects that this will be of minor
importance and in Ref. �10� it was argued that the fractional
quantum Hall physics persists until ��0.3. In this paper, we
extend and quantify predictions carried out in Ref. �10�.
Whereas Ref. �10� only considered the effect of an infinite
on-site interaction, we extend the analysis to finite interac-
tions. Furthermore, where Ref. �10� mainly argued that the
ground state of the atoms was in a quantum Hall state by
considering the overlap of the ground state found by numeri-
cal diagonalization with the Laughlin wave function, we pro-
vide further evidence for this claim by characterizing the
topological order of the system by calculating Chern num-
bers. These calculations thus characterize the order in the
system even for parameter regimes where the overlap with
the Laughlin wave function is decreased by the lattice struc-
ture.*hafezi@fas.harvard.edu
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In addition to considering these fundamental features of
the FQH states on a lattice, which are applicable regardless
of the system being used to realize the effect, we also study
a number of questions which are of particular interest to
experimental efforts toward realizing the effect with atoms in
optical lattices. In particular, we show that adding dipole
interactions between the atoms can be used to increase the
energy gap and stabilize the ground state. Furthermore, we
study Bragg spectroscopy of atoms in the lattice and show
that this is a viable method to identify the quantum Hall
states created in an experiment, and we discuss a method to
generate an effective magnetic field for the neutral atoms in
the lattice.

The paper is organized as follows: In Sec. II, we study the
system with finite on-site interaction. In Sec. III we introduce
Chern numbers to characterize the topological order of the
system. The effect of the dipole-dipole interaction is elabo-
rated on in Sec. IV A. Section IV B studies the case of �
=1/4 filling factor. Section V is dedicated to explore Bragg
spectroscopy of the system. Section VI outlines an approach
for generating the type of the Hamiltonian studied in this
paper.

II. QUANTUM HALL STATE OF BOSONS ON A LATTICE

A. Model

The fractional quantum Hall effect occurs for electrons
confined in a two-dimensional �2D� plane under the presence
of a perpendicular strong magnetic field. If N is the number
of electrons in the system and N� is the number of magnetic
fluxes measured in units of the quantum magnetic flux �0
=h /e, then depending on the filling factor �=N /N� the
ground state of the system can form highly entangled states
exhibiting rich behaviors, such as incompressibility, charge
density waves, and anionic excitations with fractional statis-
tics. In particular, when �=1/m, where m is an integer, the
ground state of the system is an incompressible quantum
liquid which is protected by an energy gap from all other
states and in the Landau gauge is well described by the
Laughlin wave function �16�

��z1,z2, . . . ,zN� = �
j�k

N

�zj − zk�m�
j=1

N

e−yi
2/2, �1�

where the integer m should be odd in order to meet the
antisymmetrization requirement for fermions.

Although the fractional quantum Hall effect occurs for
fermions �electrons�, bosonic systems with repulsive interac-
tions can exhibit similar behaviors. In particular, the Laugh-
lin states with even m correspond to bosons. In this article,
we study bosons since the experimental implementation is
more advanced for the ultracold bosonic systems. We study a
system of atoms confined in a 2D lattice which can be de-
scribed by the Bose-Hubbard model �17� with Peierls substi-
tution �15,18�,

H = − J�
x,y

âx+1,y
† âx,ye

−i	�y + âx,y+1
† âx,ye

i	�x + H.c.

+ U�
x,y

n̂x,y�n̂x,y − 1� , �2�

where J is the hopping energy between two neighboring
sites, U is the on-site interaction energy, and 2	� is the
phase acquired by a particle going around a plaquette. This
Hamiltonian is equivalent to the Hamiltonian of a U�1�
gauge field �transverse magnetic field� on a square lattice.
More precisely, the noninteracting part can be written as

− J�
�ij�

ai
†aj exp	2	i

�0



i

j

A� · dl� � , �3�

where A� is the vector potential for a uniform magnetic field
and the path of the integral is chosen to be a straight line
between two neighboring sites. In the symmetric gauge, the

vector potential is written as A� = B
2 �−y ,x ,0�. Hence, � will be

the amount of magnetic flux going through one plaquette.
While the Hamiltonian in Eq. �2� occurs naturally for

charged particles in a magnetic field, the realization of a
similar Hamiltonian for neutral particles is not straightfor-
ward. As we discuss in Sec. VI this may be achieved in a
rotating harmonic trap, and this has been very successfully
used in a number of experiments in magnetic traps �19,20�,
but the situation is more complicated for an optical lattice.
However, there have been a number of proposals for lattice
realization of a magnetic field �10,21,22�, and recently it has
been realized experimentally �23�. Popp et al. �24� have stud-
ied the realization of fractional Hall states for a few particles
in individual lattice sites. An approach for rotating the entire
optical lattice is discussed in Sec. VI. The essence of the
above Hamiltonian is a nonzero phase that a particle should
acquire when it goes around a plaquette. This phase can be
obtained, for example, by alternating the tunneling and add-
ing a quadratic superlattice potential �10� or by simply rotat-
ing the lattice �Sec. VI�. The advantage of confining ultra-
cold gases in an optical lattice is to enhance the interaction
between atoms, which consequently results in a higher-
energy gap compared to harmonic trap proposals �e.g., Ref.
�7��. This enhancement in the energy gap of the excitation
spectrum can alleviate some of the challenges for experimen-
tal realization of the quantum Hall state for ultracold atoms.

B. Energy spectrum and overlap calculations

In order to approximate a large system, we study the sys-
tem with periodic boundary conditions—i.e., on a torus,
where the topological properties of the system are best mani-
fested.

There are two energy scales for the system: the first is the
magnetic tunneling term J�, which is related to the cyclotron
energy in the continuum limit 
�c=4	J�, and the second is
the on-site interaction energy U. Experimentally, the ratio
between these two energy scales can be varied by varying the
lattice potential height �1,17� or by Feshbach resonances
�4,25,26�. Let us first assume that we are in the continuum
limit where ��1; i.e., the flux through each plaquette is a
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small fraction of a flux quantum. A determining factor for
describing the system is the filling factor �=N /N�, and in
this study we mainly focus on the case of �=1/2, since this
will be the most experimentally accessible regime.

We restrict ourselves to the simplest boundary conditions

for the single-particle states ts�L� �
�xs ,ys�=
�xs ,ys�, where

ts�L� � is the magnetic translation operator which translates the
single-particle states 
�xs ,ys� around the torus. The defini-
tion and detailed discussion of the boundary conditions will
be elaborated in Sec. III. The discussed quantities in this
section, such as energy spectrum, gap, and overlap, do not
depend on the boundary condition angles �this is also verified
by our numerical calculation�.

In the continuum case, for the filling fraction �=1/2, the

Laughlin state in Landau gauge �A� =−Byx̂� is given by Eq.
�1� with m=2. The generalization of the Laughlin wave func-
tion to a torus takes the form �27�

��z1,z2, . . . ,zN� = frel�z1,z2, . . . ,zN�Fc.m.�Z�exp	− �
i

yi
2/2� ,

�4�

where frel is the relative part of the wave function and is
invariant under collective shifts of all zi’s by the same
amount, and Fc.m.�Z� is related to the motion of the center of
mass and is only a function of Z=�izi. For a system on a
torus of the size �Lx�Ly�, we write the wave function
with the help of � functions, which are the proper oscilla-
tory periodic functions and are defined as �� a

b
��z ���

=�nei	��n + a�2+2	i�n+a��z+b� where the sum is over all integers.
For the relative part we have

frel = �
i�j

�

1

2

1

2
�	�zi − zj

Lx
�i

Ly

Lx
�2

. �5�

According to a general symmetry argument by Haldane
�28�, the center-of-mass wave function Fc.m.�Z� is twofold
degenerate for the case of �=1/2 and is given by

Fc.m.�Z� = ��l/2 + �N� − 2�/4
− �N� − 2�/2 �	�2�i

zi

Lx

�2i
Ly

Lx

� , �6�

where l=0,1 refers to the two degenerate ground states. This
degeneracy in the continuum limit is due to the translational
symmetry of the ground state on the torus, and the same
argument can be applied to a lattice system when the mag-
netic length is much larger than the lattice spacing, ��1.
For higher magnetic field, the lattice structure becomes more
pronounced. However, in our numerical calculation for a
moderate magnetic field ��0.4, we observe a twofold de-
generacy ground state well separated from the excited state
by an energy gap. We return to the discussion of the ground-
state degeneracy in Sec. III.

In the continuum limit ��1, the Laughlin wave function
is the exact ground state of the many-body system with a
short-range interaction �7,14,29�. The reason is that the

ground state is composed entirely of states in the lowest Lan-
dau level, which minimizes the magnetic part of the Hamil-
tonian, the first term in Eq. �2�. The expectation value of the
interacting part of the Hamiltonian—i.e., the second term in
Eq. �2�—for the Laughlin state is zero regardless of the
strength of the interaction, since it vanishes when the par-
ticles are at the same position.

To study the system with a nonvanishing �, we have per-
formed a direct numerical diagonalization of the Hamiltonian
for a small number of particles. Since we are dealing with
identical particles, the states in the Hilbert space can be la-
beled by specifying the number of particles at each of the
lattice sites. In the hard-core limit, only one particle is per-
mitted on each lattice site; therefore, for N particles on a
lattice with the number of sites equal to �Nx=Lx /a, Ny
=Ly /a�, where a is the unit lattice side, the Hilbert space size
is given by the combination

	NxNy

N
� =

NxNy!

N!�NxNy − N�!
.

On the other hand, in case of finite on-site interaction, the
particles can be on top of each other, so the Hilbert space is
larger and is given by the combination

	N + NxNy − 1

N
� .

In our simulations the dimension of the Hilbert can be raised
up to �4�106 and the Hamiltonian is constructed in con-
figuration space by taking into account the tunneling and
interacting terms. The tunneling term is written in the sym-
metric gauge, and we make sure that the phase acquired
around a plaquette is equal to 2	� and that the generalized
magnetic boundary condition is satisfied when the particles
tunnel over the edge of the lattice �to be discussed in Sec. III;
cf. Eq. �11��. By diagonalizing the Hamilton, we find the
twofold-degenerate ground-state energy which is separated
by an energy gap from the excited states and the correspond-
ing wave function in configuration space. The Laughlin wave
function �4� can also be written in configuration space by
simply evaluating the Laughlin wave function at discrete
points, and therefore we can compared the overlap of these
two-dimensional subspaces.

C. Results with the finite on-site interaction

The energy gap above the ground state and the ground-
state overlap with the Laughlin wave function for the case of
�=1/2 in a dilute lattice ��0.2 are depicted in Fig. 1. The
Laughlin wave function remains a good description of the
ground state even if the strength of the repulsive interaction
tends to zero �Fig. 1�a��. Below, we discuss different limits.

First, we consider U�0, U�J�: If the interaction energy
scale U is much larger than the magnetic one �J��, all low-
energy states lie in a manifold, where the highest occupation
number for each site is one; i.e., this corresponds to the hard-
core limit. The ground state is the Laughlin state, and the
excited states are various mixtures of Landau states. The
ground state is twofold degenerate �28�, and the gap reaches
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the value for the hard-core limit at large U�3J /�, as shown
in Fig. 2�a�. In this limit the gap only depends on the tunnel-
ing J and flux �, and the gap is a fraction of J. These results
are consistent with the previous work in Ref. �10�.

Second, we consider �U��J�. In this regime, the mag-
netic energy scale �J�� is much larger than the interaction
energy scale U. For the repulsive regime �U�0�, the ground
state is the Laughlin state and the gap increases linearly with
�U, as shown in Fig. 2�b�.

Third, we study U=0 where the interaction is absent and
the ground state becomes highly degenerate. For a single
particle on a lattice, the spectrum is the famous Hofstadter’s
butterfly �15�, while in the continuum limit ��1, the ground
state is the lowest Landau level �LLL�. The single-particle
degeneracy of the LLL is the number of fluxes going through
the surface, N�. So in the case of N bosons, the lowest en-
ergy is obtained by putting N bosons in N� levels. Therefore,
the many-body ground state’s degeneracy should be

	N + N� − 1

N� − 1
� .

For example, 3 bosons and 6 fluxes give a 336-fold degen-
eracy in the noninteracting ground state.

If we increase the amount of phase �flux� per plaquette
���, we are no longer in the continuum limit. The Landau-

level degeneracy will be replaced by
L1L2

s where �=r /s is the
amount of flux per plaquette and r and s are coprime �30�.
Then, the many-body degeneracy will be

�N +
L1L2

s
− 1

L1L2

s
− 1 � .

(a)

(b)

FIG. 1. �Color online� �a� The overlap of the ground state with
the Laughlin wave function. For small � the Laughlin wave func-
tion is a good description of the ground state for positive interaction
strengths. The inset shows the same result of small U. �b� The
energy gap for N /N�=1/2 as a function of interaction U /J from
attractive to repulsive. For a fixed �, the behavior does not depend
on the number of atoms. The inset defines the particle numbers,
lattice sizes, and symbols for both parts �a� and �b�.
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FIG. 2. �Color online� �a� The energy gap as a function of �U
and � for a fixed number of atoms �N=4�. The gap is calculated for
the parameters marked with dots, and the surface is an extrapolation
between the points. �b� Linear scaling of the energy gap with �U
for U�J, ��0.2. The results are shown for N=2 ���, N=3 ���,
N=4 ���, and N=5 ���. The gap disappears for noninteraction
system, and increases with increasing interaction strength ���U�
and eventually saturates to the value in the hard-core limit.
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Fourth, we consider U�0, U�J�: when U is negative
�i.e., attractive interaction� in the limit of the strong interac-
tion regime, the ground state of the system will become a
pillar state. In a pillar state, all bosons in the system conden-
sate into a single site. Therefore, the degeneracy of the
ground state is Nx�Ny and the ground-state manifold can be
spanned as

�
i

1
�N!

�a†�i
N�vac� . �7�

These states will be very fragile and susceptible to collapse
�31�.

In a lattice, it is also possible to realize the fractional
quantum Hall states for attractive interaction in the limit
when �U��J�. Assume that the occupation number of each
site is either 0 or 1. Since the attraction energy U is very high
and there is no channel into which the system can dissipate
its energy, the probability for a boson to hop to a site where
there is already a boson is infinitesimally small. Therefore
the high-energy attraction will induce an effective hard-core
constraint in the case of an ultracold system. The energy of
these states should be exactly equal to their hard-core
ground-state counterparts, since the interaction expectation
value of the interaction energy is zero for the Laughlin state.
The numerical simulation shows that these two degenerate
states indeed have a good overlap with the Laughlin wave
function similar to their repulsive hard-core counterparts and
also their energies are equal to the hard-core ground state.
These states are very similar to repulsively bound atom pairs
in an optical lattice which have recently been experimentally
observed �4�.

So far we have mainly considered a dilute lattice �
�0.2, where the difference between a lattice and the con-
tinuum is very limited. We shall now begin to investigate
what happens for larger values of �, where the effect of the
lattice plays a significant role. Figure 3 shows the ground-
state overlap with the Laughlin wave function as a function
of the strength of magnetic flux � and the strength of the
on-site interaction U. As � increases the Laughlin overlap is
no longer an exact description of the system since the lattice
behavior of the system is more pronounced comparing to the
continuum case. This behavior does not depend significantly
on the number of particles for the limited number of particles
that we have investigated, N�5. We have, however, not
made any modification to the Laughlin wave function to take
into account the underlying lattice, and from the calculations
presented so far, it is unclear whether the decreasing wave-
function overlap represents a change in the nature of the
ground state or whether it is just caused by a modification to
the Laughlin wave function due to the difference between the
continuum and the lattice. To investigate this, in the next
section, we provide a better characterization of the ground
state in terms of Chern numbers, which shows that the same
topological order is still present in the system for higher
values of �.

As a summary, we observe that the Laughlin wave func-
tion is a good description for the case of a dilute lattice ��
�1�, regardless of the strength of the on-site interaction.

However, the protective gap of the ground state becomes
smaller for weaker values of the interaction and in the per-
turbative regime U�J is proportional to �U for ��0.2.

III. CHERN NUMBER AND TOPOLOGICAL
INVARIANCE

A. Chern number as a probe of topological order

In the theory of the quantum Hall effect, it is well under-
stood that the conductance quantization is due to the exis-
tence of certain topological invariants, so-called Chern num-
bers. The topological invariance was introduced by Avron et
al. �32� in the context of the Thouless–Kohmoto–
Nightingale–den Nijs TKNdN original theory �33� about
quantization of the conductance. TKNdN in their seminal
work showed that the Hall conductance calculated from the
Kubo formula can be expressed as an integral over the mag-
netic Brillouin zone, which shows the quantization explicitly.
The original paper of TKNdN deals with the single-particle
problem and Bloch waves which cannot be generalized to
topological invariance. The generalization to many-body sys-
tems has been done by Niu et al. �34� and also Tao and
Haldane �35�, by manipulating the phases describing the
closed boundary conditions on a torus �i.e., twist angles�, for
both the integer and fractional Hall systems. These twist
angles come from natural generalization of the closed bound-
ary condition.

To clarify the origin of these phases, we start with a
single-particle picture. A single particle with charge �q� on a
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(b)

FIG. 3. �Color online� Ground-state overlap with the Laughlin
wave function. �a� and �b� are for three and four atoms on a lattice,
respectively. � is varied by changing the size of the lattice �the size
in the two orthogonal directions differ at most by unity�. The
Laughlin state ceases to be a good description of the system as the
lattice nature of the system becomes more apparent, ��0.25. The
overlap is only calculated at the positions shown with dots, and the
color coding is an extrapolation between the points.
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torus of the size �Lx ,Ly� in the presence of a magnetic field B
perpendicular to the torus surface is described by the Hamil-
tonian

Hs =
1

2m
�	− i


�

�x
− qAx�2

+ 	− i

�

�y
− qAy�2� , �8�

where A� is the corresponding vector potential � �Ay

�x −
�Ax

�y =B�.
This Hamiltonian is invariant under the magnetic translation

ts�a� = eia·ks/
, �9�

where a is a vector in the plane and ks is the pseudomomen-
tum, defined by

kx
s = − i


�

�x
− qAx − qBy ,

ky
s = − i


�

�y
− qAy + qBx . �10�

The generalized boundary condition on a torus is given by
the single-particle translation

ts�Lxx̂�
�xs,ys� = ei�1
�xs,ys� ,

ts�Lyŷ�
�xs,ys� = ei�2
�xs,ys� , �11�

where �1 and �2 are twist angles of the boundary. The origin
of these phases can be understood by noting that the periodic
boundary conditions correspond to the torus in Fig. 4�a�. The
magnetic flux through the surface arises from the field per-
pendicular to the surface of the torus. However, in addition
to this flux, there may also be fluxes due to a magnetic field
residing inside the torus or passing through the torus hole,
and it is these extra fluxes which give rise to the phases. The
extra free angles are all the same for all particles and all
states in the Hilbert space, and their time derivative can be
related to the voltage drops across the Hall device in two
dimensions.

The eigenstates of the Hamiltonian, including the ground
state, will be a function of these boundary angles
������1 ,�2�. By defining some integral form of this eigen-
state, one can introduce quantities that do not depend on the
details of the system, but reveal general topological features
of the eigenstates.

First we discuss the simplest situation, where the ground
state is nondegenerate, and later we shall generalize this to
our situation with a degenerate ground state. The Chern num-
ber is in the context of quantum Hall systems related to a
measurable physical quantity, the Hall conductance. The
boundary-averaged Hall conductance for the �nondegenerate�
�th many-body eigenstate of the Hamiltonian is �34,35� �H

�

=C���e2 /h, where the Chern number C��� is given by

C��� =
1

2	



0

2	

d�1

0

2	

d�2��1A2
��� − �2A1

���� , �12�

where A j
�����1 ,�2� is defined as a vector field based on the

eigenstate ������1 ,�2� on the boundary torus S1�S1 by

A j
�����1,�2� � i������

�

�� j
������ . �13�

It should be noted that the wave function ������1 ,�2� is
defined up to a phase factor on the boundary-phase space.
Therefore, ������1 ,�2� and eif��1,�2�������1 ,�2� are physi-
cally equivalent for any smooth function f��1 ,�2�. Under this
phase change, A j

�����1 ,�2� transforms like a gauge:

A j
�����1,�2� → A j

�����1,�2� − � j f��1,�2� ,

������1,�2� → eif��1,�2�������1,�2� . �14�

(a)

(b)

FIG. 4. �a� Twist angles of the toroidal boundary condition. In
addition to the flux going through the surface there may also be a
flux inside the torus or going through the hole in the middle. When
encircling these fluxes the wave function acquires an extra phase
represented by the boundary conditions in Eq. �11�. �b� Redefining
the vector potential around the singularities: A j is not well defined
everywhere on the torus of the boundary condition. Therefore, an-
other vector field A�j with different definition should be introduced
around each singularity ��1

n ,�2
n� of A j. A j and A j� are related to each

other by a gauge transformation �, and the Chern number depends
only on the loop integrals of � around those singularities regions;
cf. Eq. �16�.
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Hence, the Chern number integral is conserved under this
gauge transformation and it encapsulates general properties
of the system. The Chern number has been used extensively
in the quantum Hall literature for characterization of local-
ized and extended states �Ref. �36�, and references therein�.
In this paper, we use the Chern number as an indicator of
order in the system. Moreover, it enables us to characterize
the ground state in different regimes, especially where the
calculation of the overlap with the Laughlin wave function
fails to give a conclusive answer.

Before explaining the method for calculating the Chern
number, we clarify some issues related to the degeneracy of
the ground state. In some systems, the ground state can be
degenerate; this can be intrinsic or it can be as a result of the
topology of the system. If the ground state is degenerate, we
should generalize the simple integral form of Eq. �12� to take
into account the redundancy inside the ground-state mani-
fold. For example, in the case of a twofold-degenerate
ground state, there is an extra gauge freedom related to the
relative phase between two ground states, and this freedom
should be fixed. In other words, as we change the twist
angles, we cannot keep track of the evolution of both states,
since one cannot distinguish them from each other. There-
fore, to uniquely determine the Chern number of the ground
state�s�, we should resolve this gauge invariance, which is
treated in Secs. III B and III C.

It is important to note that the degeneracy in the nonin-
teracting regime is fundamentally different from the degen-
eracy in the interacting case. In the noninteracting limit, the
degeneracy can be lifted by a local perturbation—e.g., im-
purities—while in the hard-core case, the degeneracy re-
mains in the thermodynamic limit �37�. The latter degen-
eracy in the ground state is a consequence of the global non-
trivial properties of the manifold on which the particles move
rather than related to a symmetry breaking which happens in
conventional models—e.g., the Ising model. The topological
degeneracy is not a consequence of breaking of any symme-
try only in the ground state; instead, it is the entire Hilbert
space which is split into disconnected pieces not related by
any symmetry transformation. With a general argument, Wen
�38� showed that if the degeneracy of a chiral spin system
moving on a simple torus is k, then it should be kg on a torus
with g handles �Riemann surface with genus g�; therefore,
the topological degeneracy is an intrinsic feature of the sys-
tem. In particular, in the context of the quantum Hall effect,
this multicomponent feature of the ground state on a torus
has a physical significance: while the single-component
ground state on a sphere boundary condition gives zero con-
ductance, the torus geometry with multicomponent ground
state results in a correct conductance measured in the experi-
ment, since the torus boundary condition is more relevant to
the experiment. Changing twist angles of the boundary will
rotate these components into each other and gives an overall
nonzero conductance �34�.

As studied in a recent work by Oshikawa and Senthil
�39�, as a universal feature, it has been shown that in the
presence of a gap, there is a direct connection between the
fractionalization and the topological order. More precisely,
once a system has some quasiparticles with fractional statis-
tics, a topological degeneracy should occur, which indicates

the presence of a topological order. Therefore, the amount of
degeneracy is related to the statistics of the fractionalized
quasiparticles; e.g., in the case of �=1/2, the twofold degen-
eracy is related to 1/2 anionic statistics of the corresponding
quasiparticles. The Chern number has been also studied for
spin-1 /2 systems on a honeycomb lattice �40� for identifying
Abelian and non-Abelian anions. Bellissard et al. �41� stud-
ied the Chern number for a disordered Fermi system using a
noncommutative geometry.

To resolve the extra gauge freedom related to the two
degenerate ground states, we consider two possibilities: �i�
lifting the degeneracy by adding some impurities and �ii�
fixing the relative phase between the two states in the ground
state. Below, we explore both cases. In the first case, we
introduce some fixed impurities to lift the degeneracy in the
ground state for all values of the twist angles. This is an
artifact of the finite size of the system which we take advan-
tage of. In the presence of perturbations, we show that the
system has a topological order in spite of the poor overlap
with the Laughlin state. In the second approach, we use a
scheme recently proposed by Hatsugai �42,43� which is a
generalized form for degenerate manifolds.

B. Resolving the degeneracy by adding impurities

In this section, we introduce some perturbations into the
finite system in the form of local potentials �similar to local
impurities in electronic systems� to split the degeneracy of
the ground state and resolve the corresponding gauge invari-
ance, which allows us to compute the Chern number. Fur-
thermore, the fact that we can still uniquely determine the
Chern number in the presence of impurities shows that the
system retains its topological order, even when the impurities
distort its ground-state wave function away from the Laugh-
lin wave function.

In the context of the quantum Hall effect, the conven-
tional numerical calculation of various physical quantities
such as the energy spectrum, screening charge density pro-
file, wave functions overlaps, and the density-density corre-
lation functions cannot be used for understanding the trans-
port properties of electrons in the presence of impurities
�although useful for studying isolated impurities �44,45��.
Recently, Sheng et al. �36� calculated the Chern number as
an unambiguous way to distinguish insulating and current-
carrying states in the �=1/3 quantum Hall regime which
correspond to zero and nonzero Chern numbers, respectively.
In this work, a weak random disorder was used to lift the
degeneracy of the ground state �threefold for �=1/3� for a
finite number of electrons. The energy splitting between the
lowest three states then decreased with increasing number of
particles, which indicates the recovery of degeneracy in the
thermodynamic limit. Moreover, the mobility gap can be de-
termined by looking at the energy at which the Chern num-
ber drops toward zero. This energy gap is comparable to the
energy gap obtained from the experiment, and it is not nec-
essarily equal to the spectrum gap which separates the de-
generate ground state from the excited states This shows the
significance of Chern number calculations for understanding
these systems.
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In a finite system, the coupling to a single-body inter-
action—e.g., impurities—can lift the degeneracy and one can
uniquely determine the Chern number for the individual
states by direct integration of Eq. �12�. On the one hand, the
impurity should be strong enough to split the energy in the
ground state �in this case E2 ,E1, where Ej denotes the energy
of the jth energy level� for all values of the twist angles. On
the other hand, these impurities should be weak enough so
that the energy splitting in the ground state remains smaller
than the thermodynamic gap �in this case E2−E1�E3−E2�.

To calculate the Chern number of an individual level, as
mentioned in the previous section, we have to fix the phase
of the wave function. The method that we explore in this
section can be considered as a simplified version of the gen-
eral method developed by Hatsugai �43� which we will ex-
plore in the next section. Following Kohmoto’s procedure
�46�, we assume that the ground state ���1 ,�2� may be ex-
panded for all twist angles on an s-dimensional Hilbert dis-
crete space ���1 ,�2�= �c1 ,c2 , . . . ,cs�. If A j��1 ,�2� in Eq.
�12� is a periodic function on the torus of the boundary con-
dition, then by application of Stokes’ theorem, the Chern
number will be always zero. The nontriviality �nonzero con-
ductance in the case of the quantum Hall system� occurs
because of the zeros of the wave function, where the phase is
not well defined. Therefore, A��1 ,�2� is not well defined
everywhere and its flux integral can be nonzero. To uniquely
determine the Chern number, we assume that the wave func-
tion and the vector field are not defined for certain points
��1

n ,�2
n� in Sn regions on the torus of the boundary condition.

For simplicity, we first discuss this procedure in the case of a
nondegenerate ground state. For calculating the integral, we
should acquire another gauge convention for the wave func-
tion inside these Sn regions; e.g., in a discrete system, we
may require an arbitrary element of the wave function to be
always real, and thereby we can define a new vector field
A j

������1 ,�2�, which is well defined inside these regions.
These two vector fields differ from each other by a gauge
transformation �Fig. 4�:

A j
�����1,�2� − A j�

�����1,�2� = � j���1,�2� , �15�

and the Chern number reduces to the winding number of the
gauge transformation ���1 ,�2� over small loops encircling
��1

n ,�2
n�, i.e., �Sn,

C��� = �
n

1

2	
�

�Sn

�� � · d�� . �16�

The one-dimensional gauge equation �15� should be re-
solved by making two conventions. For example, in one con-
vention the first element and in the other the second element
of the wave function in the Hilbert space should be real—
i.e., transforming the ground state � into ��= P�=��†�
where �= �1,0 , . . . ,0�† is an s-dimensional vector and P is a
projection into the ground state and similarly with the other
reference vector ��= �0,1 , . . . ,0�†. Since the gauge that re-
lates two vector fields is the same as the one that relates the
corresponding wave functions �similar to Eq. �15��, we can
uniquely determine the gauge transformation function � by
evaluating ���1 ,�2�=ei�=�†P��. Therefore, the Chern

number will be equal to the number of windings of � around
regions where ��=�†P�= �c1�2 is zero. Counting the vor-
ticities has a vigorous computational advantage over the con-
ventional method of direct integration of Eq. �12�. In the
direct integration, we need to choose a large number of mesh
points for the boundary angles, because of the discrete ap-
proximation of derivatives in Eq. �12�, and this makes the
calculation computationally heavy. We note that for the sys-
tem on a lattice, we should exactly diagonalize the Hamil-
tonian which is a sparse matrix as opposed to the continuum
case where the Hamiltonian is a dense matrix residing on a
smaller projected Hilbert space �lowest Landau level�.

For removing the degeneracy, in our numerical simula-
tions, we add a small amount of impurity which is modeled
as �-function potentials located at random sites with a ran-
dom strength of the order of the tunneling energy J. This is

described by a Hamiltonian of the form H=�iUi
imni

ˆ , where i
numerates the lattice site, n̂i is the atom number operator, and
Ui

im is the strength of the impurity at site i.
We choose reference states � and �� to be eigenvectors

of the numerically diagonalized Hamiltonian at two different
twist angles. In Fig. 5, vorticities of ei� associated with the
first and second energy levels is depicted. It is easy to see
that the Chern number associated with the two ground states
is 1. The number of vortices may vary for the first and sec-
ond ground states, but their sum is always equal to 1. The
hard-core limit �U�J� is very similar to the case of the
fractional quantum Hall effect, which, in the context of Hall
systems, means a share of 1 /2 �in e2 /h unit� for each ground
state �35�. When the on-site interaction strength is small �U
�J�, the thermodynamic gap becomes comparable to the
ground-state energy splitting E2−E1�E3−E2, the Chern
number cannot be uniquely determined, and the system does
not have topological order. On the other hand, in the limit of
strong interaction �U�J�, the total Chern number associated
with the ground states is equal to 1, regardless of the impu-
rity configuration. Moreover, in the hard-core limit, although
the ground state is not described by the Laughlin wave func-
tion, since it is distorted by the impurity �in our model it can
be as low as 50%�, the Chern number is unique and robust.
This is an indication that the topological order is not related
to the symmetries of the Hamiltonian and it is robust against
arbitrary local perturbations �37�. These results indicate the
existence of a topological order in the system and robustness
of the ground states against local perturbations.

C. Gauge fixing

The method developed in the previous section has the
graphical vortex representation for the Chern number which
makes it computationally advantageous compared to the di-
rect integration of Eq. �12�. It cannot, however, be applied
directly to a degenerate ground state, and therefore we had to
introduce an impurities potential which lifted the degeneracy.
On the other hand, a significant amount of impurities in the
system may distort the energy spectrum, so that the underly-
ing physical properties of the lattice and fluxes could be
confounded by artifacts due to the impurities, especially for
large �. To address this issue, in this section, we explore a
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generalized method of the previous section based on Refs.
�42,43�, which works for a degenerate ground-state.

By generalizing the Chern number formalism for a degen-
erate ground-state manifold, instead of having a single vector
field A j

�����1 ,�2�, a tensor field A j
��,����1 ,�2� should be de-

fined, where � ,�=1,2 , . . . ,q for a q-fold degenerate ground
state:

A j
��,����1,�2� � i������

�

�� j
������ . �17�

Similar to the nondegenerate case, when A j
��,�� is not de-

fined, a new gauge convention should be acquired for the
regions with singularities. This gives rise to a tensor gauge
transformation ���,����1 ,�2� on the border of these regions:

A j
��,����1,�2� − A j�

��,����1,�2� = � j�
��,����1,�2� . �18�

Following Hatsugai’s proposal �43� for fixing the ground-
state manifold gauge, we take two reference multiplets �
and �� which are two arbitrary s�q matrices; q is the
ground-state degeneracy �equal to 2 in our case�. In our nu-
merical simulation, we choose the multiplets to be two sets
of ground states at two different twist angles far from each
other—e.g., �0,0� and �	 ,	�. We define an overlap matrix as
��=�†P�, where P=��† is again the projection into the
ground-state multiplet, and consider the regions where
det �� or det ��� vanishes �similar to zeros of the wave
function in the nondegenerate case�. Hence, the Chern num-
ber for q degenerate states will be equal to the total winding
number of Tr ���,�� for small neighborhoods Sn, in which
det �� vanishes

C�1,2, . . . ,q� = �
n

1

2	
�

�Sn

�� Tr ���,�� d�� , �19�

which is the same as the number of vortices of ��� ,���
=det��†P���. It should be noted that the zeros of det ��

and det ��� should not coincide in order to uniquely deter-
mine the total vorticity. In Fig. 6, we plot �, det ��, and
det ���, found by numerical diagonalization of the Hamil-
tonian for a mesh �30�30� of winding angles �1 and �2. In
this figure, the Chern number can be determined be counting
the number of vortices and it is readily seen that the winding
number is equal to 1 for the corresponding zeros of det ��

�or det ����. Similarly, Fig. 7 shows vortices of � for a
higher �. Although the number of vortices increases in this
case, the sum over signed vortices gives the same Chern
number equal to 1.

We have calculated the Chern number for fixed �=1/2
and different �’s by the approach described above. The result
is shown in Table I. For low ��1, we know from Sec. II that
the ground state is the Laughlin state and we expect to get a
Chern number equal to 1. For higher �, the lattice structure
becomes more apparent and the overlap with the Laughlin
state decreases. However, in our calculation, the ground state
remains twofold degenerate and it turns out that the ground-
state Chern number tends to remain equal to 1 before reach-
ing some critical �c�0.4. Hence, also in this regime we
expect to have similar topological order and fractional statis-
tics of the excitations above these states on the lattice.

For the arguments above to be applicable, it is essential
that we can uniquely identify a twofold-degenerate ground
state which is well separated from all higher-lying states. For
higher flux densities ���c, the twofold ground-state degen-
eracy is no longer valid everywhere on the torus of the
boundary condition. In this regime, the issue of degeneracy
is more subtle, and the finite-size effect becomes significant.
The translational symmetry argument �28�, which was used
in Sec. II, is not applicable on a lattice, and as pointed out by
Kol and Read �47� the degeneracy of the ground state may
vary periodically with the system size. Some of the gaps
which appear in the calculation may be due to the finite size
and vanish in the thermodynamic limit, whereas others may
represent real energy gaps which are still present in the ther-

FIG. 5. �Color online� Chern
number associated with low-lying
energy states in the presence of
impurities. Due to the impurity
potential �a�, the twofold-degen-
erate ground state splits and the
wave function overlap with the
Laughlin state drops to 52% and
65% for the first and second en-
ergy states, respectively. The re-
sults are for three atoms on a 6
�6 lattice ��=0.17� in the hard-
core limit. �b� ���1 ,�2� for the
first level has no vorticity. How-
ever, for the second level, as
shown in �c�, ���1 ,�2� has vortic-
ity equal to 1 associated with re-
gions where either �� or ���
vanishes.
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modynamic limit. To investigate this, we study the ground-
state degeneracy as a function of boundary angles ��1 ,�2�
which are not physically observable and therefore the degen-
eracy in the thermodynamic limit should not depend on their
value. In particular, Fig. 8 shows the energy levels of five
particles at �=0.4 for different values of the twist angles.
The first and second levels are split at ��1=�2=0�, while they
touch each other at ��1=�2=	�. We have observed similar
behavior for different numbers of particles and lattice sizes—
e.g., three and four atoms at �=0.5. In this case, the system
seems to not have a twofold degeneracy. Therefore, the
ground state enters a different regime which is a subject for
further investigation.

For having the topological order, it is not necessary to be
in the hard-core limit. Even at finite interaction strength U

�J�, we have observed the same topological order with the
help of the Chern number calculation. If U gets even smaller,
the energy gap above the ground state diminishes �as seen in
Sec. II� and the topological order disappears.

We conclude that the Chern number can be unambigu-
ously calculated for the ground state of the system in a re-
gime where Laughlin’s description is not appropriate for the
lattice. The nonzero Chern number of a twofold-degenerate
ground state, in this case equal to one-half per state, is a
direct indication of the topological order of the system.

IV. EXTENSION OF THE MODEL

In Secs. II and III above, we have investigated the condi-
tions under which the fractional quantum Hall effect may be
realized for particles on a lattice. The motivation for this
study is the possibility to generate the quantum Hall effect
with ultracold atoms in an optical lattice but the results of
these sections are applicable regardless of the method used to
attain this situation. In this and the following sections, we
investigate some questions which are of particular relevance
to ultracold atoms in an optical lattice. First, we introduce a
long-range—e.g., dipole-dipole—interaction which turns out
to increase the energy gap and thereby stabilizes the quantum

TABLE I. Chern number for different configurations in the hard-
core limit for fixed filling factor �=1/2. The Laughlin state overlap
is shown in the last column. Although the ground state deviates
from the Laughlin state, the Chern number remains equal to one-
half per state before reaching some critical �c�0.4 where the en-
ergy gap vanishes.

Atoms Lattice � Chern/state Overlap

3 6�6 0.17 1/2 0.99

4 6�6 0.22 1/2 0.98

3 5�5 0.24 1/2 0.98

3 4�5 0.3 1/2 0.91

4 5�5 0.32 1/2 0.78

3 4�4 0.375 1/2 0.29
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FIG. 6. �Color online� �a� shows the argument of ���1 ,�2� as
arrows for fixed � and ��. �b� and �c� Surface plots of det �� and
det ��� �blue is lower than red�. �1 and �2 change from zero to 2	.
These plots have been produced for three atoms with N�=6 ��
=0.24� in the hard-core limit on a 5�5 lattice. The total vorticity
corresponding to each of the reference wave functions �� or ���
indicates a Chern number equal to 1.

FIG. 7. �Color online� ���1 ,�2� for fixed � and ��. �1 and �2

change from zero to 2	. This plot has been produced for four atoms
with N�=8 in the hard-core limit on a 5�5 lattice ��=0.32�. Al-
though there are more vortices here compared to Fig. 6, the total
vorticity corresponding to each of the trial functions �� or ���
indicates a Chern number equal to 1.
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Hall states. We then turn to the case of �=1/4 and show that
in order to realize this state, it is essential to have some kind
of long-range interaction.

A. Effect of the long-range interaction

In an experimental realization of the quantum Hall effect
on a lattice, it is desirable to have as large an energy gap as
possible in order to be insensitive to external perturbations.
So far, we have studied effect of the short-range interaction
and we have shown that the gap increases with increasing
interaction strength, but the value of the gap saturates when
the short-range interaction becomes comparable to the tun-
neling energy J.

In this section, we explore the possibility of increasing the
gap by adding a long-range repulsive dipole-dipole interac-
tion to the system. Previously, such a dipole-dipole interac-
tion was also studied in Ref. �9� as a method to achieve
Read-Rezayi states �48� of rapidly rotating cold trapped at-
oms for �=3/2 and as a means to realize fractional quantum
Hall physics with Fermi gases �49�. The dipole-dipole �mag-
netic or electric� interaction is described by the Hamiltonian

Hd-d = Udipole �
1�i�j�N

pi · p j − 3�nij · pi��nij · p j�
�ri − r j�3

, �20�

where nij = �ri−r j� / �ri−r j�. pi are unit vectors representing
the permanent dipole moments and the position vectors ri are
in units of the lattice spacing a. For simplicity, we assume
that all dipoles are polarized in the direction perpendicular to
the plane. With time-independent dipoles, the strength of the

interaction is given by Udipole=
�0�2

4	a3 �or �2

4	�0a3 � where �’s

��’s� are the permanent magnetic- �electric-� dipole moment.
Static dipoles will thus give the repulsive interaction Udipole
�0, but experimentally time-varying fields may be intro-
duced which effectively change the sign of the interaction
�50�. For completeness, we shall therefore investigate both
positive and negative Udipole, but the repulsive interaction
corresponding to static dipoles will be the most desirable
situation since it stabilizes the quantum Hall states.

Experimentally the dipole-dipole interaction will naturally
be present in the recently realized Bose-Einstein condensa-
tion of chromium �51� which has a large magnetic moment.
However, for a lattice realization, polar molecules which
have strong permanent electric-dipole moments are a more
promising candidate. For typical polar molecules with the
electric moment ��1 D, on a lattice with spacing a
�0.5 �m, Udipole can be up to a few kHz, an order of mag-
nitude greater than the typical tunneling J /2	
 which can be
a few hundreds of Hz �1�.

To study the effect of the dipole-dipole interaction, we
again numerically diagonalize the Hamiltonian for a few
hard-core bosons �U�J�, in the dilute regime ��0.3, while
varying strength of the dipole-dipole interaction. The results
of this simulation are shown in Fig. 9�a�. After adding the
dipole interaction, the ground state in a dilute lattice remains
twofold degenerate, since the interaction only depends on the
relative distance of the particles and keeps the center-of-mass
motion intact. If the dipole interaction becomes too strong
�Udipole�J�, the ground-state wave function deviates from
the Laughlin wave function, but the topological order re-
mains the same as for the system without a dipole interac-
tion. We verified this by calculating the Chern number as
explained in Sec. III for different values of the dipole-dipole
interaction strength Udipole and observed that the total Chern
number of the twofold-degenerate ground state is equal to 1.
Moreover, as is shown in Fig. 9�b� adding such an interaction
can increase the gap: the lower curve corresponds to the
hard-core limit discussed in the previous work �10� and the
upper curve corresponds to the system including the dipole-
dipole interaction. This enhancement varies linearly with the
flux density � in a dilute lattice and does not depend on the
number of particles and, consequently, it is expected to be-
have similarly in the thermodynamic limit.

One of the impediments of the experimental realization of
the quantum Hall state is the smallness of the gap which can
be improved by adding a dipole-dipole interaction. In this
section, we showed that this improvement is possible and,
moreover, by Chern number evaluation, we verified that add-
ing dipole interaction does not change the topological behav-
ior of the ground-state manifold.

B. Case of �=1/4

So far we have concentrated on the case of �=1/2. In this
section, we briefly investigate the case of �=1/4. It is ex-
pected that the Laughlin wave function remains a good de-
scription for the ground state of a bosonic system for any
even q, where �=1/q. Following Haldane’s argument �28�,
due to the center-of-mass motion, the degeneracy of the
ground state is expected to be q-fold on a torus. Similar to
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FIG. 8. �Color online� Low-lying energy levels as a function of
twist angles. For high � the degeneracy of the ground state is a
function of twist angles. The shown results are for five atoms on a
5�5 lattice; i.e., �=0.4 �a� shows first three energy manifolds as a
function of the toroidal boundary condition angles and �b� shows a
cross section of �a� at �2=	 for seven lowest-energy levels. The
first and second energy levels get close to each other at �1=�2=	.
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the case of �=1/2, the Laughlin wave function should be a
suitable description for any q provided that the magnetic
field is weak so that we are close to the continuum limit—
i.e., ��1. Also the Chern number is expected to be equal to
1 for the q-fold degenerate ground state, which in the context
of the quantum Hall effect means a share of 1 /q of the con-
duction quantum e2 /h for each state in the q-fold degenerate
ground-state manifold.

We have done both overlap and the Chern number calcu-
lations to check those premises. In the case of �=1/4, sig-
nificant overlap occurs at low ��0.1. The average wave-
function overlap of four lowest-energy eigenstates with the
Laughlin wave function is depicted in Fig. 10, where we
have used a generalization of the Laughlin wave function for
periodic boundary conditions similar to Eq. �4� �27�.

We observe that the Laughlin wave function is a reliable
description of the system with �=1/4 but only for much
more dilute lattices ���0.1� compared to �=1/2 where sig-
nificant overlap occurs for ��0.3. Contrary to �=1/2,
where the gap is a fraction of the tunneling energy J, the gap
for �=1/4 between the fourfold-degenerate ground state and
the next energy level is infinitesimal. The reason for the van-
ishing gap can be understood in the continuum limit from the
argument put forward in Ref. �52�: as noted previously the
Laughlin wave function is an exact eigenstate of the Hamil-
tonian with an energy per particle equal to the lowest Landau
level energy. The energy of the m=4 state is thus equal to the

m=2 state. It thus costs a negligible energy to compress the
�=1/4 state to the �=1/2 state, and therefore there is no
gap. In an external trap the system will always choose the
highest-density state which is the �=1/2 state. Note, how-
ever, that this argument only applies to short-range interac-
tions. For long-range interactions, we expect to see a nonva-
nishing gap.

Even though that, with short-range interactions, the gap is
very small in our numerical calculations, it is still sufficiently
large that it allows us to unambiguously determine the Chern
number for the ground-state manifold as described in Sec.
III C. As expected the calculation shows that the Chern num-
ber is equal to 1 corresponding to a fourfold-degenerate
ground state consistent with the generalization of the fermi-
onic case in the fractional quantum Hall theory �34,35�. In
Fig. 10, the overlap of the first four lowest-energy states with
the Laughlin wave function is depicted. In the absence of the
dipole interaction, the ground-state overlap is significant
only for ��0.1; however, by adding a moderate dipole in-
teraction �Udipole=5J�, the overlap becomes more significant
for a larger interval of the flux density—i.e., ��0.25. This is
due to the fact that states with lower density become more
favorable in the presence of a long-range repulsive interac-
tion.

We observed that adding a dipole interaction would lead
to an improvement of the gap for �=1/2 and make the
Laughlin overlap more significant for a larger interval of the
magnetic field strength � in the case of �=1/4. Therefore
this long-range interaction can be used as a tool for stabiliz-
ing the ground state and makes the realization of these quan-
tum states experimentally more feasible.

V. DETECTION OF THE QUANTUM HALL STATE

In an experimental realization of the quantum Hall states,
it is essential to have an experimental probe which can verify
that the desired states were produced. In most experiments
with cold-trapped atoms, the state of the system is probed by
releasing the atoms from the trap and imaging the momen-
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FIG. 9. �Color online� �a� The overlap of the ground state with
the Laughlin wave function �dashed lines� and four low-lying ener-
gies of the system �solid lines� versus the dipole-dipole interaction
for four atoms on a 6�6 lattice. �b� Gap enhancement for a fixed
repulsive dipole-dipole interaction strength Udipole=5J versus �.
The results are shown for N=2 ���, N=3 ���, and N=4 ���.

FIG. 10. �Color online� The overlap of the first four low-lying
energy states with the Laughlin wave function for the case of �
=1/4 on a torus. The dashed �dotted� line shows the overlap for the
system without �with� a dipole interaction �Udipole=5J�. The Laugh-
lin state is only a good description for a more dilute lattice �
�0.1 compared to �=1/2. The dipole interaction stabilizes the sys-
tem and the overlap is more significant for higher values of �
�0.2.
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tum distribution. In Ref. �10�, it was shown that this tech-
nique provides some indication of the dynamics in the sys-
tem. This measurement technique, however, only provides
limited information, since it only measures the single-
particle density matrix and provides no information about the
correlations between the particles. In Refs. �52,53� more ad-
vanced measurement techniques were proposed, where the
particle correlation is obtained by looking at the correlations
in the expansion images. In this section, we study Bragg
scattering as an alternative measurement strategy which re-
veals the excitation spectrum of the quantum system. In Ref.
�54� bosonic quantum Hall system responses to a perturba-
tive potential are studied. We focus on Bragg scattering
where two momentum states of the same internal ground
state are connected by a stimulated two-photon process �55�.
By setting up two laser beams with frequencies �1 and �2

and wave vectors k�1 and k�2 in the plane of the original lattice,
a running optical superlattice will be produced with fre-
quency �1−�2 and wave vector k�1−k�2. �Both frequencies �1
and �2 should be close to an internal electronic dipole tran-
sition in the atoms.� The beams should be weak and suffi-
ciently detuned so that direct photon transitions are
negligible—i.e., E1, E2,  ��1−�0, �2−�0, where �0 is the
frequency of the transition,  is the corresponding spontane-
ous decay rate, and E1, E2 are the Rabi frequencies related to
the laser-atom coupling. In this perturbative regime, the in-
elastic scattering of photons will be suppressed; the atom
starts from the internal ground state, absorbs one photon
from, e.g., beam 1 by going to a virtual excited state, and
then emits another photon into beam 2 by returning to its
internal ground state. After this process, the system has ac-
quired an energy equal to 
�=
��1−�2� and a momentum
kick equal to q� =k�1−k�2. Therefore, the overall effect of the
recoil process is a moving ac Stark shift as a perturbing
moving potential, and the effective Hamiltonian represents
the exchange of the two-photon recoil momentum and the
energy difference to the system and is proportional to the
local density—i.e., H�!�r�e−i��1−�2�t+i�k�1−k�2�·r�+c.c.

This process can be used to probe density fluctuations of
the system and thus to measure directly the dynamic struc-
ture factor S�q ,�� and static structure factor S�q�. This kind
of spectroscopy has been studied for a BEC in a trap by
Blakie et al. �56� and Zambelli et al. �57� and has been
realized experimentally in Refs. �58–63�.

Also, Bragg spectroscopy in an optical lattice is discussed
in Ref. �64� in a mean-field approach and also in Ref. �65� as
a probe of the Mott-insulator excitation spectrum. On the
other hand, in the context of quantum Hall effect, the static
structure factor has been studied for probing the magnetron
excitations �66� and charge density waves �67�. The dynamic
and static structure factors are given, respectively, as

S�q� ,�� = �
n,0

��n�!†�q���0��2��� − En + E0� , �21�

S�q�� = �
n,0

��n�!†�q���0��2 = �
n,0

��n��
ri
�

eiq� ·ri
�
�0��2, �22�

where the density fluctuation operator is defined as !†�q��
=�m,nAq��m ,n�cm

† cn and the coefficients are defined as Fou-

rier transforms of the Wannier functions: Aq��m ,n�
=�d2r�eiq� ·r��*�r�−r�m���r�−r�n�, where the Wannier function
��r�−r�n� is the wave function of an atom localized on a site
centered at r�n. Below, we focus on deep optical lattices,
where Aq��m ,n�=eiq� ·r�m�m,n.

In the structure factor, there is a sum over the excited
states �n� and ground states �0� and the self-term is thus ex-
cluded. The ground state on a torus is twofold degenerate,
and therefore in our numerics, we add the contribution of
both.

Since we are working on a discrete lattice, there will be a
cutoff in the allowed momentum given by the lattice spacing
qmax=	 /a, where a is the distance between lattice sites. Fig-
ure 11�a� shows the structure factor for the case �=1/2 for a
small � calculated from our numerical diagonalizations. In
the data presented here, we have chosen q� =qx̂ and the result
should be similar in other directions in the lattice plane. We
see that S�q� is modulated at a momentum corresponding to
the magnetic length. For the parameters that we have inves-
tigated, the general features of the structure factor are inde-
pendent of the size of the system.

We obtain the excitation spectrum shown in Fig. 11�b�
similar to Ref. �66� by the Feynman-Bijl approximation. In
the continuum limit ���1�, we assume that the low-lying
excitations are long-wavelength density oscillations and their
wave functions can be approximated to have the form
�!k�0�. Therefore, the variational estimate for the excitation
energy is ��q��
2q2 /2mS�q�. At zero momentum and at the
momentum corresponding to the magnetic length, there are
gaps, and we also observe a deviation from the free-particle

(a)

(b)

FIG. 11. �Color online� �a� Structure factor and �b� energy spec-
trum for a 11�11 lattice with three atoms on a torus. Points show
the momentums allowed by the boundary conditions. The dotted
line in �b� shows for comparison the low-energy spectrum of a free
particle which equals J�qa�2.
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spectrum similar to the magnetron case as reminiscent of the
Wigner crystal. It should be noted that the deviation does not
depend on the size or the number of particles in the system.
As clearly seen in Fig. 11 the energy spectrum and structure
factor deviate from those of free particles; therefore, it could
be used as an experimental probe of the system.

The structure factor and excitation spectrum imply some
general features that are very different from that of the Mott-
insulator and superfluid states, and can be used a powerful
experimental indication of the quantum Hall states.

VI. GENERATING MAGNETIC HAMILTONIAN
FOR NEUTRAL ATOMS ON A LATTICE

Recently, there have been several proposals for producing
artificial magnetic field for neutral atoms in optical lattices
�10,21,22�, however, the implementation of each of them is
still experimentally demanding. Recently, there has been an
experimental demonstration of a rotating optical lattice �23�
which is equivalent to an effective magnetic field �see be-
low�. The technique used in this experiment, however, gen-
erates a lattice with a large lattice spacing, because it uses
laser beams which are not exactly counterpropagating. This
longer spacing reduces the energy scale in the lattice and
thereby also reduces quantities such as energy gaps. Here,
we shall now introduce an alternative method for generating
a rotating optical lattice, which does not result in an in-
creased lattice spacing. This method consists of rotating the
optical lattice by manipulating laser beams.

In a frame of reference rotating with angular velocity �
around the z axis, the Hamiltonian for a particle of mass m in
a �planar� harmonic trap of natural frequency �0 is

H =
p2

2m
+

1

2
m�0�x2 + y2� − �ẑ · �r� � p��

=
�p − m�ẑ � r� �2

2m
+

1

2
m��0

2 − �2��x2 + y2� . �23�

At resonance �0=� the form is equivalent to the Hamil-
tonian of a particle of charge q experiencing an effective

magnetic field B=�� � �m�ẑ�r� /q�= �2m� /q�ẑ. Therefore,
by simply rotating the optical lattice, we can mimic the mag-
netic field for neutral atoms.

To rotate the optical lattice, we propose to set up four
acousto-optic modulators �AOMs� and four focusing com-
posite lenses as shown in Fig. 12. By sweeping the acoustic
wave frequency, the beams can be focused and make a rotat-
ing optical lattice.

In an AOM, for the first-order diffracted light we have
sin �B= "

2� , where � is the wavelength of sound in the me-
dium, " is the light wavelength, and �B is half of the angle
between a diffracted beam and the nondiffracted beam �Fig.
12�. By increasing the frequency of the acoustic wave, the
diffraction angle increases. However, the beam should be
focused by a large-aperture lens so that it always passes the
region where we want to make the optical lattice. By focus-
ing a similar but counterpropagating beam, we can make a
rotating standing wave �Fig. 12�. By repeating the same con-

figuration in the transverse direction, we can make a rotating
optical lattice. In particular, if the AOM is far from the com-
posite lenses, D�d, then x /D=" /� and x /d=tan � where
−	 /4� ��=�t��	 /4, where the parameters are defined in
Fig. 12. If we consider a square lattice with dimensions Nx
=Ny =N, the number of magnetic flux given by rotation is

N� =
BA

�0
=

	

2

N 2�

�r
, �24�

where �r=
k2 /2M is the atomic recoil frequency.
On the other hand, the upper limit for the magnetic field

comes from the single-Bloch-band approximation which we
made in writing the Hamiltonian for the optical lattice. In
order for the particles to remain in the first band, the travel-
ing lattice beams should move them adiabatically. From Ref.
�68�, the adiabaticity condition for a moving lattice with an

acceleration # equal to �2N" /4 at the edge is m#"�

�p

4

�r
3 ,

where �p is the frequency difference between the first and
second bands in the lattice. This puts a limit on how large the

lattice can become, N�
�p

4

�2�r
2 .

Hence, for �=1/2 with a lattice filling fraction N
N2 � 1

8 and
a typical recoil frequency �r= �2	�4 kHz, one can enter the
regime of fractional quantum Hall effect by rotating the lat-
tice at ���2	�650 Hz. If a deep optical lattice is used—
e.g., �p�10�r—the adiabaticity condition is easily satisfied
for a lattice of size N�1000. The experimentally challeng-
ing part will, however, likely be to mitigate the instability of
the lattice caused by the thickness of the beam and aberration
of the lenses at the turning points—i.e., near �=	 /4.

VII. CONCLUSIONS

An extended study of the realization of the fractional
quantum Hall states in optical lattices has been presented.
We showed that a Hamiltonian similar to that of a magnetic
field for charged particles can be constructed for neutral ul-

FIG. 12. Proposal for realizing a rotating optical lattice. Four
AOMs �black boxes� change the direction of the lattice beams,
which are subsequently focused in the middle of the setup by four
lenses �gray�. Simultaneously varying the four diffraction angles in
the AOMs will generate a rotating optical lattice.

HAFEZI et al. PHYSICAL REVIEW A 76, 023613 �2007�

023613-14



tracold atoms and molecules confined in an optical lattice.
By adding an on-site interaction for the case of �=1/2, an
energy gap develops between the ground state and the first
excited state, which increases linearly as �U and saturates to
its value in the hard core limit U�J. We learned that the
Laughlin wave function is a reliable description of the sys-
tem for low flux densities ��0.25. However, for higher �’s,
the lattice structure becomes more pronounced and a better
description of the system can be carried out by investigating
the Chern number associated with the ground-state manifold.
The Chern number indicates that the system has topological
order up to some critical flux density �c�0.4, where the
properties of the ground-state manifold start to change. We
have also studied �=1/4, where compared to �=1/2, the
Laughlin wave function only describes the ground state for
lower values of the flux ��0.1. We showed that a dipole-
dipole interaction can enhance the gap and stabilize the sys-
tem, and therefore make the ground state more experimen-

tally realizable. Bragg spectroscopy has been studied as a
potential experimental tool to diagnose theses incompress-
ible states.

Characterization of the ground state by evaluating the
Chern number, developed in Sec. III C, can be generalized to
other interesting many-body systems where the conventional
overlap calculation fails to work. In particular, this method
can be applied to ground states with non-Abelian statistics
which are appealing candidates for fault-tolerant quantum
computations.
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