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In a recent experiment, a Bose-Einstein condensate was trapped in an anharmonic potential that is well
approximated by a harmonic and a quartic part. The condensate was set into such a fast rotation that the
centrifugal force in the corotating frame overcompensates the harmonic part in the plane perpendicular to the
rotation axis. Thus, the resulting trap potential becomes sombrero shaped. We present an analysis for an ideal
Bose gas that is confined in such an anharmonic rotating trap within a semiclassical approximation, where we
calculate the critical temperature, the condensate fraction, and the heat capacity. In particular, we examine in
detail how these thermodynamical quantities depend on the rotation frequency.
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I. INTRODUCTION

The rotation of a quantum fluid leads to interesting prob-
lems. The effect of an angular momentum can be compared
with the motion of a charged particle in a magnetic field.
Because of the close relation between superfluidity, super-
conductivity, and Bose-Einstein condensation �BEC�, ultra-
cold dilute Bose gases have also been rotated. Initial experi-
ments �1,2� have shown that, analogously to helium II �3�,
vortices nucleate at some critical rotation frequency. The
main difference between earlier studies about quantum fluids
and BEC’s is the trap in which the condensate is confined.
This inspired Fetter �4� to suggest adding a quartic term to
the harmonic trap potential. His idea was to rotate the con-
densate so fast that the centrifugal force may overcompen-
sate the harmonic trapping potential. In a harmonic trap, the
condensate gets lost when the rotation frequency comes
close to the harmonic trap frequency �5�, but the additional
anharmonicity ensures the confining of the condensate. Such
a trap was realized in an experiment in Paris by Dalibard and
co-workers in 2004 �6�. The experimental setup was the
usual magneto-optical trap with frequencies �x=�y =2�
�75.5 Hz and �z=2��11.0 Hz. The additional quartic an-
harmonicity was generated with a Gaussian laser beam
propagating in the z direction, which created a potential U
=U0 exp�−2r�

2 /w2� with the perpendicular radius r�

=�x2+y2, the laser’s waist w=25 �m, and the intensity U0
��kB�90� nK. Due to the experimentally realized condition
r��w /2, this potential is well approximated by U=U0
− �2U0 /w2�r�

2 + �2U0 /w4�r�
4 . In Ref. �6� an amount of 3

�105 atoms of 87Rb is set into rotation with another laser
beam acting as the stirrer. The laser creates an anisotropic
potential in the xy plane, which rotates with frequency �. In
the corotating frame, the resulting trapping potential can be
written as

Vrot�x,�� =
M

2
���

2 − �2�r�
2 +

M

2
�z

2z2 +
k

4
r�

4 , �1�

where M is the atomic mass and ��=�x−4U0M−1w−2=2�
�64.8 Hz. The last term in �1� corresponds to the quartic
anharmonicity with k=8U0w−4=2.6�10−11 J m−4. In the fol-
lowing we treat the Bose gas in the anharmonic trap �1�
within the grand-canonical ensemble and determine the criti-
cal temperature, the condensate fraction, and the heat capac-
ity of the Bose gas within a semiclassical approximation. In
our discussion the rotation frequency � appears as a control
parameter. The experiment of Dalibard et al. �6� allows ro-
tation frequencies � up to 1.04��. However, in the present
theoretical discussion, we consider arbitrarily large rotation
frequencies. In Fig. 1 we depict how the trapping potential
�1� varies with increasing rotation frequency �. For small
rotation frequencies ����, the potential �1� is convex; for
the critical rotation frequency �=�� it is purely quartic in
the perpendicular plane, and for a fast rotation frequency
���� the trap has the shape of a sombrero. In our discus-
sion, we focus on two particular rotation frequencies,
namely, the critical rotation frequency �=�� and the limit
of an infinitely fast rotation frequency �→	, as the poten-
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FIG. 1. Trapping potential �1� in the �x ,0 ,0� direction for the
values of the experiment �6� and varying rotation frequencies �1

=0, �2=��, �3=1.04��. The last is the largest experimentally
realized rotation frequency.
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tial reduces to power laws in both cases. Such potentials
were investigated some time ago as they have comparatively
simple analytic formulas for the respective thermodynamical
properties �7,8�. Note that the case �→	 corresponds to a
trap where the bosons are confined to a cylinder of radius
rcyl=�M2�z��2−��

2 � / �k
�. Thus, the above mentioned ex-
perimental restriction rcyl�w /2 allows us to determine a
maximum rotation frequency �max for which the anharmonic
potential �1� of the experiment of Dalibard and co-workers is
valid. The resulting value �max=1.08�� shows that consid-
ering an infinite rotation frequency �→	 is not suitable for
this experiment.

II. IDEAL BOSE GAS IN ROTATING TRAP

We consider N particles of an ideal Bose gas which are
distributed over various quantum states � of the system.
These states are characterized through the population nn of
the one-particle state n of the trap �1�, such that the energy
levels are E�=�nnnEn, where En denotes the one-particle
energy. Correspondingly, the number of particles in state � is
given by N�=�nnn. The resulting grand-canonical ensemble
is determined by its partition function

Z = �
�

exp�− ��E� − �N��� , �2�

where �=1/ �kBT� denotes the inverse temperature, kB is
Boltzmann’s constant, and � is the chemical potential. The
corresponding grand-canonical free energy F=−�1/��ln Z
allows us to calculate all relevant thermodynamical quanti-
ties �9,10�. Around the minimum, the trap �1� has a small
curvature so that the energy levels are close to each other.
With increasing rotation frequency, the curvature decreases
until the critical rotation frequency �=�� is reached. Not
until the rotation frequency overcompensates the harmonic
part of the trap does the curvature increase again. Thus, for
all experimentally realized rotation frequencies 0
�

1.04��, our system can be described by the discrete
ground-state E0, which must be retained quantum-
mechanically, plus a continuum of states above E0. Within
this semiclassical approximation, we can set the ground-state
energy E0 to zero so that the grand-canonical free energy of
the ideal Bose gas reads

F = N0��c − �� − �
j=1

	
1

�j
� d3x d3p

�2�
�3 exp	− �j�H�x,p� − ��
 ,

�3�

where the energy levels are replaced by the classical Hamil-
tonian

H�x,p� =
p2

2M
+ Vrot�x,�� . �4�

The critical chemical potential �c, where the condensation
emerges, is determined by the condition H�x ,p�−��0 and
is therefore given by �c=minxVrot�x ,��. Due to �1� it reads
explicitly

�c = �0, � 
 ��

−
M2

4k
���

2 − �2�2, � � ��. � �5�

Performing the phase-space integral in �3�, we obtain

F = N0��c − �� −
�4�e��,��

�4
3�z���
2 − �2�

, �6�

where we have introduced the generalized � function

���e��,�� = �
j=1

	
ej��

j�
�j��T���

2 − �2�

�exp�j�T���
2 − �2�2�erfc��j�T���

2 − �2��
�7�

with the complementary error function

erfc�z� =
2

��
�

z

	

dt e−t2. �8�

We have also shortened the notation by using �T
=M2 / �4kkBT� as another inverse temperature. We remark
that in the limit of a vanishing anharmonicity k↓0 with an
undercritical rotation frequency ���� the generalized �
function �7� reduces to the polylogarithmic function

lim
k↓0

����

���z,�� = ���z� = �
j=1

	
zj

j� , �9�

which is related to the Riemann � function via

���1� = ���� = �
j=1

	
1

j� . �10�

Furthermore, we note that, in the limit of the critical rotation
frequency �→��, the generalized � function �7� reads

lim
�→��

���z,��
��

2 − �2 = ���T��−1/2�z� , �11�

and in the limit of an infinite fast rotation it reads

���z,��
��

2 − �2 
 2���T�
j=1

	
zjej�T���

2 − �2�2

j�−1/2 , � → 	 . �12�

III. CONDENSATE DENSITY

From the grand-canonical free energy �6�, we read off that
the number of particles N=−��F /���T,V of an ideal Bose gas
is given by the sum of N=N0+Ne of particles in the ground
state N0 and particles in excited states Ne:

N = N0 +
�3�e��,��

�3
3�z���
2 − �2�

. �13�

The critical temperature Tc at which the condensation
emerges can be found from Eq. �13� by setting N0=0 and
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�=�c. For undercritical rotation frequencies ���� and
vanishing anharmonicity k↓0, we apply �9� so that the criti-
cal temperature reads

Tc =

�z

kB
� ���

2 − �2�N
�z

2��3�
�1/3

, k = 0. �14�

For a nonvanishing anharmonicity k, the critical temperature
cannot be determined explicitly because it appears in Eq.
�13� transcendentally. However, there are two special cases
in which we obtain an analytical expression for the critical
temperature. First, for the critical rotation �=��, we find
with �11� �11�

Tc =

�z

kB
� 4k


�M2�z
3�1/5� N

��5/2��
2/5

. �15�

Second, the limit of an infinitely fast rotation frequency �
→	 leads with �12� to the critical temperature

Tc =

�z

kB
� k


�M2�z
3�1/5� N

��5/2��
2/5

, �16�

which is by a factor �1/4�1/5
0.76 smaller than the previous
one. A numerical evaluation of the critical temperature ob-
tained from �13� is shown in Fig. 2 for the values of the
experiment of Dalibard and co-workers �12�. For the nonro-
tating trap, we see that the anharmonicity affects the critical
temperature by only a few percent compared to the harmonic
potential. With increasing rotation frequency, the critical
temperature in both traps decreases and the difference be-
tween the traps is clearly to be seen. At the critical rotation
frequency �=��, the critical temperature is Tc=63.5 nK,
which is about three times smaller than the one estimated for
the experiment �6�.

From the number of particles �13�, we also obtain the
condensate fraction in the temperature regime T�Tc. Here
the chemical potential coincides with the critical one given
by Eq. �5�. For undercritical rotation frequencies ���� and
vanishing anharmonicity k↓0, we use �9� so that the conden-
sate fraction is given by

N0

N
= 1 − � T

Tc
�3

, k = 0. �17�

Furthermore, applying �11� and �12� in the cases �=�� and
�→	, respectively, yields with the critical chemical poten-
tial �5� in both situations the following condensate fraction:

N0

N
= 1 − � T

Tc
�5/2

. �18�

Here, Tc is given by �14�–�16�, respectively. In general, the
condensate fraction is given by

N0

N
= 1 − � T

Tc
�3 �3�e��c,��

�3�e�c�c,��
, �19�

where �c=1/ �kBTc�. In the low-temperature limit T↓0, since
it coincides with the harmonic limit k↓0 and the infinitely
fast rotation �→	, the condensate fraction shows a power-
law behavior, which is different in the two regimes of under-
critical rotation ���� and overcritical rotation ����.
Due to �9� and �12�, we obtain

N0

N
=�1 −

kB
3��3�

N
3�z���
2 − �2�

T3, � � ��

1 −
M��kB

5/2��5/2�

N�k
3�z

T5/2, � � ��.� �20�

The temperature dependence of the condensate fraction
N0 /N following from �19� is shown in Figs. 3 and 4. From
this we read off that the temperature dependence of the con-
densate fraction depends crucially on the rotation frequency
and is thus not universal.

IV. HEAT CAPACITY

The heat capacity follows from the grand-canonical free
energy F=U−TS−�N, where U is the internal energy and S
is the entropy, according to
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FIG. 2. Critical temperature versus rotation frequency �. The
highest-lying line �solid� corresponds to the data of the experiment
�6� �see data below Eq. �1��. For the deeper-lying lines we varied
the anharmonicity parameter k: k→k /10 �long dashes�, k→k /100
�short dashes�, and the harmonic limit k↓0 �gray solid�.
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FIG. 3. Condensate fraction versus reduced temperature. The
solid line corresponds to the condensate fraction �19� of a Bose gas
in the trap �1� for the rotation frequency �=0 and the parameters of
the experiment �6�. The dashed line corresponds to the condensate
fraction at the critical �=�� and at the infinitely fast �→	 rota-
tion frequency given by Eq. �18�.
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C = � �U

�T
�

N,V
. �21�

Within the grand-canonical ensemble, the heat capacity has
to be determined separately in the two regimes T�Tc and
T�Tc.

A. Gas phase

At first, we treat the gas phase where N0=0 and determine
the entropy via the thermodynamic relation S
=−��F /�T�V,�:

S�

kBN
=

7�4�e��,��
2�3�e��,��

+ �T���
2 − �2�2 �3�e���

�3�e��,��

− ��� + �T���
2 − �2�2� . �22�

The internal energy U=F+TS+�N then follows from �6�,
�13�, and �22� and reads

U�

NkBT
=

5�4�e��,��
2�3�e��,��

+ �T���
2 − �2�2� �3�e���

�3�e��,��
− 1� .

�23�

Finally, the heat capacity �21� for temperatures above Tc is
given by

C�

kBN
=

35�4�e��,��
4�3�e��,��

−
25�3�e��,��
4�2�e��,��

+ �T���
2 − �2�2

�� 11�3�e���
2�3�e��,��

− 5
�2�e���

�2�e��,��� + �T
2���

2 − �2�4

�
�2�e����2�e��,�� − �2

2�e���
�2�e��,���3�e��,��

. �24�

To obtain this result, we have determined the derivative
���� /�T�N,V from �13�. In the limit k↓0 of a harmonic trap,
the heat capacity �24� reduces to the well-known result

C�

kBN
= 12

�4�e��,��
�3�e��,��

− 9
�3�e��,��
�2�e��,��

, k = 0. �25�

Again, both cases �=�� and �→	 yield the same analytic
expression:

C�

kBN
=

35

4

�7/2�e��+�T���
2 − �2�2

�

�5/2�e��+�T���
2 − �2�2

�
−

25

4

�5/2�e��+�T���
2 − �2�2

�

�3/2�e��+�T���
2 − �2�2

�
.

�26�

Now, we investigate the heat capacity �24� in the high-
temperature limit T→	. To this end we use a large-T expan-
sion of the generalized � function �7�:

���z,�� 
 e������T���
2 − �2� − 2�T���

2 − �2�2 + ¯ �

+
e2��

2� ��2�T���
2 − �2� − 4�T���

2 − �2�2 + ¯ �

+ ¯ . �27�

Inserting the expansion �27� into the number of particles
�13�, we find for the first order of the fugacity e��


2N�
6��
2 k /��M2kB

5T5, so that the heat capacity �24� be-
haves as

C�

kBN



5

2
+

�T���
2 − �2�

4��
−

�T
3�4 − �����

2 − �2�3

32�3/2 . �28�

Thus, the heat capacity approaches the Dulong-Petit law in
an anharmonic trap limT→	C� / �kBN�=5/2 which is 1 /2
smaller than the corresponding one in the harmonic trap.
Furthermore, the first � dependent term in �28� changes its
behavior, from being larger ������ than the limit to being
smaller ������, see Fig. 5.

At the critical point, the harmonic heat capacity �25� re-
duces for small rotation frequencies ���� to

lim
T↓Tc

C�

kBN
= 12

��4�
��3�

− 9
��3�
��2�


 4.23, k = 0. �29�

In both limits �=�� and �→	, the heat capacity �26� at
the critical point is given by

lim
T↓Tc

C�

kBN
=

35

4

��7/2�
��5/2�

−
25

4

��5/2�
��3/2�


 4.14. �30�

B. Condensate phase

Now we turn to the condensate phase T�Tc where the
chemical potential is given by �5�. For the entropy, we obtain
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FIG. 4. Condensate fraction versus reduced temperature. The
condensate fraction �19� is evaluated for various rotation frequen-
cies �. The solid line corresponds to �=0 to which the temperature
is normalized. The other lines are for �=�� /�2 �short dashes�,
�=�� �longer dashes�, and �=�3/2�� �long dashes�.
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FIG. 5. Approach of the heat capacity �24�, solid lines, and its
approximation �28�, dashed lines, to the Dulong-Petit law, horizon-
tal line.
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S�

kBN
= � T

Tc
�3� 7�4�e��c,��

2�3�e�c�c,��
− ��c

�3�e��c,��
�3�e�c�c,��

+ �T���
2 − �2�2� �3�e��c� − �3�e��c,��

�3�e�c�c,�� �� . �31�

The internal energy below the critical temperature reads

U�

NkBT
= � T

Tc
�3� 5�4�e��c,��

2�3�e�c�c,��
+ �T���

2 − �2�2

� � �3�e��c� − ���� − ���3�e��c,��
�3�e�c�c,�� �� + �cN ,

�32�

where � denotes the Heaviside function. Thus, we find for
the heat capacity below the critical temperature with the help
of Eq. �5�

C�

kBN
= � T

Tc
�3�35�4�e��c,��

4�3�e�c�c,��
+ �T���

2 − �2�2

� � 11�3�e��c�
2�3�e�c�c,��

− 5���� − ��
�3�e��c,��
�3�e�c�c,���

+ �T
2���

2 − �2�4���� − ���
�2�e��c�

�3�e�c�c,��

− ���� − ��
�2�e��c� − �2�e��c,��

�3�e�c�c,�� �� . �33�

In the limit k↓0, Eq. �33� simplifies to

C�

kBN
= 12

��4�
��3�

� T

Tc
�3

, k = 0. �34�

Thus, at the critical point it has the value

lim
T↑Tc

C�

kBN
= 12

��4�
��3�


 10.80, k = 0. �35�

In both limits �=�� and �→	, the heat capacity is given
by

C�

kBN
=

35

4

��7/2�
��5/2�

� T

Tc
�5/2

, �36�

so that the heat capacity �33� at the critical point reduces to

lim
T↑Tc

C�

kBN
=

35

4

��7/2�
��5/2�


 7.35. �37�

In the low-temperature limit T↓0, the heat capacity �33�
tends to zero in accordance with the third law of thermody-
namics. We note that the low-temperature limit of the heat
capacity �38� has the same power-law behavior as the corre-
sponding one of the condensate fraction �20�:

C�

kBN

�

35kB
3��4�

4N
3�z���
2 − �2�

T3, � � ��

35M��kB
5/2��7/2�

4N�k
3�z

T5/2, � � ��.� �38�

Figure 6 shows the temperature dependence of the heat ca-
pacity for the values of the Dalibard et al. experiment with-
out rotation �6�. We see that the effect of the anharmonicity is
rather small. According to Ehrenfest’s classification, the dis-
continuity at the critical temperature characterizes the phase
transition as of second order. In Fig. 7 we show how the heat
capacity depends on the rotation frequency �. Here, the ro-
tation has a big influence on the heat capacity.

V. CONCLUSIONS

We have determined the critical temperature Tc at which
the condensation of a rotating ideal Bose gas occurs in the
anharmonic trap �1�. We have found that condensation is
possible even in the overcritical rotation regime ����,

FIG. 6. Heat capacity versus temperature, reduced to the critical
temperature �14� of the trap �1� with k=0. The dashed line corre-
sponds to the harmonic trap heat capacity �25� and �34� for the trap
�1� of Dalibard and co-workers with k=0. The black solid line is the
heat capacity �24� and �33� for the anharmonic trap of �6� with no
rotation, �=0. The horizontal lines correspond to the Dulong-Petit
law: harmonic trap �dashed� and anharmonic trap �gray�.
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FIG. 7. Heat capacity versus temperature, reduced to the critical
temperature Tc��=0� of the anharmonic trap �1� for varying rota-
tion frequencies. The lines correspond to �=0 �solid�, �=�� �long
dashes�, and �=2�� �short dashes�. The gray solid line corre-
sponds to the Dulong-Petit law, the first term of �28�. We note that
for �=2�� and T�Tc the heat capacity approaches the Dulong-
Petit limit from below �see Fig. 5�.
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which is in contrast with the harmonic trap, where the con-
densate gets lost when the rotation frequency � gets close to
the trap frequency ��. However, the value Tc
64 nK is
about three times smaller than the one estimated in the ex-
periment of Dalibard and co-workers �6�. This huge discrep-
ancy could not be explained with the circumstance that our
semiclassical analysis of the rotating ideal Bose gas neglects
three important aspects, namely, finite-size corrections, inter-
actions between the particles, and the effect of vortices in the
condensate. All three should have the effect of lowering the
critical temperature. In a harmonic trap, it was found numeri-
cally that the finiteness of the system slightly lowers the
critical temperature �13�, which was also shown analytically
�14,15�. Furthermore, an additional weak repulsive two-
particle contact interaction leads to a negative shift of just a
few percent �16,17�. Therefore, we conclude that our semi-
classical findings ask for a revised experimental measure-
ment of the critical temperature for a rotating Bose gas.

For the condensate fraction, we can state that the low-
temperature behavior depends on the rotation frequency �. It
shows a nonuniform temperature dependence that is in be-
tween the two power laws T5/2 and T3.

The heat capacity of the rotating ideal Bose gas is discon-
tinuous at the critical temperature. In agreement with the
third law of thermodynamics, it tends to zero in the low-
temperature limit T↓0, and approaches the Dulong-Petit law
�28� in the high-temperature limit T→	 from above ��

��� or from below ������.
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