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Bose-Einstein condensation temperature of dipolar gas in anisotropic harmonic trap
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We consider a dilute gas of dipole moments in an arbitrary harmonic trap and treat both the short-range,
isotropic ¢ interaction and the long-range, anisotropic dipole-dipole interaction perturbatively. In this way, we
calculate the leading shift of the critical temperature with respect to that of an ideal gas as a function of the
relative orientation of the dipole moments with respect to the harmonic trap axes. In particular, we determine
those magic angles, where the dipolar shift of the Bose-Einstein condensation temperature vanishes. Further-
more, we show for the parameters of the ongoing 32Cr BEC experiment of Pfau and co-workers that this
dipolar shift can be enhanced by increasing the number of particles, the geometrical mean trap frequency, and

the anisotropy of the trap.
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I. INTRODUCTION

Ultracold atomic quantum gases are many-body systems
where a wide variety of macroscopic quantum phenomena is
observable [1-3]. For the original Bose-Einstein condensates
(BECs) of alkali-metal atoms, it has been sufficient to de-
scribe the dominant two-particle interaction by a short-range
and isotropic contact potential

47h’a,

Vi(x —x') = Sx—-x'), (1)

where M stands for the mass of the particles. The s-wave
scattering length a; is tuned by using a so-called Feshbach
resonance [4], where it can be varied over a broad range via
an external magnetic field. Recently, a BEC has also been
realized in a dipolar quantum gas of 2Cr atoms [5], where
the magnetic dipole moments are around six times larger
than those of alkali-metal atoms. Therefore, the physical
properties of such a chromium BEC also depend on a long-
range and anisotropic magnetic dipole-dipole interaction.
Other many-body systems with dipolar interactions are, for
instance, Rydberg atoms [6,7] or atomic condensates where a
strong electric field induces electric dipole moments of the
order of 1072 D [8]. Permanent dipole moments in hetero-
nuclear molecules are much larger with typical values of
1 D, so their dipolar effects could be a few hundred times
stronger than those of chromium atoms [9,10]. Such a gas of
ultracold heteronuclear molecules is produced either by so-
phisticated cooling and trapping techniques [11-14] or by
photoassociation [15-18]. For all those systems the specific
aniosotropic dipole-dipole interaction reads
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where m denotes the magnetic (electric) dipole moment and
Mo stands for the permeability constant (the reciprocal per-
mittivity constant). Note that this dipole-dipole interaction
contains, apart from the usual first term, an additional contact
term, which renormalizes the divergence at the origin. The
latter contribution has been overlooked in most textbooks of
electrodynamics, but is taken into account in more accurate
representations as, for instance, in Ref. [19]. The dipolar in-
teraction strength can be tuned for induced dipole moments
by varying the field strength and for permanent dipoles by
using rotating magnetic (electric) fields [20]. Combining this
rotation technique with Feshbach resonances will allow ex-
periments in the near future where the interaction varies from
purely contact to purely dipolar. The anisotropic dipole-
dipole interaction gives rise to new condensate properties
such as, for instance, a characteristic anisotropic deformation
of the expanding BEC which has recently been resolved ex-
perimentally like Ref. [21]. Also other interesting dipolar
phenomena are accessible experimentally like, for instance,
the occurrence of a maxon-roton in the excitation of a dipo-
lar BEC [22] or the instability of the ground state of dipolar
BECs [6,23-25].

In the present paper we investigate how the critical tem-
perature of a BEC is shifted due to the dipole-dipole inter-
action (2). To this end we consider a dilute gas trapped in an
arbitrary harmonic potential

V(x) = % wx? (3)

where w;, w,, and w3 denote the respective trap frequencies.
Furthermore, we assume that, due to an additional external
field, the dipole moments m of all constituents are oriented
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FIG. 1. (Color online) Axes of magnetic dipole-dipole interac-
tion (2) and harmonic trap (3) with frequencies w;> w, > ws.

along one axis, i.e., they are uniformly described by m
=m(sin @ cos ¢, sin a sin ¢,cos @). We expect that the criti-
cal temperature depends crucially on the spherical angles «
and ¢ which characterize the orientation of the dipole mo-
ments with respect to the harmonic trap axes. The tempera-
ture shift should have local extrema when the dipole mo-
ments are parallel to one of the harmonic trap axes as is
illustrated in Fig. 1. For instance, if the frequencies are or-
dered according to w;> w,> w3, this leads to an additional
interaction which is attractive along the 3 axis, repulsive
along the 1 axis, and can be either attractive or repulsive
along the 2 axis. Therefore, the particle density in the har-
monic trap is increased (decreased) in case 3 (case 1) in
comparison with a pure contact interaction. Thus, we expect
a resulting positive (negative) shift of the critical temperature
due to the magnetic dipole-dipole interaction. Furthermore,
we follow Ref. [26] and suggest determining differences of
the critical temperatures in the three configurations, as then
the influence of the isotropic contact interaction cancels.
Consequently, those differences represent a clear signal of
the anisotropic dipole-dipole interaction.

We start our detailed analysis by briefly reviewing the
calculation of the Bose-Einstein condensation temperature
for a dilute ideal Bose gas in Sec. II. Subsequently, we treat
the influence of both interactions (1) and (2) in lowest order
perturbatively. This is justified as the confinement of the har-
monic trapping potential (3) removes critical long-
wavelength fluctuations and reduces the fraction of atoms
taking part in nonperturbative physics at the transition point
[27]. Therefore, we determine in Sec. III within first-order
perturbation theory how the grand-canonical free energy and,
thus, the particle number equation change under the influ-
ence of an arbitrary two-particle interaction potential. Addi-
tionally, we calculate in lowest perturbative order the loca-
tion of the critical point where the phase transition from a
Bose gas to a BEC occurs. To this end we extract the critical
chemical potential from the first-order contribution to the
self-energy. This procedure is, in principle, self-consistent
and corresponds to the Hartree-Fock mean-field theory.
However, we determine the critical chemical potential only
in the leading order and use it to obtain the critical temper-
ture shift. Note that this provides a reliable prediction since it
is only linear in the interaction strength. Due to the Ginzburg
criterion, critical fluctuations in the vicinity of the critial
point violate the mean-field result in higher than first order of
the interaction strength [28]. In Sec. IV we specialize our
result to the model interaction potential (1) and (2) and com-
bine it in Sec. V in order to derive the leading shift of the
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critical temperature. Furthermore, we show how it is possible
to tune the strength of this dipolar shift. To this end we
investigate in Sec. VI the magic angles where the dipolar
effects vanish. Finally, we discuss in Sec. VII our theoretical
findings for the special parameters of the ongoing chromium
experiment of Pfau and co-workers. In particular, we esti-
mate which experimental parameters allow enhancement of
the differences of the critical temperatures for two of the
three configurations of Fig. 1.

II. INTERACTION-FREE CASE

The quantum statistical properties of a dilute ideal Bose
gas are determined by the grand-canonical partition function
which follows from the functional integral

0= ?Q DY Dy A IV (4)

Here $Dy "Dy sums over all bosonical field configurations
(x,7) and " (x,7) which are periodic in imaginary time 7.
Furthermore, the undisturbed Euclidean action in (4) is

HB B
Oy’ yl=h J dr f dr’ f d*x f Ex"Y(x,7)
0 0

XGO(x,m5x/, 7 )h(x', 7) %)

with the integral kernel

1
GO \(x,mx",7) = f—ié‘(x -x")8(r-17')

X (ﬁ . A+V ) 6
oAtV —u). (6)
where V(x) is the external trap potential and u stands for the
chemical potential. The grand-canonical free energy of such
an ideal Bose gas is given by F”=—(In Z()/ 8 and may be
evaluated from (4) as FO=Tr InG?-!/B. For the harmonic
trap potential (3), usually the condition AB@<1 holds,
where @=(w;w,w;)"? denotes the geometric mean of the
trap frequencies. This allows us to determine the grand-
canonical free energy within a semiclassical treatment [29],

FO = - ——— (), (7
,B(ﬁ,B @)*

where {,(z)=2,_,z"/n" represents the polylogarithmic func-

tion. Now we are interested in thermodynamic properties

which result from a fixed average particle number N
=—0F 0/ o

N= (ﬁﬁjgéa(e ). (8)
In particular, we are interested in calculating the critical tem-
perature where a macroscopic occupation of the ground state
sets in. The critical point can be immediately read off from
Eq. (8) to be ,u,io):O, since there the polylogarithmic function
starts to diverge. However, this critical point, where the
phase transition from a Bose gas to a BEC occurs, also co-
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incides with a divergence of the correlation function accord-
ing to the theory of critical phenomena [30]. To this end we
determine the correlation function of an ideal Bose gas from
the function integral

GOx,m;x',7) = Z0 3€ Dy Dy p(x, 7y (x',7)
x e~ A )

The semiclassical result reads

GOx,rx',7)
d3p ip(x-x" ’ Oc ’ -
:f (271%)36 p( )”‘(6(7— T )g} +O(7 - T)nE::l )
1 2 ’
Xexp{— E[zp—M + V(sz ) - ,LL:|(T— 7 +nﬁ,8)}.

(10)
The Fourier-Matsubara transform for such a semiclassical

expression is given by

i
G(O)(p,wm;x)zf dTei“’mdeDx’e‘iP"'/h
0

! !

X X
><G<°>(x +—,TX— —,0), (11)
2 2

where w,,=27m/h B denotes the Matsubara frequencies. In-
serting (10) in (11) yields

h
—ihw,, +p*12M + V(X) —

GOp,w,;:x) = . (12)

which reveals explicitly that (9) represents the functional in-
verse of the integral kernel (6). At the critical point, where
the correlation function (9) diverges, the integral kernel van-
ishes. Within the semiclassical approximation of the Fourier-
Matsubara transform of (6), we thus obtain

1 2
GO (p,w,;x) = %(— ihw,, + 2p_M + V(x) - ,u) =0.

(13)

This equation can only be satisfied for vanishing momentum
p=0 and Matsubara frequency w,,=0 at the critical chemical
potential

w9 = min V(x). (14)
X

In the case of the harmonic potential (3) the minimum occurs
in the center of the trap. Thus, we reproduce the critical
chemical potential M£O)=O, which corresponds to the semi-
classical value of the ground-state energy. Inserting this into
Eq. (8), we obtain for the transition temperature for an
interaction-free Bose gas
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Q)_@(i)ll:’,
=\ (15)

where {(a)==,_,1/n" is the so-called Riemann zeta func-
tion. Note that in more complicated traps, which arise, for
instance, when the Bose gas is rotated, the potential mini-
mum could occur far away from the origin, thus resulting in
a nonvanishing critical chemical potential [31].

From the critical temperature (15) we read off that
ﬁ,BE_O)cB~N_”3, i.e., the condition for the semiclassical treat-
ment is satisfied within the thermodynamic limit N— . For
a finite number of particles N, it is necessary to go beyond
the semiclassical approximation and to take into account
quantum corrections in a systematic way [32-35]. In lowest
order this finite-size effect in harmonic traps follows from
identifying ,LLE,O) not with the semiclassical value of the
ground-state energy but with its quantum mechanical value
Eg=3h®/2, where @=(w;+w,+w;)/3 denotes the arith-
metic mean of the trap frequencies. Evaluating the polyloga-
rithmic function in (8) perturbatively up to the leading order,
we obtain for the critical temperature the finite-size effect

(ATC) ~ (2w
Tﬁ.o) FS—_2§2/3(3)6N1/3'

The reduction of the critical temperature of an ideal gas de-
creases with increasing particle number N.

(16)

III. FIRST-ORDER PERTURBATION THEORY

In this section we investigate the influence of an arbitrary
weak two-particle interaction upon the thermodynamic prop-
erties of dilute Bose gases within Feynman’s diagrammatic
technique of many-body theory [36-41].

A. Feynman rules

We start with defining the grand-canonical partition func-
tion of the full problem

z- jgD(/,*Dlr,,e—(A“’)[w*,¢]+A“"‘>w*,w]>/ﬁ (17)

and the associated correlation function

1 * *
Gx,mx',7)= Z jg D D (x,7)f (x',7')
e~ (AOLY e AT g (18)

In addition to the interaction-free contribution to the action
(5), we have also to take into account the interaction contri-
bution. Due to the diluteness of the Bose gas we can restrict
ourselves to a two-particle interaction Vi (x—x"):

. 1 (A .
,4<1m)[¢*,¢]=if erd%cf d*x' Vi (x —x")
0

Xy x DY X, DPx, Dx’, 7). (19)

By expanding the functional integrals (17) and (18) in pow-
ers of V(‘“‘)(x—x’), we obtain expressions that consist of
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interaction-free expectation values. These are evaluated with
the help of Wick’s rule as a sum of Feynman integrals, which
are pictured as diagrams constructed from lines and vertices.
A straight line with an arrow represents the interaction-free
correlation function (9):

x,7 x =GO, mx',7).

(20)

Furthermore, spatiotemporal integrals over the two-particle
interaction potential are pictured by two vertices connected
by a dashed line,

1 (" ‘
———f dTJ d3xfd3x’v(‘"t)(x—x’).
hlto (21)

In the following we apply these Feynman rules in order to
determine the grand-canonical free energy and the self-
energy within first-order perturbation theory for the har-
monic trap potential (3) and an arbitrary interaction potential

ylind(x—x").

B. Grand-canonical free energy

Up to first order in the two-particle interaction the grand-
canonical free energy F=-(InZ)/ B reads with the diagram-
matic rules mentioned above

pom il ]

(22)

In passing we note that those two and all higher-order con-
nected vacuum diagrams follow together with their proper
weights from solving a graphical recursion relation [42]. The
first term in (22) is the interaction-free contribution to the
grand-canonical free energy (7). The second and third terms
in (22) are called the direct or Hartree-like and exchange or
Fock-like vacuum diagrams, respectively, which correspond
to the following analytical expressions:

ip
o= [ ar f d’x f dPx' Vi (x - x')
248),
xGOx,m:x, NGO, m:x",7), (23)
f(E)—%f de d’x fd3 Tyl —x")
xGOx,mx", 7GOx', 7;x, 7). (24)

Both contain the interaction-free correlation function (10)
with equal imaginary times. In order to guarantee the normal
operator ordering within the functional integral formalism,
this equal-time correlation function G(O)(x, 7:X’,7) must be
interpreted as GO(x, 7;x’, 7*) [38,39]. Here we have intro-
duced 7" as an imaginary time which is infinitesimally later
than 7. With this and a Fourier transformation of the interac-
tion potential, we obtain for the harmonic trap potential (3):

PHYSICAL REVIEW A 76, 023604 (2007)

oo

L=
FD =
2(%36)% >

el By f d3‘1 V(int)(q)
n3n 13 (277%,)3

n'=1

3 "2
Xexp(—z (n+n)q, ), (25)
J=1 J

_ 2ﬁ2,8Mnn’w2

©

Ly

2hB&) 5oy 2, (n+n')?

" ( ,Bnn’qz >
expl - ————|.
P 2M(n+n')

ontn")Bu

A =

el

(26)

C. Self-energy

In order to determine the location of the phase transition
from a Bose gas to a BEC, we follow the physical notion
elucidated in the ideal case of the previous section and in-
vestigate when the correlation function (18) diverges, i.e.,
when its functional inverse G™!(x, 7;x’, 7’) vanishes. Due to
the two-particle interaction, it decomposes into the integral
kernel (6) and the self-energy 2(x, 7;x’,7’) according to

G'(x,mx',7) =GO (x, mx', ) - S(x, X', 7)),
(27)

which is equivalent to the Dyson equation [36—41]
B
G(X,T;X,, T’) — G<0)(X, T;X',T’) + f d?axr/ f dSX/HJ d+'
0

hp
Xf dTI"G(X, T;X”, TH)E(X”, 7J/;x/"’ 7_"/)

0
XGOX",7":x', 7). (28)

Therefore, a perturbative evaluation of the self-energy yields
via (28) self-consistent interaction corrections to the free cor-
relation function (9). In lowest perturbative order the self-
energy is defined by the diagrams

E(x, %, 7)= Q

A ror
X, T b X T

F el Nt

’

which correspond to the analytical expressions
-1
TP 7ix', 1) = —=dr= 7)ok - x') f &y

X Vi(x - x"\GOX", 7;x",7), (30)

1 _
SE(x,7x',7) = 7(‘)‘(7— )WV (x - x")GO(x, 7%, 7).

@31

Note that the diagrams (29) follow from amputating a line in
the connected vacuum diagrams of the grand-canonical free
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energy [43,44]. Thus, using the first-order perturbative ap-
proximation (29) for the self-energy corresponds via the
Dyson equation (28) to a nonperturbative Hartree-Fock
mean-field theory for the correlation function.

To find the zero of (27), we consider its Fourier-
Matsubara transform. Together with (6) this leads to the
equation

2
%(— ifiw,, + ZP_M + V(x) - ,u) -2(p,w,;x)=0, (32)

where the Fourier-Matsubara transform of the self-energy
follows in analogy to Eq. (11) from

hp
E(p,wm;x):J drei“’mfdix’e‘ip" f
0

! X!
,TIX — —,0). (33)

X
>< —
E(x+ 5 5

Equation (32) is satisfied up to the lowest perturbative order
at vanishing momentum p=0 and Matsubara frequency
®,,=0 as in the previous section. Furthermore, we conclude
that the additional contributions (30) and (31) in (32) do not
change the location x,,;,=0 of the potential minimum. There-
fore, the critical chemical potential is given up to first order

by u.=-72(0,0;0). Identifying the direct and the exchange
term with ,LL(D) #3(0,0:0) and ,LL(E) -£3®(0,0:0), we
obtain wu,.= ,u )+ ,LL(E)+ -+, where the respective terms read

according to (10)

D) _ int)
= G f (271%)3“ @
Ny 4
Xexp( 2 2712/3an,2-> (34)

MEE)=’§ J ) Vind(q) exp( 2 —L) (35)

IV. MODEL INTERACTION

In this section we specialize our general formulas for the
two-particle interaction between dipolar bosons which con-
tains both the contact interaction (1) and the dipole-dipole
interaction (2). First, we briefly discuss whether applying
this model interaction is physically reasonable. Recently, it
has been suggested in Refs. [45,46] that the s-wave scatter-
ing length a, could strongly depend on the dipole moment.
However, there it has also been shown that for dipolar inter-
action strengths, which are not larger than the s-wave scat-
tering strength, the latter is only rescaled by a moderate fac-
tor and remains positive. For the calculations in the present
work we assume that this condition is satisfied. Furthermore,
we mention that the contact interaction (1) represents an ef-
fective pseudopotential, see, e.g., Refs. [36,47]. An analo-
gous pseudopotential for anisotropic interactions has recently
been introduced in Refs. [48,49] which contains, apart from
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the usual dipole-dipole interaction (2) in the s-d scattering
channel, also another part from the d-s scattering channel.
The contribution of the latter turns out to be nonlocal in
momentum space and is therefore difficult to handle. Here
we assume that we are not in the vicinity of any dipolar
shape resonance and, hence, adopt the anisotropic interaction
in the original form (2). Since there exists up to now no
experimental evidence that a scattering in the d-s channel is
relevant, our model seems to be valid for all current experi-
mental situations.

A. Fourier representation

Now we combine both interactions (1) and (2) and write
our model interaction in the following form:

2

. 47h
Vind(x —x') = aé(x—x’)
3(m(x — "2 2

_ﬂ( [m(x ,Xs)] B m/%>. (36)

4w\ |x-x'| Ix — x|
Here we used the effective scattering length
oM

= 37

T G7)

for describing the strength of the contact interaction. Note
that both terms in the effective scattering length (37), i.e., the
original s-wave scattering length a, and the magnetic dipole
contribution, are physically inseparable. Therefore, we have
to identify (37) with the experimentally measurable scatter-
ing length of atoms with magnetic dipole moments. In the
following we will use the dimensionless parameter

,uosz

€Op="5 22 (38)

which is a measure of the strength of the dipole-dipole inter-
action relative to the effective scattering energy. In the limit
of a vanishing scattering length a,— 0 the model interaction
(36) describes the pure dipolar interaction (2). This corre-
sponds to the value €,,=1, which plays a special role by
investigating the stability of a dipolar BEC at zero tempera-
ture within the Thomas-Fermi approximation [24,25]. Under
certain conditions one expects at this dipole interaction
strength that a cloud of dipolar particles collapses into a thin
wire along the magnetization direction. In contrast, the value
€pp— < is only achieved in the limit a,— —ugm*M/127h>
which does not correspond to any distinguished situation.
Furthermore, if we consider the limit of a vanishing dipole
moment m— 0, the model interaction reduces to the pure
contact interaction (1).

Now we determine the Fourier representation of our
model interaction (36). The Fourier transform of the contact
interaction is simply a constant. The Fourier transformation
of the anisotropic term has to be evaluated with special care,
as the corresponding Fourier integral is uv divergent. One
possibility to regularize this singularity is to introduce an uv
cutoff distance which physically takes into account that the
atoms cannot overlap [9]. Thus, the Fourier transform is de-
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termined for a finite uv cutoff distance which is, finally, al-
lowed to go to zero. Using spherical coordinates, where the
dipole moment is described by m=m(sin «cos ¢,
sin a sin ¢,cos @), we obtain the following Fourier trans-
form:

47h’a m?
,u03 Moz [sin® a(cos® ¢q?
q

vin(q) =

+ sin2 éq3) + cos® aq; + 2 sin a cos a(cos ¢q;q;

+5in ¢gpq3) + 2 sin® a sin ¢ cos ¢q,q,]. (39)

Another approach for obtaining this result (39) has been ex-
plored in quantum electrodynamics in the context of calcu-
lating the transverse & function with a regularization function
[50]. Note that the result (39) also follows from applying the
distributional identity [25]

3xx; 5ng L 5(x) +

[

which can be regarded as defining the dipole-dipole interac-
tion as second partial derivatives of the Coulomb potential.

P (40)

B. Evaluation of integrals

Now we evaluate the influence of the interaction (39)
upon the thermodynamic quantities of interest. To this end
we remark that the remaining integrals (25), (26), (34), and
(35) are of the form

I(im)<ﬂ ﬂ)z_ f d%f d‘sz dqs
ap ds Momzalazas —o w oo \r o \'

><V("“)(q)exp< i qg_q_g). (41)
a; a3 @

In order to calculate this quantity, we define the integrals

I(,)(% ‘11) f d‘hf d%f dgs
a aj a1aa3J _oo NI J _oo NTJ o0 \,
11 qz-) ( i 61§)
X|=——— L lexp|l -5 -5 -5,
(3 A

3epp q a, a;
(42)
which occur for the configurations j=1, 2, and 3 of Fig. 1,
respectively. Due to the symmetry of its integrand, the full
problem (41) is then solved by

la, a a, a
I““”(—l,—l) =sin? a cos® qbl(l)(—l,—l)

a; ds a das

a, a
+ sin’ a sin’ qSI(z)(—l,—l)

ap ds
a; a
+ cos? al(3)<—l,—]). (43)
a, aj

From this representation we obtain immediately that
1'9(a,/a,,a,/as) is extremal for arbitrary parameters a;, as,
and a; only if
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10)(91 91)
az’aa '
,ﬁm)(fi fi) =4 1@)(91’91)’
az’aa a ds
[(2)<ﬂ ﬂ)
az’a3 ’
Whether these extrema lead to local maxima or minima of

Jint) depends on the concrete values of the coefficients I(l),
1@, and I®. To calculate them we mention the properties

,e)<91 91) =Im)<92 92) Io>(91 91) =Iu>(E§ 92)
(12’513 03’01 ’ 612,(13 611,(12 ’

(45)

p
a=m/2, $=0,m,

a=m2, ¢=mu/2,37/2,

a=0, ¢ arbitrary.

\
(44)

which simply follow from definition (42). Consequently, we
only need to determine one of the three integrals, for in-
stance, that for j=1. Applying the Schwinger proper-time
representation 1/q*=[dr a7 [30], we arrive at the expres-
sion

1 3 *
pfas) ol 2 [,
a a; €pp  2a1a2a3)
% 1
(7+ Ua})(r+ 1a3)"(r+ 1a3)'"*"

(46)

With the help of substitutions the remaining integral is re-
duced to incomplete elliptic functions of the first and second
kind [[51], (8.111)]

sin ¢ 1
F(¢.k) = L dx(l )21 - 2
sin ¢ k2 2\1/72
E(¢,k) = f —x2)3’2 . (47)

We present the result in the following form:

a, a a; a 1
1<‘>(—1,—‘)=f(—‘,—‘)——, (48)
a as a as €pD

where the anisotropy function f has to be evaluated sepa-
rately for the three cases a;<<a,,as and a,<a;,as as well as
az<<ap,a,.

C. Anisotropy function

At first we consider the case a; <a,,az and perform the
substitution 7=(1/a3—1/a3)/z*~1/a3 which results in
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FIG. 2. (Color online) Logarithmic plot of the anisotropy func-
tion f(7, ) in Egs. (49) and (50). Black curves represent the special
cases (53) with (54). The cross line corresponds to f,(x)=f(x, k)
and the lines parallel to the axes depict f(1,«) and f(x,1).

3k7 — V-7
(pr)=1+ —"—"—F E(arcsin = Kz,—/—
1 VI =(1 = 77) s

— V-7
—F(arcsinvl—xz, ,1—7]2” for k,p<1.
VI -k

(49)
For the case a;<a,<a, we rather use the substitution 7
=(1/aj-1/a3)/z*~1/a3, which yields
1+29 3kn
f(”]9 K) = -
-7 (-7~
NP 7 -1
PR 7
- F( R R )}
— ——==—=F| arcsin T
\’rK_nz K \”K2—772

for 1 < < k. (50)

.
X l Vit - ’E (arcsin

Finally, for the case a,<a3;<<a;, we have a situation that is
analogous to the second case when performing the replace-
ment 7+« « on the right-hand side of (50). Note that all these
different representations of the function f are equivalent to
each other by analytical continuation due to the property
[[51] (8.127)]. The importance of this anisotropy function for
dipolar Bose gases has recently been recognized in the con-
text of expanding chromium condensates [52]. There the an-
isotropy function appears within the Thomas-Fermi solution
of the underlying Gross-Pitaevskii equation at zero tempera-
ture. Although our investigation of the critical temperature of
dipolar gases represents a complete different physical situa-
tion, the anisotropy function plays here a similar important
role. Figure 2 shows how the shape of this anisotropy func-
tion depends on its parameters # and . For our further in-
vestigations we have to summarize the properties of (7, );
see for comparison also Ref. [52]. At first, we mention its
symmetry property

f(n,x) = f(k,m) (51)

and, secondly, the sum rule
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Kk 1 1 7
ped 5L 0
nn K K
Furthermore, we need the analytical continuation of this
function into the semi-symmetric regions of the trap poten-
tial (3)

[k, k) ==2f(1,1/) = f(x), (53)
where the anisotropy function
(
2i>+ 1 3«%arctanh 1 - 2 0< el
— K s
1 - «? (1-x*¥? ’
f&‘(K):< O’ K=1,
2%+ 1 3x*arctan V&2 — 1 -1
+ 9 K 9
L 1_K2 (K2_1)3/2
(54)

describes a cylindrically symmetric dipolar BEC [24-26,53].
This function tends asymptotically to =2 and 1 in the limits
k— and k—0, respectively (see Fig. 2).

D. Results

With the abbreviation (42) we find for our perturbative
results (25) and (26) and (34) and (35) in the three extremal
configurations j=1,2,3 of (44):

2
D)__ _ MM [ @1 @1

FP = 6)\3(ﬁ,86)31(1)<w2’ w3>§3/2,3/2,3/2(€ﬁ“), (55)

Momz ;
P=- WIB@)SIU)(L1)§3/2,3/2,3/2(€ﬂ”), (56)

2

(D)=_ml(j)<ﬂ g) (g) .
M 3)\3 (1)27(1)3 g 5 R ( )

2
® = BV f011 (§> 58
fe 33 (1.1)¢ 2/ (58)

Here N\ denotes the thermodynamic de Broglie wave length

2
e 2ah ,8’ (59)
M

and the generalization of the polylogarithmic function of Eq.
(7) is defined according to

n+n’

ga,h,c(z) = 2 E az— (60)

vl n'’(n+n")

It is worth mentioning that both exchange terms of the
grand-canonical energy (56) and the critical chemical poten-
tial (58) depend only on the contact interaction as the aniso-
tropy function f(1,1) vanishes in (48). Thus, within the
semiclassical approach, only the direct contribution carries
the anisotropic character of the dipolar interaction.
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V. CRITICAL TEMPERATURE

The total grand-canonical free energy in the three ex-
tremal configurations 1-3 of Fig. 1 follows from (22) as the
sum of (7), (55), and (56):

2
== G gy [N)(Z; 2]
+1(/)(1,1)]53/2,3/2,3/2(6’3”) + o (61)
The full problem has to be studied at fixed particle number
N=-90F/du:
"= ea )3§3( s 3>\3(ﬁﬁﬁ)3{ 0)( ) w3>
+10)(1,1)]§1/2,3/2,3/2(€Bﬂ) + .., (62)

where we have used the identity £353/2.12(2)=241/2.32.32(2)
following from (60). The critical temperature T. is obtained
from Eq. (62) in the limit 7 s,= ™+ 1 4+ Recalling
(57) and (58), we obtain within first-order perturbation
theory at the critical point

N= )35( )+

Momzﬁi [I(»( ) 191, 1)]
(ﬁ,BC N(BB.®) L \wy @y

133 3
X[f(za’z)-?(z)@} e (09

where {(a,b,c)={,, (1) is a generalization of Riemann’s
zeta function. The first term in Eq. (63) reproduces the
interaction-free particle number, thus leading to the critical
temperature (15). The interaction term changes this, so that
the resulting shift of the critical temperature in configura-
tions 1-3 reads, according to (48), (53), and (54),

(ATC>(1) a c5 wom*M (wl wl)
=——Cs—= _— ,
7O N2 2w\ o, o

C
(ATC>(2) a
0 NN
70 \O
cs pom'M

ATC @) a 0)3 (1)3
1) =700 i\ o) wy)

The dimensionless prefactor csfor the contact interaction has
the value

4 3
€= 34(3)“ )g() g(z 25)]23'426‘ (65)

Now we discuss the physical implications of our first-order
perturbative result (64). By setting m=0 we obtain for all
configurations 1-3 in Fig. 1 the same downward shift of the
critical temperature with the dimensionless prefactor (65).
This simple result for the isotropic contact interaction was
originally derived in Ref. [28] within a mean-field approach.
Only recently was it confirmed experimentally by investigat-

65 Mom M ((1)2 (1)2)
2 127k ’

)
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ing the onset of Bose-Einstein condensation in the hyperfine
ground state of ¥’Rb [54]. Furthermore, our result (64) also
shows how the shift of the critical temperature depends on
the anisotropic magnetic dipole-dipole interaction.

So far we have restricted our detailed analysis to those
spherical angles (a, ) between the symmetry axes of the
interaction (2) and the trap (3) which coincide with the ex-
tremal cases (44). It is straightforward to extend our result to
arbitrary angles. For this purpose we use the master integral
(41) and its decomposition (43) into the integral (42) for j
=1,2,3. With this we calculate the following angle-
dependent shift of the critical temperature:

cs pomM

AT NP a
70)  TTONO T 1m0
><{sin2 a[cos2 d)f(ﬂ,&)
W) W3
3 W3
+sin® d)f —=,— | | + cos? af .
wz W wl )

(66)

For the special cases of «a=0,a=w/2 and ¢
=0,7/2,7,37/2, Eq. (66) reduces to the previous results
(64), which turn out to be extremal.

VI. MAGIC ANGLES

Changing the angles («, ¢) between the symmetry axes of
the trap and the magnetization direction allows us to tune the
dipolar effect between those maximal and minimal values. In
particular, there exist so-called magic angles, where the di-
polar effects vanish. We read off from Eq. (66) that those
angles are given for an arbitrary anisotropy due to the sum
rule (52) by

ay(p)

=arccot{i\/sin2¢—cosz¢f<ﬂ’ﬂ>/f(ﬁ,ﬂ)].
w; W3 W W,
(67)

Note that the radicand has to be positive, which restricts the
range of values for the polar angles ¢. In general, the possi-
bility to find a magic angle depends crucially on the aniso-
tropy coefficients. Only in the case that f(w;/ |, w3/ w,) <
—f(w,/ w,,w,/ w3) is satisfied do magic angles always exist.

Now we present the results for cylindrically symmetric
traps. First, we mention for w,=w, that the magic angle (67)
reduces to a value that is independent of the second aniso-
tropy parameter w;/ws;. This value is also ¢ independent
according  to_ (67) with (53) and amounts to a
=arccot(x1/42)=54.7° or 125.3° [20,26]. For another sym-
metric case with w;=w; we find with (53) that
flosl 0wy, w3/ wy)=f(w/w,,w,/w3); thus solutions of (67)
exist only for sin? ¢>1/3. The locations of magic spherical
angles for both symmetric cases w;=w, and w;=w; are de-
picted in Fig. 3(a). For the third symmetric case w,=w;, the
situation is similar to w;=wj; as the polar angle ¢ is shifted
by only /2.
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FIG. 3. Location of magic angles (a, ¢), where the dipolar ef-
fect vanishes. (a) The solid line stands for a cylinder-symmetric
problem with w;=w; and the dashed line for that with symmetry
w;=w,. (b) The solid line stands for the anisotropic parameters of
the experiment [5] and the dashed line for a cylinder-symmetric
problem with w;=w,.

Furthermore, we discuss the situation in a complete aniso-
tropic harmonic trap by the example of the trap frequencies
of the of Pfau and co-workers experiment [5], which are
given by w;=2m X581 Hz, w,=27X406 Hz, and w;=27
X138 Hz. Thus, we find from (50) the values
Sl w3, 0/ 03)=—-0.6252 and f(w;/ w;, w3/ wy)=+0.7356.
Specializing the general result (67) for the experiment [5]
leads to

ap(p) = arccot(£10.150 sin? ¢+ 0.850 cos? ). (68)

This behavior is depicted in Fig. 3(b), where we see the
location of the magic angles compared with the
¢-independent value of a problem with a cylinder symmetry
around the z axis.

-0.08 1

(a)
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VII. EXPERIMENT ON CHROMIUM BEC

Here we discuss the consequences of our results for the
concrete example of the parameters from the ongoing experi-
ments on the Bose-Einstein condensation of >>Cr atoms [5].
There the geometric mean frequency is @w=27 X 319 Hz. The
total atom number is N=100 000, yielding an interaction-free
critical temperature (15) of about 7"<C0):670 nK. The finite-
size correction of Tio) in [5] follows from (16) and amounts
to —1.8%. This can now be compared with a shift of the
critical temperature due to the contact and the magnetic
dipole-dipole interaction.

The scattering length of the S2Cr atoms is given by a
~105ag with the Bohr radius ag [55], so we obtain from
(38) €pp=0.144. The thermodynamic de Broglie wavelength
has the value )\(CO) =~ 5598ay for the parameters of the experi-
ment [5]. From Eq. (64) we obtain from the contact interac-
tion a downward shift of the critical temperature by —6.4%.
This is now modified by the magnetic dipole-dipole interac-
tion. First, we consider case 1 from Fig. 1, in which the
magnetization is parallel to the trap axes with the largest
moment of inertia. There we find from (50) the result
flo/ wy,w;/ w3)=—0.6252, which leads via Eq. (64) to an
extra downward shift of the critical temperature by —0.29%
due to the magnetic dipole-dipole interaction. For the case 2
of Fig. 1 we find f(w,/ w3, w,/ w;)=—0.1104, which amounts
to an additional downward shift of the critical temperature
due to the magnetic dipole-dipole interaction by —0.05%.
Finally, for case 3 of Fig. 1 with the magnetization direction
parallel to the trap axes with the smallest moment of inertia,
we find f(w;/ w;, w3/ wy)=+0.7356, which results in an up-
ward shift of the critical temperature due to the dipole-dipole
interaction of about +0.34%. Figure 4 shows the resulting
total shift of the critical temperature AT, for the >’Cr gas
with respect to the interaction-free critical temperature Tﬁo)
versus the particle number N. Both the finite-size corrections
and the contact interaction lead to a huge shift, on top of
which the small dipolar effect is seen.

Furthermore, we follow Ref. [26] and suggest measuring
differences between the critical temperatures in the three ex-
tremal cases of Fig. 1. The large shift caused by the finite-
size corrections (16) and the contact interaction would cancel
due to their isotropic character. Thus, the difference between
the shifts is exclusively caused by the magnetic dipole-dipole

0.010
0.008
0.006

0.004

0.002

ONV?[10° Hy]
by O 1 2

FIG. 4. (a) Shift of the critical temperature AT, with respect to the interaction-free critical temperature Tﬁo) for a >2Cr gas in a harmonic
trap with frequencies w; =27 X581 Hz, w,=27 X406 Hz, and w;=27X 138 Hz calculated from (64) and (16) without (straight line) and
with (dashed lines) magnetic dipole-dipole interaction for the cases 1-3 of Fig. 1. (b) Differences of the critical temperature shifts versus
effective parameter @N'/3. The dots indicate the present parameters of the 32Cr experiment [5].
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FIG. 5. (Color online) Shifts of critical temperatures (a) AT(C])
—ATEZ), (b) ATS)—AT?), and (c) AT(,Z)—AT(L?) with respect to the
interaction-free critical temperature 7{0) for N=10° >*Cr atoms in a
trap with mean frequency w=27X319 Hz versus anisotropy pa-
rameters ;/w, and w,/w; according to (64). The black curves
represent cylindrically symmetric cases and the black squares the
values of the experiment [5].

interaction. For the total atom number N=100 000 and the
mean frequency w=2m X 319 Hz, the temperature difference
between cases 1 and 3 amounts to a net effect of 0.61% of

PHYSICAL REVIEW A 76, 023604 (2007)

the interaction-free critical temperature T(CO). This dipolar ef-
fect increases with the geometric mean frequency @ and the
total atom number N as (@N'3)"2, as is shown in Fig. 4(b).
Another possibility for enhancing the difference of the criti-
cal temperatures is provided by varying the anisotropy
strengths w;/w, and w;/w; of the harmonic trap potential as
seen in Fig. 5. For instance, in order to increase the differ-
ence of the critical temperature between the first and third
configurations, we need to increase the aspect ratio w;/w,.
Furthermore, it is preferable to work with moderate aniso-
tropy parameters w,/w; <1 (pancake like) than in the regime
w;/wy>1 (cigar shaped) of the **Cr experiment [5], as is
indicated by Fig. 5(b).

Finally, we elucidate how to achieve measurable dipolar
effects at the critical point. First, varying the anisotropy pa-
rameters only allows to increase the critical temperature dif-
ference T?)—T(CI) with respect to the interaction-free value
from currently 0.61% up to a maximal value of around
1.39%. Note that the latter represents an upper limit accord-
ing to our perturbative calculations. Not so strictly limited is
the possibility to amplify the magnetic dipolar effect by in-
creasing the particle number or the mean trap frequency. For
instance, a doubling of the latter yields with constant particle
number an increase of the effect by the factor 1.41. An even
higher increase of the particle number seems to be promis-
ing, but is in fact physically limited by three-body losses.

VIII. CONCLUSION

So far, the dipolar nature of BECs presently available has
only been resolved available in expansion experiments [21].
The analysis of the present paper shows that it could become
possible to detect a signal of the underlying dipole-dipole
interaction also from measuring the critical temperature of
the onset of Bose-Einstein condensation. Most sensitive is
the difference of the critical temperatures, where the magne-
tization direction is parallel to the axes of the harmonic trap
with largest and smallest moments of inertia. We have shown
quantitatively that this temperature difference increases with
the number of chromium atoms, the geometrical mean fre-
quency, and the anisotropy of the trap. Furthermore, our re-
sults will, certainly, be useful also for other dipolar systems
with a tunable dipole moment, like heteronuclear molecules
in low vibrational states [11-13,15-18], where the dipolar
effect will be larger.
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