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We discuss the general problem of generating confining potentials for neutral matter by combining different
kinds of static forces. The interactions taken into account are those having a linear or quadratic dependence on
the modulus of an irrotational and solenoidal field. Particular attention is devoted to the combination of electric
and magnetic forces for paramagnetic species. In this case, tight confinement can be achieved by enhancing
and balancing the field gradients. Combined potentials turn out to be conveniently generated by configurations
based on high permeability materials. Feasibility of combined electric-magnetic traps and guides for neutral
alkali-metal atoms is discussed.
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I. INTRODUCTION

In the last two decades, confining potentials relying upon
suitably shaped magnetic fields have been exploited as an
extremely reliable tool for the manipulation of cold neutral
matter.

Magnetic fields are used to generate both trapping �1� and
guiding potentials �2–5�. In this last context, tight confine-
ment along single or more dimensions often constitutes the
key requirement, for example, to achieve quantum propaga-
tion of atomic de Broglie waves �6�.

The goal of tight confinement has been mainly pursued by
miniaturizing the setups �7–11�, especially with regard to
atom guiding. In this framework, the magnetic field is usu-
ally generated by current-carrying wires lithographically pat-
terned on a substrate �12–15�. Recently, the realization of a
superconducting atom chip has been reported �16�.

Another approach aiming to generate tight potentials re-
lies on the utilization of ferromagnetic structures �17–21�.
This solution exploits the property of high permeability ma-
terials ��-metals� to conduct and concentrate the magnetic
field flux. Related to this, �-metal poles act as equipotential
surfaces for the scalar potential describing the magnetic field
in a current-free region. However, since it is no longer pos-
sible to apply the superposition principle inherent in the
Biot-Savart law, the design of magnetic field source configu-
rations containing �-metals is far more demanding than in
the case of setups entirely based on current-carrying wires.

In this paper we discuss how to create confining potentials
for neutral particles by combining static magnetic, electric,
and gravitational fields. The core idea is to remove the con-
straint of working in a minimum of a single potential �typi-
cally the magnetic field modulus� by compensating the re-
sulting force with an additional force. To generate the
confining potentials, we consider here the interactions pro-
portional to the first or second power of the modulus of a
solenoidal �divergence-free� and irrotational �rotation-free�
field, such as the static electric or magnetic field. More in

detail, the interactions considered are as follows: the mag-
netic force acting on a paramagnetic species, the diamagnetic
interaction, the quadratic Stark interaction, and finally, under
very ordinary conditions, the standard uniform gravitational
potential.

Combinations of static electric, magnetic, and gravita-
tional fields were first discussed by Ketterle and Pritchard
�22� who demonstrated that it is impossible to trap ground-
state particles at rest using these configurations. To overcome
this limit, particles are here supposed to be in a metastable,
low-field seeking state for at least one of the component
potentials.

The use of combined potentials can be advantageous in
many respects. For example, field gradients and curvatures
can be strongly enhanced so as to yield tighter confinement.
In addition, the utilization of electric fields to realize com-
bined potentials allows for a great versatility. Moreover, a
trap can be located in a region of nonvanishing magnetic
field, thus preventing confined atoms to undergo Majorana
spin flips. The method can be employed to design confining
potentials suitable to observe and possibly exploit Feshbach
resonances �23�. Finally, the combined potential approach
simplifies the design of confining configurations using
�-metals.

Combined confining potentials exploiting magnetism and
gravitation have been used to achieve magnetic levitation of
macroscopic objects �24,25�. Combined magnetic-electric
one-dimensional �1D� quantum wires �26,27� and ring trap
�28� have been proposed. The quadratic Stark interaction has
been used to modify a linear magnetic guide �29�, whereas a
gravitomagnetic trap has been employed to produce Bose-
Einstein condensates at extremely low temperatures �30�.
Moreover, confining systems based on combinations of di-
pole forces �31� with the gravitational or the quadratic Stark
interaction have been proposed �32,33� and demonstrated
�34�. Finally, a combination of a laser guide and a magnetic
lens to transport a cold atomic cloud has been proposed �35�.

The paper is structured as follows. In Sec. II, the formal-
ism adopted to treat combined potentials is introduced, while
the topic of tight confinement is discussed in Sec. III. Section
IV deals with the more physical aspects, including possible
confining combinations. In Sec. V, the combination of elec-
tric and magnetic fields for confinement of paramagnetic
species, such as neutral alkali-metal atoms, is discussed; con-
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figurations having cylindrical or translational-planar symme-
try are treated in depth. Finally, as an example, the design of
a possible electric-magnetic linear guide for neutral atoms is
presented.

II. SECOND-ORDER TAYLOR EXPANSION OF THE
MODULUS AND THE MODULUS SQUARE OF
A SOLENOIDAL AND IRROTATIONAL FIELD

In a neighborhood of a point, which is set as origin, a
generic vectorial field C can be expanded up to the second
order in the coordinates in the following way:

Ci = Ci0 +
�Ci

�rj
rj +

1

2

�2Ci

�rj � rk
rjrk + O�r3� , �1�

where O�r3� groups terms of order higher than two. In the
previous expression and henceforth, the partial derivatives
are supposed to be evaluated in the origin; moreover, sum-
mation over repeated indices is implicitly assumed, with
each index running on the three Cartesian coordinates. The
modulus square of the field can be derived from Eq. �1� up to
the second order,

�C�2 = �C0�2 + 2Ci0
�Ci

�rj
rj + �Ci0

�2Ci

�rj � rk
+

�Ci

�rj

�Ci

�rk
�rjrk

+ O�r3� . �2�

In the following, a nonvanishing field modulus in the ori-
gin �C0� is considered. It is convenient to define the gradient-
like first-order tensor �vector� � j and the curvaturelike
second-order tensor �matrix� � jk as

� j �
Ci0

�C0�
�Ci

�rj
=

C0

�C0�
�C

�rj
, �3�

� jk �
Ci0

�C0�
�2Ci

�rj � rk
+

1

�C0�
�Ci

�rj

�Ci

�rk
. �4�

In this way, Eq. �2� becomes

�C�2 = �C0�2 + 2�C0�� jrj + �C0�� jkrjrk + O�r3� . �5�

An analogous expression for the modulus of the field can be
derived as

�C� = �C0� + � jrj +
1

2
�� jk −

� j�k

�C0� �rjrk + O�r3� . �6�

By defining a new second-order matrix � as

� jk � � jk −
� j�k

�C0�
, �7�

or equivalently

� jk �
Ci0

�C0�
�2Ci

�rj � rk
+

1

�C0�
� �Ci

�rj

�Ci

�rk
− � j�k� , �8�

Eq. �6� can be written as

�C� = �C0� + � jrj +
1

2
� jkrjrk + O�r3� . �9�

The vector � and the matrix � are the gradient and the Hes-
sian of the modulus of the field C, respectively. The gradient
and the Hessian of the modulus square are instead 2�C0��
and 2�C0��, respectively.

In the Appendix it is shown that, if C is solenoidal and
irrotational, then both � and � have non-negative trace, thus
preventing the corresponding eigenvalues from being simul-
taneously negative, whatever the value of the gradientlike
vector �. Each eigenvalue is equivalent to the curvature of
the potential along the direction determined by the corre-
sponding eigenvector.

In the case of �=0, this statement concerning the eigen-
values is a consequence of Earnshaw’s theorem �see, for ex-
ample, Ref. �36��, according to which the modulus of a so-
lenoidal and irrotational field cannot have a maximum within
a homogeneous medium. Earnshaw’s theorem is indeed more
general, as it deals also with cases in which the curvaturelike
matrices are identically zero. The trace property, however,
holds for any value of �, and it is thus applicable for poten-
tials resulting as the sum of different contributions, each pro-
portional to the modulus or the modulus square of a solenoi-
dal and irrotational field.

III. TIGHT CONFINEMENT VIA GRADIENT
ENHANCEMENT AND COMPENSATION

Once the total gradient is zero, the goal is to make each
eigenvalue of the combined Hessian matrix non-negative
and, possibly, as large as possible.

Let us first consider a single component potential. Ne-
glecting momentarily the proportionality factor a, the Hes-
sian matrix is � or 2�C0��, depending on whether the potential
is proportional to the modulus of a field C or its square,
respectively. Both the Hessian matrices are given by the sum
of two contributions �see Eq. �4� and Eq. �8��, one propor-
tional to the spatial second derivatives �curvatures� of the
field components and the other proportional to the products
of the spatial first derivatives �gradients�. As shown in the
Appendix, the contribution to the trace by the terms contain-
ing the field curvatures is equal to zero: terms of this kind
create saddle potentials, whose nontrapping sides are then to
be compensated for. On the other hand, the contribution to
the Hessian matrix by the terms containing the field gradients
is always non-negative definite. These statements can be
generalized to the case of a combined potential, leading to
the conclusion that only terms containing the field gradients
and belonging to potentials with positive coefficients a can
make each eigenvalue of the overall Hessian matrix non-
negative. Consequently, pursuing a tight confinement re-
quires the maximization of these terms.

A first way to enhance the terms of the matrix � or 2�C0��
that contain the field gradients is to reduce the bias field
strength, as it results from Eq. �4� and Eq. �8�. This fact is
exploited, for example, in the Ioffe-Pritchard traps �37,38� in
order to vary the radial curvature of the potential. The bias
field, however, cannot be set arbitrarily small: its reduction
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amplifies the harmful effects for the trapped species stirred
up by field fluctuations �39�. Moreover, higher-order terms in
the Taylor expansion of the potential, and thus nonlinearities,
can become significant.

The second, and safest, way to yield tighter confinement
is therefore to directly enhance the field gradient terms
��Ci /�rj�. This goal has yet to comply with the requirement
of vanishing gradient � for the confining potential. Interest-
ingly, in case of a single potential, this can be satisfied only
by setting the three gradient vectors �C /�rj �j=1, 2 , 3�
orthogonal to the bias field in the trap center C0, as it follows
from Eq. �3�. A remarkable consequence is that the Ioffe-
Pritchard trap turns out to be the only possible cylindrically
symmetric trapping configuration with a nonzero field mini-
mum.

The constraint on � for a single potential can be overcome
by using an additional potential. In general, this additional
potential will have nonzero curvatures so that its shape must
be carefully chosen depending on the eigenvalues of the Hes-
sian of the starting potential. A convenient situation is given
when the additional potential is flat and thus only compen-
sates for the gradient contributions given by the former one
without perturbing its curvature terms.

An important example of an additional, flat potential is
provided by uniform gravity �see Sec. IV�. However, the
slope � is in this case fixed, as it depends exclusively on the
gravity acceleration g and the mass m of the trapped species.
This poses limits to the design of trapping configurations
�40�. Nevertheless, gravity makes up an important candidate
for combined confining potentials. Using a combined gravi-
tomagnetic trap we obtained the levitation of a cloud of cold
rubidium atoms. This experiment, which will be reported on
in a separate paper, uses a magnetic field having a cylindrical
symmetry. The field is characterized by a bias value of 0.5 G,
an axial gradient of −15.4 G/cm, and an axial curvature of
90 G/cm2. For 87Rb atoms being in the 2S1/2 , F=2, mF
=2 hyperfine state, this gradient exactly compensates the
weight force.

IV. COMBINED POTENTIALS

We consider a combined potential U as the sum of differ-
ent contributions Un,

U = 	
n

Un,

each proportional to the first or the second power of the
modulus of a solenoidal and irrotational field Cn,

Un = an�Cn��n, �10�

where the coefficients an are suitable proportionality con-
stants and each �n is equal to 1 or 2. The gradient of the
overall potential at the origin is then given by

�U = 	
n

an�n�Cn0��n−1�n,

whereas the Hessian is

�2U

�rj � rk
= 	

n

an�n�Cn0��n−1��n� jk,

where, for each n,

� � 
� if � = 1,

� if � = 2.
�

Imposing U to have a minimum requires the gradient of U
to vanish and, as a necessary condition, the trace of the total
Hessian, or equivalently the Laplacian of U, to be non-
negative,

�2U = 	
n

an�n�Cn0��n−1 Tr �n � 0.

As shown in Sec. II, for each n it holds Tr �n�0. Conse-
quently, a minimum in a combined potential is achievable if
there is at least one attractive potential, i.e., characterized by
a positive coefficient a in Eq. �10�; atoms �or molecules�
behave as low-field seekers �LFS�. An immediate conse-
quence of this last statement is that no combination of static
electric, magnetic, or gravitational fields can be used to trap
ground-state particles, which, as known, are high-field seek-
ers �HFS�. This is in agreement with the results reported in
�22�. The requirement of the particle being “quasistatically”
LFS eventually calls for the validity of the adiabatic approxi-
mation.

The possible attractive potentials are the paramagnetic in-
teraction for LFS described by ��B�, where � represents the
modulus of the magnetic dipole moment, and the diamag-
netic interaction −	�B�2 /2 for particles having a negative
susceptibility 	. These two forces are virtually mutually ex-
clusive. Nonattractive components to yield combined poten-
tials are then the quadratic Stark interaction −
�E�2 /2, where

 is the static dipole polarizability, and the uniform gravita-
tional field. Actually, this last potential is not proportional to
the modulus of any solenoidal and irrotational field. Still, it
can be treated in the very same way as the others provided
that the field is uniform. To demonstrate it, let CG be a
divergence- and rotation-free field defined as

CG = UG0ẑ + mg�−
1

2
xx̂ −

1

2
yŷ + zẑ� ,

where UG0 represents a suitable offset value, m the particle
mass and g the gravity acceleration. Its modulus is

�CG� = UG0 + mgz +
m2g2

8UG0
�x2 + y2� + O�r3� .

The last expression corresponds to the standard uniform
gravitational potential with acceleration directed along −ẑ,
provided that

UG0 � mg� ,

where � is the size of the region of interest �i.e., the confine-
ment region�.

To sum up, the possible combined potentials are the fol-
lowing:

�i� paramagnetic �LFS� species,
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U = ��B� −
1

2

�E�2 + mgz; �11�

�ii� diamagnetic species with 	�0,

U =
1

2
�	��B�2 −

1

2

�E�2 + mgz . �12�

V. COMBINED POTENTIALS FOR
PARAMAGNETIC SPECIES

In this section, we consider combinations of magnetic,
electric, and gravitational potentials for paramagnetic spe-
cies, and in particular for neutral alkali-metal atoms. Because
of their practical importance, the discussion is focused on
configurations with cylindrical or translational-planar sym-
metry.

Defining the quantities � and G as

� �
2�



, �13a�

G �
mg

�
, �13b�

Eq. �11� can be rewritten as follows �henceforth we take z to
be the vertical coordinate�:

U =



2
����B� + Gz� − �E�2� . �14�

Depending on the total angular-momentum quantum number
mF and the Landé factor gF of the atomic state, one has �
=mFgF�0, where the parameter �0 is defined as �0
�2�B /
. It is important to note that Eq. �11� holds if the
quadratic Stark interaction does not mix hyperfine levels. For
the 2S1/2 state of alkali-metal atoms this condition is fulfilled,
since the tensor polarizability 
2 is zero �41,42�. The value
of the parameter �0 for these atoms is reported in Table I.
Given the atomic mass ma of an isotope of interest, the value
of the parameter G is given by ma0.177 G/cm.

Besides curvatures, two fundamental parameters that
characterize any confining potential are depth and size.
Depth is defined as the minimum kinetic energy necessary to
escape a potential. In the case of a paramagnetic species, a
magnetically confined particle can escape the potential either
kinetically �the particle crosses the potential-well borders� or
in consequence of a Majorana spin flip �the particle reaches a
region where B�0�. As a result, if there exist zeroes of the
magnetic field in the potential well, the general expression
for the depth is

UD

�
= min� �E�0��2 − �E�r0��2

�
− �B�0�� + Gz�

r0�
, �15�

where �E�0��2 and �B�0�� are the electric field modulus square
and the magnetic field modulus at the confinement center
�taken as origin�, whereas r0� corresponds to the set of
points at which the magnetic field vanishes �locus of the
zeroes�.

In order to establish whether confinement occurs at a
given point, it is sufficient to know the bias values, gradients
and curvatures of the different fields in that point. On the
other hand, the determination of the locus of the zeroes of
�B�, and thus of depth and size of the combined potential,
generally requires the knowledge of higher-order terms of
the Taylor expansion of the component fields.

A. Cylindrical symmetry

In this section, field source distributions having cylindri-
cal symmetry are considered. Due to the presence of the
gravitational field, the vertical axis �z axis� must be neces-
sarily taken as the symmetry axis. In a neighborhood of a
point on this axis, which is taken as the origin, the Taylor
expansion for the magnetic field is determined up to the sec-
ond order by three parameters: the bias field B0, which is
supposed to be strictly positive �B0�0�, the axial field gra-
dient B�, and the axial field curvature B� �r���2+z2�,

B� = −
1

2
B�� −

1

2
B��z + O�r3� , �16a�

Bz = B0 + B�z +
1

2
B��z2 −

�2

2
� + O�r3� . �16b�

The magnetic field modulus is

�B� = B0 + B�z +
1

2
B�z2 +

1

4
� B�2

2B0
− B���2 + O�r3� .

Similar expressions can be derived for the electric field: in
a neighborhood of the origin, the electric field modulus
square is

E2 = E0
2 + 2E0E�z +

1

2
�2E�2 + 2E0E��z2 +

1

4
�E�2 − 2E0E���2

+ O�r3� , �17�

where E0 represents the bias field �not necessarily positive�,
E� represents the axial field gradient, and E� represents the
axial field curvature.

The equations and inequalities relating to the different
field parameters can be more easily handled by introducing
three adimensional parameters s, �, and ��,

s � 2B0B�/B�2, �18a�

� �
�B�2

4B0E�2 , �18b�

�� �
�B� − 2E0E�

2E�2 . �18c�

TABLE I. Parameter �0, defined in Eq. �13a�, for the alkali-
metal atoms. Values are in �kV/cm�2 /G.

Lia Nab Kb Rbb Csb Frb

68.51�4� 69.2�1� 38.8�1� 35.31�7� 28.1�1� 35.4�3�
aReference �43�.
bReference �44�.
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We impose the origin of the coordinates to coincide with
the minimum of the combined confining potential described
by Eq. �14�. Confinement occurs only if the overall gradient
vanishes,

2E0E� = ��B� + G� . �19�

Another necessary condition is that the magnetic curvature is
different from zero, or equivalently

s � 0. �20�

The radial and axial curvatures of the combined potential at
the origin �trap bottom� are expressed as follows:

�2U

�x2 =
�2U

�y2 = �
B�2

B0

� − �� − 1
2

4�
, �21a�

�2U

�z2 = �
B�2

B0

�� − 1

2�
. �21b�

Therefore, provided that the conditions of Eqs. �19� and
�20� are satisfied, confinement occurs if

� −
1

2
� �� � 1. �22�

Using Eqs. �19� and �22�, it is possible to choose the
parameter triplet E0 ,E� ,E��, that describes the electric field,
once the magnetic triplet B0 ,B� ,B�� is known, and vice
versa.

It is interesting to note that, if the magnetic field is as-
signed a priori along with the two parameters � and ��, the
trap stiffness at the origin depends on both the magnetic field
strength and gradient but not on its curvature. However, this
last quantity, or equivalently the parameter s, codetermines
the zeroes of the magnetic field and consequently size and
depth of the spin-flips-free trapping region: using Eq. �16a�
and �16b� and assuming the terms of order higher than two in
the Taylor expansion of the magnetic field to be negligible in
a sufficiently large neighborhood of the origin, it is straight-
forward to see that a cylindrically symmetric magnetic field
described by a triplet B0 ,B� ,B�� always vanishes either on
two axial points �if s�1� or on a ring �if s�1�. Some alge-
bra provides the following:

�i� s�1⇒

�0 = 0, z0 = −
B�

B�
�1 ± �1 − s�;

�ii� s�1⇒

�0 = �B�

B�
��2�s − 1�, z0 = −

B�

B�
.

Here, �0 and z0 represent the coordinates of the zeroes of the
magnetic field. The case with s�1 is at the basis for time-
orbiting magnetic ring traps recently proposed �45� and
implemented �46�. If s=1 the two axial zero points as well as
the ring collapse to a single axial point placed at z0=
−B� /B�.

As an example, Fig. 1 shows a combined trap for ru-
bidium atoms. The parameter triplet for the electric field was

determined on the basis of the magnetic field triplet and set-
ting �=21, ��=20. The resulting combined potential, evalu-
ated by assuming �=�B �Bohr’s magneton�, is shown in Fig.
1�c�; it corresponds to a trap centered at the origin. The depth
of the spin-flips-free trapping region is about 30kB�K,
whereas its size is of the order of 0.5 mm. Both the electric
and the magnetic field presented in this example are achiev-
able by conventional techniques.

B. Translational-planar symmetry

In this section, field source distributions having both
translational and planar symmetry are discussed. This geom-
etry is typical of several atom guiding experiments.

First, let y be the translational �and horizontal� symmetry
axis. Second, we impose an additional, planar symmetry for
the system and assume the related symmetry plane to contain
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FIG. 1. Confining, cylindrically symmetric combined potential
�c� for rubidium atoms having �=�B. The potential is given by the
difference of two contributions, the first �a� proportional to the
modulus of a magnetic field characterized at the origin by the triplet
0.5 G, −50 G/cm, 2500 G/cm2� �s=1�, and the second �b�
proportional to the modulus square of an electric field
�13.3 kV/cm, −45.8 kV/cm2, 158 kV/cm3� at the origin�. The
graphs are calculated in the plane y=0.
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the y axis. Due to the presence of the gravitational field, this
symmetry plane must necessarily coincide with the plane �yz
�as above, z is taken as the vertical axis�. The discussion can
be then restricted to the plane �xz.

Two cases can be distinguished, depending on whether the
field sources are specularly identical or, alternatively, conju-
gated under specular reflection. In the former case �hence-
forth case I�, the magnetic field, being a pseudovector, trans-
forms as

Bx�− x, z� = Bx�x, z� ,

Bz�− x, z� = − Bz�x, z� ,

whereas in the latter case �henceforth case II� as

Bx�− x, z� = − Bx�x, z� ,

Bz�− x, z� = Bz�x, z� .

The electric field, that is instead a vector, transforms in the
opposite way.

In both cases, in a neighborhood of a point on the z axis,
taken as origin, the Taylor expansion of the magnetic field
components is determined up to the second order by three
parameters: a bias field B0, which is assumed to be strictly
positive, a field gradient B� and a field curvature B�.

By imposing the symmetry of case I, it is easy to show
that ����x2+z2�,

Bx = B0 + B�z +
1

2
B��z2 − x2� + O��3� , �23a�

Bz = B�x + B�xz + O��3� , �23b�

whereas in case II the field is

Bx = − B�x − B�xz + O��3� , �24a�

Bz = B0 + B�z +
1

2
B��z2 − x2� + O��3� . �24b�

Each of the three parameters has a different meaning ac-
cording to the symmetry case: for example, the field gradient
B� is equal to �Bz /�x in case I and �Bz /�z in case II. Con-
versely, the magnetic field modulus is described by the same
expression in both cases,

�B� = B0 + B�z +
1

2
B�z2 +

1

2
�B�2

B0
− B��x2 + O��3� .

Concerning the electric field modulus square, by proceed-
ing in a similar way, it follows:

E2 = E0
2 + 2E0E�z +

1

2
�2E�2 + 2E0E��z2 +

1

2
�2E�2 − 2E0E��x2

+ O��3� ,

where E0 represents the not necessarily positive bias field, E�
its gradient, and E� its curvature.

Defining the parameters � and �� exactly as in Eq.
�18a�–�18c�, the transverse curvatures of the combined po-
tential are expressed as follows:

�2U

�x2 = �
B�2

2B0

2� − �� − 1

�
,

�2U

�z2 = �
B�2

2B0

�� − 1

�
.

In analogy with the cylindrical symmetry case, we impose
the y axis to coincide with the minimum of the combined
confining potential described by Eq. �14�. The confinement
indeed occurs if

2E0E� = ��B� + G� ,

B� � 0,

2� − 1 � �� � 1.

Considerations similar to those outlined in the cylindrical
symmetry case also apply in the present case. For the sake of
determining size and depth of the spin-flips-free combined
potential, using Eqs. �23a�, �23b�, �24a�, and �24b�, and as-
suming the terms of order higher than two in the Taylor
expansion of the magnetic field to be negligible in a suffi-
ciently large neighborhood of the y axis, the coordinates
�x0 , z0� of the zeroes of the magnetic field are given by the
following:

�i� s�1⇒

x0 = 0, z0 = −
B�

B�
�1 ± �1 − s�;

�ii� s�1⇒

x0 = ± �B�

B�
��s − 1, z0 = −

B�

B�
;

where the parameter s is defined as in Eq. �18a�. The zeroes
correspond to two straight lines parallel to the y axis that
coincide if s=1.

C. A translational-planar symmetric guide

Here we discuss the design of a possible combined
electric-magnetic guide for rubidium atoms having �=�B.
Figure 2 shows the cross section. The magnetic field is gen-
erated by a standard current distribution with a current den-
sity of 10 A/mm2. The magnetic field lines are driven by
two �-metal pieces so as to create in the confinement region
�a neighborhood of the y axis� a field directed along x and
decreasing with z. This field is characterized on the y axis by
a bias value of 140 G, a gradient of 1690 G/cm, and a
curvature of 9610 G/cm2 �s=0.94�. In the present discus-
sion, as the magnetic field gradient is two orders of magni-
tude larger than G, the role of gravity is neglected. The
�-metal can be any hysteresis-free, soft magnetic material
with high permeability �r and saturation field Bsat, for ex-
ample, FeCo alloys ��r�1000, Bsat�2 T�. The maximum
field occurring in the setup is about 200 G.

The magnetic configuration is covered on the top by a thin
nonmagnetic end cap, which also fills out the gap between
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the �-metals. This whole bulk is grounded and, in combina-
tion with the electrode placed at +9.8 kV, generates a
slightly diverging electric field characterized by a bias value
of 214 kV/cm, a gradient of 140 kV/cm2, and a curvature
of 179 kV/cm3. The parameter triplet E0 ,E� ,E�� for the
electric field was set on the basis of the magnetic parameters
and imposing �=9.3, ��=6.7. The shape of the electrodes
was then determined relying on the corresponding equipoten-
tial surfaces. All fields were calculated by means of a Galer-
kin finite element method �17�.

The shown configuration was devised for description pur-
poses, and is therefore not optimized. Nevertheless, it gener-
ates a steep potential �radial and axial curvature equal to
0.51 kBK/cm2 and 0.72 kBK/cm2, respectively�. The
potential is shown in Fig. 3.

It is worth remarking that with this configuration the mag-
netic field is everywhere nonvanishing. This feature seems to
contradict the previous analysis concerning the zeroes of the
magnetic field. However, the analysis above relies on the
assumption that terms of order higher than two in the Taylor
expansion are negligible, which does not hold in the present
example.

The employment of microfabricated structures, having
size of the order of 100 �m or less, and the excellent ma-

chineability of several high-performance �-metal alloys
would allow for the realization of even tighter combined
potentials. In this regard, it is worth remarking on the scaling
behavior of the different parameters of interest �see Table II�
with respect to the source size and strength.

The magnetic parameters have a less favorable depen-
dence on the source size than the electric parameters. In con-
ventional setups relying on current-carrying wires, this as-
pect is worsened by the demand of power dissipation, often
resulting in a constraint on the maximum current density.
These limitations could be overcome by using high-
remanence permanent magnets as field sources. These mate-
rials have been employed in several experimental contexts
�4,47,48�. However, their utilization implies the drawback
that the generated magnetic field cannot be switched off.
Concerning magnetic trapping of neutral atoms, this fact re-
sults in a major issue concerning the loading technique. On
the other hand, a combined confining potential exists only if
both component potentials are present; it appears then pos-
sible to devise a controllable potential by only acting on the
electric field.

D. Congruent electric and magnetic fields

Finally, we discuss configurations with congruent electric
and magnetic fields. Although such combination is shown to
be unable to generate any confinement, the resulting poten-
tials can be useful for other applications, such as focusing of
atomic beams �49�. The role of gravity is neglected.

The electric and magnetic fields are said to be congruent
if they are parallel in each point of the region of interest,

x

z

B

E

FIG. 2. Cross section �top� of a combined electric-magnetic
guide for neutral atoms. The central cross corresponds to the mini-
mum potential axis �y axis�. Light gray and gray tones represent
�-metal and nonmagnetic metallic materials, respectively. The
darker shade between the �-metal pieces corresponds to a current
distribution entering the page. The field lines for both magnetic
�thin, continuous lines� and electric field �thin, dashed lines� are
shown in the bottom cross-section view; here, the surfaces of the
�-metal elements are represented by bold, continuous lines,
whereas the electrodes by bold, dashed lines.

z
(m

m
)

0.10-0.1

x (mm)

-0.1

0

0.1

FIG. 3. Equipotential lines for the combined potential of the
electric-magnetic guide of Fig. 2. The level increment between the
lines is equal to 5 kB�K.

TABLE II. Dependence of bias field, gradient, and curvature on
source size �r� and strength for different kinds of field sources:
current I, current density J, and magnetization �remanence� M for
the magnetic case; electric potential V for the electric case.

B E E2

Bias I /r Jr M V /r V2 /r2

Gradient I /r2 J M /r V /r2 V2 /r3

Curvature I /r3 J /r M /r2 V /r3 V2 /r4
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E = kB ,

where k is a suitable proportionality factor. Congruent fields
can be achieved by using �-metal elements both to tailor the
magnetic field at the confinement region and to act as elec-
trodes.

As the gradient of the combined potential must vanish, it
follows

2�E0��E = 2k2�B0��B = ��B.

Here, �B and �E correspond to the gradientlike vector for the
two fields B and E, respectively. Consequently,

k2 =
�

2�B0�
.

By using these last expressions in combination with Eq.
�7�, the Hessian matrix of the combined potential becomes

�2U

�rj � rk
=




2
���Bjk

− 2�E0��Ejk
� = − �

�Bj
�Bk

�B0�
,

where �B and �E correspond to the Hessian matrices of �B�
and �E�2, respectively. The Hessian matrix is then always
nonpositive definite and thus unable to confine. However, if
ẑ is chosen as direction of the vector �B, whatever the sym-
metry, the combined potential becomes

U = − �
��B�2

2�B0�
z2.

In a translational-symmetric geometry where the z axis is
orthogonal to the symmetry axis, this potential could be used
to yield a cylindrical divergent lens for neutral particles.

VI. CONCLUSIONS

We have explored the possibility of realizing confinement
systems for neutral species by using combined static poten-
tials. A main advantage of such approach consists in a greater
flexibility in designing the fields and thus in the possibility to
overcome experimental constraints set by more conventional
approaches.

The results presented in this paper generalize Earnshaw’s
theorem to linear combinations of potentials, each given by
the modulus of an irrotational and solenoidal field.

Systems relying on combined potentials can be a new tool
for confinement of diamagnetic species, as well as species

having large electric dipole polarizabilities, such as mol-
ecules or Rydberg atoms.

This work was in part supported by the INFM Progetto di
Ricerca Avanzata “photon matter.”

APPENDIX: TRACE EVALUATION FOR THE
CURVATURELIKE MATRICES

The demonstration of the non-negativity of the trace of
the matrix � can be inferred by a known result concerning the
Laplacian of the modulus square of a solenoidal and irrota-
tional field �see, for example, Ref. �24��. However, we report
here the demonstration as it is useful for the evaluation of the
trace of the matrix �. The trace of the matrix �, as defined in
Eq. �4�, can be written as

Tr � =
1

�C0�	i
	

j
�Ci0

�2Ci

�rj
2 +

�Ci

�rj

�Ci

�rj
� . �A1�

As the field C is supposed to be divergence and rotation free,
the Laplacian of each of its components is zero, i.e., �2C
=0. For this reason, the terms of Eq. �A1� containing the
second derivatives cancel out. The remaining contribution is
a sum of squares which can be written as

Tr � =
1

�C0�	j

�C

�rj

�C

�rj
=

1

�C0�	j
� �C

�rj
�2

. �A2�

It then follows that

Tr � � 0.

Consequently, the eigenvalues of the symmetric matrix �
cannot be all simultaneously negative.

A similar result can be derived for the matrix � defined in
Eq. �7�: taking into account Eq. �A2�, it follows that

Tr � = Tr � −
1

�C0�	j

� j� j ,

and thus

Tr � =
1

�C0�3	j
��C0�2� �C

�rj
�2

− �C0
�C

�rj
�2� .

For each j, the term in square brackets turns out to be non-
negative by virtue of the Cauchy-Schwartz inequality. Con-
sequently,

Tr � � Tr � � 0.
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