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The theory of laser cooling assisted by transverse magnetic field Bt based on the �1+3�-level atomic system
is presented. With the additional Bt, atoms could be redistributed among the upper Zeeman sublevels via
Larmor precession, and results in large stimulated radiation force and low temperature. Here we consider this
cooling model both for broad transition line and narrow line. A Fokker-Planck-type kinetic equation is derived
for a broad line. Numerical result shows that the final temperature could be lower than the Doppler limit. For
a narrow line, the Monte Carlo approach is applied to simulate the distribution of atoms in the momentum
regime and the result shows that most atoms are distributed around zero velocity with width about several
�k /m.

DOI: 10.1103/PhysRevA.76.023425 PACS number�s�: 32.80.Pj, 06.30.Ft, 06.20.�f, 39.30.�w

I. INTRODUCTION

Laser cooling technologies have been widely applied in
many areas. Those for alkali-metal atoms have been ma-
turely developed. However, the usual sub-Doppler cooling
techniques �1–4� cannot be applied to nondegenerate ground
states of even isotope alkaline-earth-metal atoms, which is
the main obstacle of further application of alkaline-earth-
metal atoms. Such atoms could be cooled by applying the
Doppler technique to a narrow line �5–7�. However, since the
force adding to atoms by using a narrow line is only several
times larger than the gravitation force, the alkaline-earth-
metal atoms cannot be cooled in a sufficiently short time and
accordingly cannot be steadily trapped in the magnet-optical
trap �MOT�. Presently, isotope alkaline-earth-metal atoms
could be cooled to the recoil temperature by the quenching
cooling method �8–10�. However, this cooling method is
very complicated experimentally. Furthermore, it is difficult
to get an available quenching laser, and the available ones
are expensive. Therefore, our work is motivated by the re-
cent experimental efforts on cooling and trapping of alkaline-
earth-metal atoms.

Here we investigate a cooling method, combining stimu-
lated light force �11–15� and magnetic-field-induced Larmor
precession �16� to cool the �1+3�-level atoms. The magnetic-
field-assisted cooling method is not a new idea, and has al-
ready been studied by several authors �17–19�. However, in
their cases, the atomic ground states are all degenerate. Thus,
the atomic temperature could arrive at the sub-Doppler limit,
and the magnetic field is only used to select atomic veloci-
ties. To our knowledge, the magnetic-field-assisted cooling
method to the particular atomic �1+3�-level system has not
been applied before. Therefore, our work could be a supple-
ment to the magnetic-field-assisted cooling methods.

In this paper, we first discuss the basic physical process in
our cooling method �Sec. II�, and then we carefully investi-
gate the light-pressure force and the atomic temperature by
numerically calculating the Fokker-Planck-type kinetic equa-

tion derived for a broad line �Sec. III�. Finally, we simply
introduce the application of our cooling method on the nar-
row line based on the Monte Carlo method in Sec. IV. In the
discussion, we have omitted some calculation, all of which
could be found in Appendixes A and B.

II. BASIC PHYSICAL PROCESS

In the common two-level system, as shown in Fig. 1�a�,
the maximum deceleration attainable is limited by the finite
spontaneous decay rate of the upper level, because under the
saturation of atomic transition, atoms are almost equally dis-
tributed between the ground state �1� and the excited state �2�
�20�. With the medium field intensity, atoms on state �2�
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FIG. 1. �Color online� �a� In the two-level atom model, atoms
are excited into the upper level �2� by laser 1, and could transit to
the ground state �1� by spontaneous decay �dashed line� and stimu-
lated emission �solid line�. By using some methods �Bt induced
Larmor precession in this paper� to transfer atoms from state �2� to
state �3�, which is not coupled with laser 1, atoms could decay to
the ground state only by spontaneous emission or stimulated emis-
sion caused by laser 2 which couples states �1� and �3�. �b� Atoms
interact with the laser 1 which has polarization �+ traveling along
the axis Oz and laser 2 which has polarization �− traveling in the
opposite direction. Additional transverse static magnetic field Bt
which is along the axis Oy, is used to redistribute the atoms among
the Zeeman sublevels of the excited state via Larmor precession.
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could scatter photons by both spontaneous emission and
stimulated emission. Stimulated emission is a conservative
process, which does not change the atomic momentum in
average. However, if atoms on state �2� are transferred to
another state �3�, which is not coupled with the cooling laser
1, atoms could decay to ground state �1� only by spontaneous
emission, not the stimulated emission. In this case, the num-
ber of atoms participating in the photon scattering will be
larger than that of the usual two-level model, and the force
will become much larger. In addition, if another field �laser
2�, which propagates along the same direction of atomic ve-
locities, couples states �1� and �3�, then atoms on state �3�
could also transit to ground state �1� by stimulated emission
by radiating a photon whose direction is the same as the
atomic velocities. As a result, the momentums of the atoms
considerably decrease.

In this paper, we consider a one-dimensional scheme of
the MOT as shown in Fig. 1�b�, of which a �1+3�-level atom
interacts with a �+−�− laser field configuration. An addi-
tional static magnetic field, Bt=Bey, perpendicular to the
quantum axis defined by the laser direction, is introduced to
redistribute atoms among the upper Zeeman sublevels. For
example, an atom with velocity v along the z axis is pumped
to level �e−1� by laser �−, then transfers to level �e+1� via
Larmor precession, and finally decays to the ground state by
spontaneous emission or by stimulated emission via laser 1
resulting in a large radiation force. In the common Doppler
cooling method without Bt, laser 1 only couples �e+1�− �g0�
and laser 2 only couples �e−1�− �g0�. Thus, only the sponta-
neous emission process could dissipate atomic energy and
stimulated emission is a conservative process. However, if
we introduce Bt, atoms could be redistributed among Zee-
man sublevels via the Larmor precession. Thus, more atoms
could decay to ground state by spontaneous emission and
stimulated emission. In this case, the stimulated radiated
photons propagating along the same direction of atomic ve-
locities result in a much larger radiation pressure force than
the case without Bt. This cooling model could be compre-
hended by another physical process, which will be shown
below.

III. BROAD-LINE LASER COOLING

First we consider this cooling method for a broad transi-
tion line, for which the probability of spontaneous emission
2� is larger than one-photon recoil �k2 /2M, where M is the
mass of the atom. A Fokker-Planck-type kinetic equation is
derived for a one-dimension model of a �1+3�-level atom
interacting with two counterpropagating circular polarized
laser beams and Bt. We numerically discuss the radiation
force, diffusion, and temperature.

A. Initial equations

Fields of two counterpropagating laser waves composing
a �+−�− field configuration can be written as

E1 = 1
2E�e+ei�kz−�lt� − e−e−i�kz−�lt�� , �1�

E2 = 1
2E�e−e−i�kz+�lt� − e+ei�kz+�lt�� , �2�

where e±= �
1
�2

�ex± iey� are the spherical unit vectors, �l is
the frequency of the cooling laser waves, k=�l /c is the mag-
nitude of the wave vector, and E is the amplitude of the field.
With respect to quantization axis Oz, the first laser wave in
Eq. �2� is a �+ polarized wave and the second laser wave is
a �− polarized wave. Since we only consider the temperature
in the center of MOT, we can ignore the static inhomoge-
neous magnetic field, which is introduced to compensate the
Doppler frequency shift.

For the above interaction scheme, the atomic Hamiltonian
has a standard form

H = H0 − ��2�2/2M� − d · E − �� · B , �3�

where Hamiltonian H0 describes the internal atomic states
with unperturbed energies Eg0 and Ee0, and Zeeman shifted
energies Ee,±1, and the last two terms describe the electric-
dipole and magnetic-dipole interaction between the atom and
the fields E=E1+E2 and B=Bt. The interaction operators for
the atom and fields are as

d · E = − d−E+ + d0E0 − d+E−,

�� · B = − �−B+ + �0B0 − �+B−,

where d	, �	, E	, and B	 with 	=0,± are the spherical
components of the dipole moments and fields.

All the information on the atomic motion in the above
fields is included in the density-matrix equation. The density
matrix in the Wigner representation is 
=
�r ,p , t�. The
density-matrix elements are defined as


	��r,p,t� = �	�
�r,p,t���� , �4�

where 	 ,�=L ,S ,J ,MJ are the quantum numbers of the
atomic states. It is convenient to represent the electric field in
a form of a plane wave expansion

E = 	
a

Eaeika·r−i�lt. �5�

Equations of motion for atomic density matrix elements in
the Wigner representation can be expressed as �22�

i�
d

dt

kl�r,p� = − 	

a,m
dkm
Ea
ml�r,p −

1

2
�ka�eika·r−i��l−�km�t

+ Ea*
ml�r,p +
1

2
�ka�e−ika·r+i��l−�mk�t

+ 	
a,n

dnl
Ea
kn�r,p +
1

2
�ka�eika·r−i��l−�nl�t

+ Ea*
kn�r,p −
1

2
�ka�e−ika·r+i��l−�ln�t

− 	
m

�� km · B
ml�r,p� + 	
n

�� nl · B
kn�r,p�

− i��k��
�r,p��l� , �6�

where d
dt = �

�t +v �
�r is the total time derivative, and the quan-
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tities �ij = �Ei−Ej� /� are assumed to be positive. Here opera-
tor � describes spontaneous relaxation from the excited-state
sublevels �Je ,Me� to the ground-state level �Jg=0,Mg=0�.

In the rotating-wave approximation, all the dynamic equa-
tions for the density-matrix elements can be expressed as
follows:

d

dt

g0g0

= − i
g0e1

�+� eikz−i�t + i
e1g0

�+� e−ikz+i�t − i
g0e−1

�−� e−ikz−i�t

+ i
e−1g0

�−� eikz+i�t + 2��
e1e1

+1 � + 2��
e0e0

0 �

+ 2��
e−1e−1

−1 � ,

d

dt

e1e1

= − 2�
e1e1
+ i
g0e1

�−� eikz−i�t − i
e1g0

�−� e−ikz+i�t

− �L�
e0e1
+ 
e1e0

� ,

d

dt

e0e0

= − 2�
e0e0
+ �L�
e0e1

+ 
e1e0
� − �L�
e−1e0

+ 
e0e−1
� ,

d

dt

e−1e−1

= − 2�
e−1e−1
+ i
g0e−1

�+� e−ikz−i�t − i
e−1g0

�+� eikz+i�t

+ �L�
e−1e0
+ 
e0e−1

� ,

d

dt

g0e1

= − �
g0e1
+ i�
e1e1

�+� − 
g0g0

�−� �e−ikz+i�t + i
e−1e1

�−� eikz+i�t

− �L
g0e0
,

d

dt

g0e0

= − �
g0e0
+ i
e1e0

�+� e−ikz+i�t + i
e−1e0

�−� eikz+i�t

+ �L�
g0e1
− 
g0e−1

� ,

d

dt

g0e−1

= − �
g0e−1
+ i�
e−1e−1

�−� − 
g0g0

�+� �eikz+i�t

+ i
e+1e−1

�+� e−ikz+i�t + �L
g0e0
,

d

dt

e−1e0

= − 2�
e−1e0
+ i
g0e0

�+� e−ikz−i�t − �L�
e−1e−1
− 
e0e0

�

+ �L
e−1e1
,

d

dt

e0e1

= − 2�
e0e1
− i
e0g0

�−� e−ikz+i�t + �L�
e1e1
− 
e0e0

�

− �L
e−1e1
,

d

dt

e−1e1

= − 2�
e−1e1
+ i
g0e1

�+� e−ikz−i�t − i
e−1g0

�−� e−ikz+i�t

+ �L�
e0e1
− 
e−1e0

� . �7�

In the above equations the Wigner density-matrix elements
have been defined with respect to the time-dependent atomic

eigenfunctions. Upper indices stand for the momentum shifts
due to the induced transition,


ab
�±� = �a�
�r,p ± 1

2�k��b� , �8�

where k=kez, and the notation �
ll
q� is adopted for the

density-matrix elements averaged over the angular distribu-
tions of the spontaneous photon emission �21–26�,

�
ll
q� =� �q�n��l�
�r,p + n�k,t��l�dn . �9�

The function �q�n� defines the probability of the spontane-
ous photon emission in the direction of a unit vector n,

�0�n� =
3

8�
�1 − nz

2�, �±1�n� =
3

16�
�1 + nz

2� . �10�

Rabi frequency and Larmor frequency are defined as

� = 1
2 �e1�d+�g0�E

= − 1
2 �g0�d−�e1�E

= 1
2 �e−1�d−�g0�E

= − 1
2 �g0�d+�e−1�E , �11�

��L = 1
2 �e1��+�e0�B

= − 1
2 �e0��−�e1�B

= 1
2 �e0��+�e−1�B

= − 1
2 �e−1��−�e0�B . �12�

The detuning �=�l−�e0g0
is the difference between the laser

frequency and the atomic transition frequency.

B. Kinetic equation of atomic motion in MOT

In order to follow the Bogolyubov procedure �21–26� we
first exclude the explicit time dependence from the density-
matrix equations. We perform the substitutions,


g0e	
e−i�t = �g0e	

, �13�

where 	=0, ±1. Before cooling, it is assumed that the mo-
mentum width of the atomic density-matrix elements is
much wider than the photon momentum �k. Thus the atomic
density-matrix elements 
ij�r ,p+�k , t� can be expanded in
the photon momentum �k. This principal assumption allows
one to expand the density-matrix elements in the power of
the photon momentum �k. Considering the expanded equa-
tions in successively increasing order in the photon momen-
tum �k one can conclude that the diagonal 
aa and off-
diagonal density-matrix elements �ab are the functionals of
the Wigner distribution function w�r ,p , t�,

w�r,p,t� = 
g0g0
+ 	 
e	e	

. �14�

The general structure of the functional dependence can be
found directly from the structure of the expanded equations,
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g0g0
= � 	

n=0,±2,. . .
Hg0g0

n einkz�w + � 	
n=0,±2,. . .

Rg0g0

n einkz��k
�w

�pz

+ ¯ , �15�

�g0e	
= � 	

n=1,±3,. . .
Hg0e	

n einkz�w + � 	
n=1,±3,. . .

Rg0e	

n einkz��k
�w

�pz

+ ¯ , �16�


e	e	
= � 	

n=0,±2,. . .
He	e	

n einkz�w + � 	
n=0,±2,. . .

Re	e	

n einkz��k
�w

�pz

+ ¯ , �17�

where Hab
n and Rg0g0

n are functions of the atomic momentum
p. Here, in order to exclude the explicit coordinate depen-
dence from the expanded equations, the spatial series repre-
sentation is introduced. In accordance with the definition of
the distribution function w�r ,p , t�, the unknown diagonal
functions satisfy the normalization conditions

Hg0g0

n + He+1e+1

n + He0e0

n + He−1e−1

n = �n,0 �18�

and

Rg0g0

n + Re+1e+1

n + Re0e0

n + Re−1e−1

n = 0. �19�

Next, by taking into account the general structure of the so-
lution, one can see from the expanded equations that the
Wigner function w�r ,p , t� satisfies the closed equations. To
the first order in the photon momentum �k, the closed equa-
tion for the distribution function can be shown to be the
Liouville equation �21–26�,

�w

�t
+ v

�w

�r
= −

�

�pz
�Fzw� , �20�

where the radiation force Fz has a series representation as

Fz = �k 	
n=0,±2,. . .

fz
neinkz �21�

and

fz
n = − i�He1g0

n+1 − Hg0e1

n−1 � + i�He−1g0

n−1 − Hg0e−1

n+1 � . �22�

Note that the force is defined by a real equation since com-
plex harmonics of the force satisfy the conditions fn

*= f−n,
following from the Hermiticity conditions for optical coher-
ence, Hab

n*=Hba
−n. The harmonics Hg0g0

n , He	e�

n , and He	e	

n sat-
isfy an infinite set of steady-state equations which come from
the set of expanded equations considered in zero order in the
photon momentum �Appendix A�.

To the second order in the photon momentum �k the ki-
netic equation for the function w�r ,p , t� reduces to the
Fokker-Planck equation

�w

�t
+ v

�w

�r
= −

�

�pz
�Fzw� + 	 �2

�pi � pj
�Dijw� , �23�

where i , j=x ,y ,z and Dij is the momentum diffusion tensor.
The diffusion tensor has the series representation

Dij = �2k2� 	
n=0,±2,. . .

dij
n einkz. �24�

Each spatial harmonic of the diffusion tensor includes two
parts,

dij
n = �izdzz

dn + dij
an. �25�

The first part is that proportional to the optical coherence
Rg0ei

n , and can be expressed as

dzz
dn = i



�
�Rg0e−1

n+1 − Re−1g0

n−1 + Re1g0

n+1 − Rg0e+1

n−1 � . �26�

It comes from fluctuations in the number of scattered pho-
tons. The second part of the diffusion tensor is proportional
to the angular anisotropy coefficients 	ii

�, 	ii
�. It originates

from fluctuations in the direction of spontaneous photon
emission. In this case the coefficients 	ii

� and 	ii
� which de-

termine the angular anisotropy of the spontaneous photon
emission,

	ii
� =� ���n��ni�

2d2n�, 	ii
� =� ���n��ni�

2d2n�,

become

	xx
� = 	yy

� = 3
10, 	zz

� = 2
5 ,

	xx
� = 	xx

� = 2
5 , 	zz

� = 1
5 ,

and the second part of the diffusion tensor reduces to the
approximate expression

dii
an = 1

5 �2He1e1

n + He0e0

n + 2He−1e−1

n � . �27�

The harmonics of the diffusion tensor satisfy the Hermiticity
conditions, dii

n*=dii
−n. Steady-state equations of the function

Rab
n derived from Eqs. �7� expanded to the first order in the

photon momentum are listed in Appendix B.

C. Radiation force, diffusion coefficient, and temperature

Radiation force. As discussed above, to exclude the ex-
plicit coordinate dependence, the matrix elements can be ex-
pressed as

Hg0g0
� Hg0g0

0 + Hg0g0

−2 e−i2kz + Hg0g0

2 ei2kz + ¯ ,

Hg0e�
� Hg0e�

−1 e−ikz + Hg0e�

1 eikz + ¯ ,

He	e�
� He	e�

0 + He	e�

−2 e−i2kz + He	e�

2 ei2kz + ¯ . �28�

The above decompositions show that the multiphoton pro-
cess plays an important role in the atom-field interaction.
Identification of the processes follows most clearly from the
equations considered to different orders of the rate equation
approximation �REA�. As usual, the calculation of atomic
functions to the 2nth order REA implies that the ground- and
upper-state populations and coherence are calculated to the
2nth order REA while the optical coherences are calculated
to the �2n−1�th order. Considering atomic populations and
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coherences to the second order REA, one takes into account
the direct one-photon and two-photon processes and stepwise
process composed of the direct processes. When atomic
functions are considered to the fourth order REA, one takes
into account the direct one-, two-, three-, and four-photon
processes, and stepwise processes composed of the above
direct process.

By numerically solving the equations listed in Appendix
A, we can get the radiation force F�v�. Figure 2�a� shows the
radiation force F�v� as a function of the atomic velocity v.
One could see that the radiation force adding on atoms could
be larger than �k�, which is the limitation of the two-level
Doppler cooling model. It is obvious that another force
called stimulated force �13–15� exists in the atom-field inter-
action. As discussed earlier, �+ field can pump atoms from
the ground state to the upper Zeeman sublevel �e+1�, from
which atoms can be transferred to the state �e−1� via Larmor
procession and then stimulatively transit back to the ground
state by �− field. In the whole process, one atom absorbs a
reverse propagating photon and stimulatively radiates a co-
propagating photon. As a result, the change of atomic mo-
mentum is 2�k in a round trip. With this two-photon process
the whole force adding on atoms could be larger than �k� as
shown in Fig. 2�a�. We also compare the radiation forces
including two- and four-photon processes in Fig. 2�a�. Be-
low, all figures are calculated up to the four-photon process.
Here fo=�k� is the unit of radiation force.

We should say that this stimulated force has already been
studied by Grimm and other workers �13–15�. However, they

only considered the interaction of atoms with standing wave
by a dressed picture, which gives the dipole force, and they
have not shown the final temperature of atoms. The physical
model discussed here is different from theirs. In our case, a
transverse magnetic field exists in the atom-field interaction
system, and atoms interact with �+−�− field configuration,
not �-� field configuration �14�. Therefore, our cooling
physical model is a cooling method, particularly for
�1+3�-level alkaline-earth-metal atoms.

At a negative detuning and in a small velocity region the
radiation force is reduced to the friction force in the form of

F = − �v , �29�

where v=vz and � is a friction coefficient, which is defined
as the slope of the radiation force near zero velocity. Figure
3�a� shows � changing with the detuning � for several dif-
ferent Larmor frequencies �L. The unit of � is �o=�k2. One
can see that the friction coefficient � increases strongly if we
introduce the transverse magnetic field Bt. However, since
the larger �L causes the larger energy shift, � will be nega-
tive for large enough Bt, for which atoms will be accelerated,
as shown in Fig. 3�a�. This could be comprehended by the
following physical picture. We could use the eigenstates of
HB�−�� ·Bt, which can be expressed as

�e+1
t � =

1

2
�e+1� +

i
�2

�e0� −
1

2
�e−1� ,

FIG. 2. �Color online� �a� The velocity dependence of the radiation force F�v� calculated to second �dashed-dotted line� and fourth �solid
line� order REA with =2�, �L=0, 3�, and �=−5�. �b� The upper Zeeman sublevels are replaced by the eigenstates �e−1,0,1

t � of
HB�−�� B. �c� The atomic distribution for the eigenstates of −�� ·B with =2�, �L=3�, and �=−5�.

FIG. 3. �Color online� �a� Friction coefficient � of the radiation force as a function of � and �L. �b� The longitudinal diffusion Dzz as a
function of � and �L. �c� Atomic temperature as a function of � and �L. All curves are calculated in the case =2�.
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�e0
t � =

1
�2

��e+1� + �e−1�� ,

�e−1
t � =

1

2
�e+1� −

i
�2

�e0� −
1

2
�e−1� , �30�

instead of �e−1,0,+1�. The corresponding energy shifts are
�2��L, 0, and −�2��L. In this case, the atom-field interac-
tion configuration shown in Fig. 1�b� changes to Fig. 2�b�.
Thus the upper Zeeman sublevels are no longer degenerate
and each level could couple ground state by both �+-�−

fields. Therefore, Fig. 2�b� includes three two-level configu-
rations. However, only two contribute to the radiation force.
We show the velocity dependence of atomic distribution
among states �e−1,0,+1

t � with the same condition of Fig. 2�a� in
Fig. 2�c�. Comparing these two figures, one can see that the
two apices on either side of v=0 �solid line� in Fig. 2�a�
correspond to the maxima of populations of �e±1

t � in Fig. 2�c�.
The atoms on state �e0

t � do not contribute to the radiation
force. The reason is that at position z=0, radiation force
could be expressed as

Fz = i�k�Hg0e1
+ He−1g0

− He1g0
− Hg0e−1

�

= i�k�Hg0e1
t + Hg0e−1

t − He1
t g0

− He−1
t g0

� .

We can see that the radiation force is not associated with
state �e0

t �. Therefore, atoms on state �e0
t � do not contribute to

the radiation pressure force.
In the limit of small velocity, one can get the analytical

result of the friction coefficient � to the second order of
REA. Following the method introduced in Ref. �27�, the fric-
tion coefficient � is given by

� = �o
4G�− � + �2�L�/�

�1 + G + �− � + �2�L�2/�2�2
, �31�

where G=2 /�2. From the above expression, one can
clearly see that although the laser detunings of �e−1,0,1� are �,
the detuning of �e−1

t � is �−�2��L due to the energy shift
caused by transverse magnetic field. Therefore, the radiation
force corresponds to detuning �−�2��L, not �. This is why
the radiation force is enhanced strongly. However, if the
energy shift −�2��L is so large that �−�2��L�0, the fric-
tion coefficient � will be negative, as show in Fig. 3�b�,

which means atoms will be accelerated for small detuning �.
This is another physical picture of Fig. 1�b�.

Here we should stress that although Fig. 2�b� includes
three two-level atom-field configurations, one could not con-
sider the cooling process only using one of them, even in the
case of strong magnetic field Bt. This is due to that around
v=0, the atomic number of state �e0

t � is not zero. Each of the
three two-level atomic systems is not a closed system. There
is coherence among three upper Zeeman sublevels. The use
of the physical model shown in Fig. 2�b� is to intuitively
explain why the fraction coefficient � could be negative in
the case of strong magnetic field Bt.

Diffusion coefficient. The next important kinetic quantity
that determines the time evolution of an atom in a laser field
is the diffusion longitudinal coefficient Dzz at position z=0.
By numerically solving the equations listed in Appendix B,
we get the diffusion coefficient Dzz. Figure 3�b� shows the
velocity dependence of the longitudinal diffusion Dzz. The
unit of Dzz is do=�2k2�. Since Dzz is very sensitive to the
fluctuations in the number of scattered photons, it will in-
crease as Bt increases.

Temperatures. Explicit expressions for the coefficients of
the Fokker-Planck equations can be directly applied for esti-
mating the achievable temperatures in the scheme of laser
cooling of atoms. The effective temperature T is defined by
the Einstein relation,

T =
Dzz�v = 0�

�kB
, �32�

where Dzz�v=0� is the diffusion coefficient at zero velocity.
In Fig. 3�c�, we show the temperature as a function of the
detuning � for several different Larmor frequencies �L.

The value of atomic temperature crucially depends on the
types of optical processes which contribute to the friction
and diffusion coefficients. Of the two coefficients, � and Dzz
�v=0�, the most important one is the behavior of the friction
coefficient which is very sensitive to the optical processes.
Although Dzz �v=0� and � both increase if we introduce Bt,
� increases more strongly than Dzz �v=0�. Thus the final
temperature could be lower than the usual Doppler tempera-
ture, but not much. To express our model more explicitly, we
show the temperature changes with the saturation parameter
s=2 2

�2 in Fig. 4.

FIG. 4. �Color online� �a� Friction coefficient � of the radiation force as a function of s=2 2

�2 and �L. �b� The longitudinal diffusion Dzz

as a function of s and �L. �c� Atomic temperature as a function of s and �L. All curves are at �=−5�.
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Example. Recently, Mg, Ca, Sr, and Yb atoms have
played significant roles in the field of optical atomic clock.
The MOT experimental results of laser cooling of Mg, Ca,
Sr, and Yb atoms described by a �1+3�-level atomic model
have been compared with the predictions of a one-
dimensional �1D� two-level Doppler cooling theory �28–31�.
The measured MOT temperature of �1+3�-level atoms, in-
cluding the even isotope of Mg, Ca, Sr, and Yb, is much
higher than the predicted temperature of the two-level atom
Doppler cooling theory at high laser intensity �28–31�. Tak-
ing the 174Yb atom as the example, for comparison, we set
the data of measured 174Yb MOT temperature from Refs.
�30,31� in Fig. 5�a�. It clearly shows that the measured tem-
perature of 174Yb is significantly higher than expected from
1D two-level Doppler cooling �dashed line�. Therefore, one
should not calculate the atomic temperature of the
�1+3�-level system by the two-level atomic model. As
shown in Fig. 5�a�, for �L=0, our calculation very well
agrees with the experimental datum, which could strongly
support our model. Moreover, with the existence of trans-
verse magnetic field Bt, the temperature could strongly de-
crease as the dashed-dotted curve in Fig. 5�a�, which will be
very useful in experiment. In Fig. 5�b� we show the tempera-
ture of 174Yb as a function of Itotal / Isat for several different
Larmor frequencies calculated by our theory.

Above all, we have discussed the semiclassical Doppler
cooling by the kinetic theory. This theory is only suitable on
condition that the momentum width of the atomic density
matrix elements exceeds the photon momentum �k, for
which the atomic density matrix elements 
ij�r ,p+�k , t� can
be expanded in the photon momentum �k. However, in the
narrow transition line case that the Doppler temperature limit
is lower than the recoil limit, the final temperature, that could
be reached, is limited by the recoil limit, not the Doppler
limit for the narrow transition line �3,4�. Therefore, the semi-
classical theory for the model considered above is no longer
suitable.

IV. NARROW-LINE LASER COOLING

So far, we have discussed this laser cooling method for
�1+3�-level system based on the Fokker-Planck approach.

As we have said it is a semiclassical description, which is
based on the assumption that the atomic momentum remains
constant during the scattering process. For the narrow line,
however, the excited-state spontaneous emission rate is com-
parable to or even smaller than the single-photon recoil fre-
quency. Therefore the semiclassical treatment is not suitable
for the narrow line and a full quantum-mechanical treatment
should be used.

Here we apply the Monte Carlo �MC� approach to simu-
late this cooling method for �1+3�-level system for the nar-
row line. To elucidate the physical manifestation of the cool-
ing, we apply the laser pulses, not cw lasers, to pump atoms
stepwise among different levels as shown in Fig. 1�b�. The
pulses we used here are rectangular waves with width T. To
show this more clearly, we take calcium atoms as an ex-
ample. The narrow cooling line is �4s4p�3P1↔ �4s2�1S0

�wavelength 657 nm�, whose linewidth is 0.33 kHz. Here the
static magnetic field Bt is along Oy all of the time, and we
assume that all atoms are already precooled by the broad line
423 nm ��4s4p�1P1↔ �4s2�1S0� to the Doppler limit TD

=0.83 mK �42 cm/s�, and all atoms are on the ground state
initially. As shown in Fig. 6�a�, a red-detuned 657 nm pulse
comes from the right-hand side and pumps atoms from the
ground state onto the upper sublevel state �e−1�. After all
atoms being transferred from state �e−1� to �e+1� by Larmor
procession, a blue-detuned 657 nm pulse comes from the
left-hand side to pump atoms back to the ground state by
stimulated emission. For symmetry we reverse the above
process. Both red and blue detunings are ��red/blue � =2�
�0.23 MHz. Repeating the above whole procession several
times, the temperature of atoms could be closed to the recoil
limit as shown below. Following the Jaynes-Cummings �JC�
model, the probability that an atom could be pumped onto
the excited state by the square pulse with width T can be
expressed as

P1 =
2

G
2 sin2GT

2
, �33�

where G
2 =2+�2 �this is also the probability for the atom

transiting back to the ground state via stimulated emission�.

FIG. 5. �Color online� �a� The temperature of 174Yb as a function of Itotal / Isat, where Itotal=2I, I is the intensity of the single field and Isat

is the saturation intensity of the transition �6s2�1S0-�6s6p�3P1. Here we also insert the experimental datum of Refs. �30,31�, and the

temperature calculated by the 1D two-level Doppler cooling theory, which can be expressed as T=−TD
�

4� �1+
Itotal

Isat
+4 �2

�2 �, for comparison. The
detuning � here is −13� and �=2�. �b� The temperature of 174Yb as a function of Itotal / Isat for several different Larmor frequencies is
calculated by our theory.
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One can see from Eq. �33� that the excitation probability will
be maximum when GT=� and is equal to 1 only when the
detuning � is zero. Here we choose the optical intensity
3.6 mW/cm2, and the duration time of the rectangular pulse
is 2.5 �s. Also following the JC model, the probability of
magnetic pumping via Larmor procession can be expressed
as

P2 = sin2 �L� . �34�

As one can see that all atoms could transit from the one
Zeeman sublevel to another sublevel if �L�= �

2 , not as Eq.
�33�, because no Doppler effect is included here. Here we
choose the time length of pulse �=2.5 �s, thus the magnetic
field intensity should be B=0.07 G. The interval between
two pulses should be 2� to insure all atoms being transferred
from �e+1,−1� to �e−1,+1�. Since the lifetime of the metastable
state 3P1 is about 400 �s, about 20 times processes can be
completed before atoms on the upper levels decay to the
ground state. Figures 6�b� and 6�c� show the Monte Carlo
results of the cooling method for 10 and 20 times cooling
round trips. We assume 105 atoms initially. One can see that
a high and narrow peak with width of several �k /m exists
around the zero velocity in Fig. 6�c�.

The use of the transverse magnetic field B is to transfer
the atoms on the upper level from one Zeeman sublevel to
another Zeeman sublevel. Therefore, the new force, which is
called stimulated force, can act on atoms, and quickly cool
atoms down to the recoil limit temperature. This is very use-
ful for narrow-line cooling for alkaline-earth-metal atoms.
As discussed in Sec. I, by only using the narrow line, the
radiation force is only several times larger than the atomic
gravity �especially calcium atoms�, for which the cooling
process is very slow and atoms could not hold steady in
MOT. However, by using the transverse magnetic field B,
this can be easily realized. Therefore, the cooling method
introduced here will be very useful in experiment. This pulse
stimulated cooling method here can also be alternatively and
simply realized without Bt, but the field configuration is
changed to a single circularly polarized laser field of
�±−�±, or �−� polarization.

Although we only consider the one-dimensional case, this
cooling method can be used for the three-dimensional sys-
tem. One can cool atoms in three dimensions one by one as
used in the pulse quenching cooling method �9,10�.

V. CONCLUSION

In summary, we have presented a theory of the one-
dimension laser cooling for the �1+3�-level atomic system
with the help of static transverse magnetic field Bt. Atoms on
Zeeman sublevels of the excited state will be redistributed,
and the additional stimulated force will be presented in atom-
field interaction. Thus the average force adding on atoms are
strongly enhanced. For the broad line, the minimum tem-
perature that could be obtained is lower than the Doppler
temperature TD. For the narrow line, the final temperature
that can be achieved will be limited by the recoil limit and
the average force adding on atoms is much enhanced due to
Bt. Therefore the cooling time will be much shorter, and
atoms could steadily stay in MOT.
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APPENDIX A

Below we list an infinite set of linear algebraic equations
for the harmonics He	e�

n , Hg0g0

n , He	g0

n , and Hg0e	

n . The set of
equations originates from set �7� considered to zero order in
the photon momentum,

Hg0g0

n + He−1e−1

n + He0e0

n + He+1e+1

n = �n,0,

− 2�He1e1

n − i�He1g0

n+1 − Hg0e1

n−1 � − �L�He0e1

n + He1e0

n �

− inkvHe1e1

n = 0,

FIG. 6. �Color online� �a� The pulses order in Monte Carlo approach. �b� The atomic momentum distributions after 10 times cooling
round trips �Maxwell distribution for dashed line�. �c� The atomic momentum distributions after 20 times cooling round trips �Maxwell
distribution for dashed line�.
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− 2�He−1e−1

n − i�He−1g0

n−1 − Hg0e−1

n+1 � + �L�He0e−1

n + He−1e0

n �

− inkvHe−1e−1

n = 0,

− 2�He0e0

n − i�He−1e0

n + He0e−1

n � + �L�He0e1

n + He1e0

n �

− inkvHe0e0

n = 0,

− �� + i��Hg0e1

n − i�Hg0g0

n+1 − He1e1

n+1 � + iHe−1e1

n−1 − �LHg0e0

n

− inkvHg0e1

n = 0,

− �� − i��He1g0

n + i�Hg0g0

n−1 − He1e1

n−1 � − iHe1e−1

n+1 − �LHe0g0

n

− inkvHe1g0

n = 0,

− �� + i��Hg0e0

n + iHe1e0

n+1 + iHe−1e0

n−1 + �LHg0e1

n − �LHg0e−1

n

− inkvHg0e0

n = 0,

− �� − i��He0g0

n − iHe0e1

n−1 − iHe0e−1

n+1 + �LHe1g0

n − �LHe−1g0

n

− inkvHe0g0

n = 0,

− �� + i��Hg0e−1

n − i�Hg0g0

n−1 − He−1e−1

n−1 � + iHe1e−1

n+1 + �LHg0e0

n

− inkvHg0e−1

n = 0,

− �� − i��He−1g0

n + i�Hg0g0

n+1 − He−1e−1

n+1 � − iHe−1e1

n−1 + �LHe0g0

n

− inkvHe−1g0

n = 0,

− 2�He−1e0

n + �L�He0e0

n − He−1e−1

n � + iHg0e0

n+1 + �LHe−1e1

n

− inkvHe−1e0

n = 0,

− 2�He0e−1

n + �L�He0e0

n − He−1e−1

n � − iHe0g0

n−1 + �LHe1e−1

n

− inkvHe0e−1

n = 0,

− 2�He0e1

n + �L�He1e1

n − He0e0

n � − iHe0g0

n+1 − �LHe−1e1

n

− inkvHe0e1

n = 0,

− 2�He1e0

n + �L�He1e1

n − He0e0

n � + iHg0e0

n−1 − �LHe1e−1

n

− inkvHe1e0

n = 0,

− 2�� + i��He1e−1

n + iHg0e−1

n−1 − iHe1g0

n−1 + �LHe1e0

n − �LHe0e−1

n

− inkvHe1e−1

n = 0,

− 2�� − i��He−1e1

n − iHe−1g0

n+−1 + iHg0e1

n−1 + �LHe0e1

n − �LHe−1e0

n

− inkvHe−1e1

n = 0.

Integer n denotes the order of the spatial harmonic, n

=0, ±1, ±2, . . . . Optical coherences Hab
n satisfy the rela-

tions: Hab
n*=Hba

−n. When considering only the terms of up to
the fourth order in spatial harmonics �fourth order REA�, one
can obtain 74 linear algebraic equations to be numerically
solved.

APPENDIX B

Below we list an infinite set of inhomogeneous algebraic
equations for the harmonics Re	e�

n , Rg0g0

n , Re	g0

n , and Rg0e	

n .
The set of equations originates from set �7� considered to
first order in the photon momentum,

Rg0g0

n + Re−1e−1

n + Re0e0

n + Re+1e+1

n = 0,

− �2� + inkv�Re1e1

n + i�Re1g0

n+1 − Rg0e1

n−1 � +
1

2
i�Hg0e1

n+1 − He1g0

n−1 �

+ 	
l

He1e1

l f z
n−l = 0,

− �2� + inkv�Re−1e−1

n + i�Re−1g0

n−1 − Rg0e−1

n+1 � +
1

2
i�He−1g0

n−1

− Hg0e−1

n+1 � + 	
l

He−1e−1

l f z
n−l = 0,

− �2� + inkv�Re0e0

n + 	
l

He0e0

l f z
n−l = 0,

− �� + i�� + nkv��Rg0e1

n − i�Rg0g0

n+1 − Re1e1

n+1 � + iRe−1e1

n−1

− �LHg0e0

n + i
1

2
�Hg0g0

n+1 − He1e1

n+1 � − i
1

2
He−1e1

n−1

+ 	
l

Hg0e1

l f z
n−l = 0,

− �� − i�� − nkv��Re1g0

n + i�Rg0g0

n−1 − Re1e1

n−1 � − iRe1e−1

n−1

− �LHe0g0

n − i
1

2
�Hg0g0

n−1 + He1e1

n−1 � + i
1

2
He1e−1

n+1

+ 	
n

He1g0

l f z
n−l = 0,

− �� + i�� + nkv��Rg0e0

n + iRe1e0

n+1 + iRe−1e0

n−1 + i
1

2
He1e0

n+1

− i
1

2
He−1e0

n−1 + 	
l

Hg0e0

l f z
n−l = 0,

− �� + i�� − nkv��Re0g0

n − iRe0e1

n−1 − iRe0e−1

n+1 − i
1

2
He0e1

n−1

+ i
1

2
He0e−1

n+1 + 	
l

He0g0

l f z
n−l = 0,
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− �� + i�� + nkv��Rg0e−1

n − i�Rg0g0

n−1 − Re−1e−1

n−1 � + iRe1e−1

n+1

+ �LHg0e0

n − i
1

2
�Hg0g0

n−1 + He−1e−1

n−1 � + i
1

2
He1e−1

n+1

+ 	
l

He0e0

l f z
n−l = 0,

− �� − i�� − nkv��Re−1g0

n + i�Rg0g0

n+1 − Re−1e−1

n+1 � − iRe−1e1

n−1

+ �LHe0g0

n + i
1

2
�Hg0g0

n+1 + He−1e−1

n+1 � − i
1

2
He1e−1

n−1

+ 	
l

He0e0

l f z
n−l = 0,

− �2� + inkv�Re−1e0

n + iRg0e0

n+1 + i
1

2
Hg0e0

n+1 + 	
l

He−1e0

l f z
n−l = 0,

− �2� + inkv�Re0e−1

n − iRe0g0

n−1 − i
1

2
He0g0

n−1 + 	
l

He0e−1

l f z
n−l = 0,

− �2� + inkv�Re0e1

n − iRe0g0

n+1 + i
1

2
He0g0

n+1 + 	
l

He0e1

l f z
n−l = 0,

− �2� + inkv�Re1e0

n + iRg0e0

n−1 − i
1

2
Hg0e0

n−1 + 	
l

He1e0

l f z
n−l = 0,

− 2�� + i
n

2
kv�Re−1e1

n − iRe−1g0

n+1 + iRg0e1

n+1 + i
1

2
He−1g0

n+1

+ i
1

2
Hg0e1

n+1 + 	
l

He−1e1

l f z
n−l = 0,

− 2�� + i
n

2
kv�Re1e−1

n + iRg0e−1

n−1 − iRe1g0

n−1 − i
1

2
Hg0e−1

n−1

− i
1

2
He1g0

n−1 + 	
l

He1e−1

l f z
n−l = 0.

The above set can be solved when the inhomogeneous terms
have been determined from the solution of the set of equa-
tions listed in Appendix A.
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