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We investigate the possibility to deduce momentum space properties from time-dependent density functional
calculations. Electron and ion momentum distributions after double ionization of a model helium atom in a
strong few-cycle laser pulse are studied. We show that, in this case, the choice of suitable functionals for the
observables is considerably more important than the choice of the correlation potential in the time-dependent
Kohn-Sham equations. By comparison with the solution of the time-dependent Schrödinger equation, the
insufficiency of functionals neglecting electron correlation is demonstrated. We construct a functional of the
Kohn-Sham orbitals, which in principle yields the exact momentum distributions of the electrons and the ion.
The product-phase approximation is introduced, which reduces the problem of approximating this functional
significantly.
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I. INTRODUCTION

Time-dependent density-functional theory �TDDFT� �1� is
a remarkably successful approach to the study of many-body
systems in time-dependent external fields �2�. The essential
statement of TDDFT is the same as that of the well-
established ground-state density-functional theory �DFT� �3�:
all observables are, in principle, functionals of the particle
density alone. Since the latter is always a three-dimensional
entity, independent of the number of particles involved, the
computational cost of actual �TD�DFT calculations scales
exponentially more favorably than the solution of the many-
body �time-dependent� Schrödinger equation.

In practice, almost all �TD�DFT calculations are per-
formed using the �time-dependent� Kohn-Sham scheme
��TD�KS� �see, e.g., �2�� where the density is calculated with
the help of auxiliary, noninteracting particles moving in an
effective potential. The “art” of �TD�DFT is twofold, namely,
finding sufficiently accurate approximations to the density
functionals of �i� the unknown effective potential and �ii� the
observables of interest. Fortunately, for many practical appli-
cations both items are noncritical �2�. An example is the
calculation of the optical response of biomolecules where
even the simple local-density approximation of the effective
potential yields reasonable results, and the observable can be
calculated from a known and explicit functional of the den-
sity �the time-dependent dipole�. However, when it comes to
the correlated motion of a few particles in a strongly driven
system, TDDFT faces major challenges. In that respect, non-
sequential double ionization �NSDI� serves as the worst-case
scenario for TDDFT.

Theoretically, NSDI was addressed successfully using the
strong-field approximation �see, e.g., �4� and references
therein� and classical methods �5,6�. The widely accepted
mechanism behind NSDI relies on the rescattering of the first
electron with its parent ion, collisionally ionizing �or excit-
ing� the second electron. The main goal of the current paper
is a methodological one, namely, the further development of
TDDFT toward the inclusion of correlation effects such as
NSDI.

In the recent publications Refs. �7,8� significant progress
was made in the treatment of NSDI within TDDFT as far as
ionization yields are concerned. The latter display as a mani-
festation of the electron-electron correlation involved in
NSDI the celebrated “knee” structure in the double-
ionization yield, which was, until recently, not being repro-
duced within TDDFT. Reference �7� addressed issue �i�
above �the effective potential� while Ref. �8� focused on item
�ii�, the functional for the observable double ionization. It
was shown that �i� taking the derivative discontinuities at
integer bound electron numbers into account and �ii� using
an adiabatic approximation for the correlation function
needed to calculate the double-ionization probability, the
NSDI knee can be reproduced.

In our current work we turn to the much harder problem
of momentum distributions �or energy spectra �9��. In the
NSDI regime the ion momentum spectra, as measured in
experiments employing “reaction microscopes” �see, e.g.,
�4,10��, show a characteristic double-hump structure, i.e.,
maxima at nonvanishing ion momenta. The maxima at non-
zero ion momenta are easy to understand within the rescat-
tering scenario mentioned above: the first electron preferen-
tially returns to the ion, collisionally ionizing the second
electron, at times when the vector potential of the laser field
is nonzero. Since the vector potential at the ionization time
equals the final drift momentum at the detector, nonvanishing
electron momenta �and, due to momentum conservation,
nonvanishing ion momenta� are likely.

In a TDKS treatment of NSDI in He starting from a spin-
singlet state, the rescattering scenario is “hidden” in a single,
spatial Kohn-Sham orbital. As we shall demonstrate, taking
the auxiliary KS particles for real electrons and Fourier-
transforming their position-space product wave function to
momentum space leads to ion momentum spectra in very
poor agreement with the exact ones. A better approximation
to calculate correlated electron momentum spectra in the
NSDI regime is required. With the present paper we aim at
contributing to this goal by showing that item �ii� above,
namely, the construction of the functional for the observable,
is the critical issue, while �i� known effective potentials are
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sufficient, at least at the current level of accuracy. Since the
main goal of the current paper is the further advancement of
TDDFT, we employ a one-dimensional model He system for
which the exact time-dependent Schrödinger equation
�TDSE� solution can be calculated. The latter then serves as
a reference result for the corresponding TDDFT calculations
and provides a stringent test for our approximations.

In Sec. II the model helium system used to study the
ionization process and the ensuing momentum distributions
is introduced. In Sec. III the method to calculate electron and
ion momentum distributions is explained. Results from the
solution of the time-dependent Schrödinger equation in Sec.
IV serve as a reference for the results obtained using TDDFT
in Sec. V: The insufficiency of uncorrelated functionals to
calculate electron and ion momentum distributions �Sec.
V A� and the relative insignificance of the correlation poten-
tial �Sec. V B� lead us to the construction of correlated func-
tionals in Sec. V C. In Sec. V D we introduce the product-
phase approximation, which reduces the problem of
approximating the correlated functionals to that of approxi-
mating the exchange-correlation function.

For consistency, we restrict ourselves to the presentation
of results for laser pulses with �=780 nm and N=3 cycles.
We stress, however, that the general conclusions drawn hold
also for �=614 nm, N=3 and �=780 nm, N=4 laser pulses,
as we have checked explicitly.

II. MODEL SYSTEM

A helium atom exposed to linearly polarized laser pulses
with N=3 cycles and sine-squared pulse envelopes is inves-
tigated. The length of the pulses with a frequency of �
=0.058 �corresponding to the experimentally used �
=780 nm� is T=2N� /�, and the vector potential reads A�t�
= Â sin2��� /2N�t�sin��t� for 0� t�T and zero otherwise
�atomic units are used unless otherwise indicated�. We use
the dipole approximation, i.e., the spatial dependence of the
laser field is neglected. The linear polarization of the laser
pulse thus allows us to describe the system by a one-
dimensional model helium atom with soft-core potentials for
the Coulomb interactions. It is known that the essential fea-
tures of the ionization process are described well by this
model �7,8,11–14�. Initially, the electrons are assumed to oc-
cupy the spin-singlet ground state of helium, and due to the
neglect of magnetic effects in the dipole approximation the
electrons stay in the spin-singlet state during the interaction
with the laser pulse. Thus it is sufficient to study the spatial
wave function, which has to be symmetric under exchange of
the electrons.

The TDSE i�t��x1 ,x2 , t�= Ĥ�x1 ,x2 , t���x1 ,x2 , t� is solved
for laser pulses with different effective peak intensities I

= I�Â�. A trivial gauge transformation cancels the purely
time-dependent A2 term and yields the Hamiltonian

Ĥ = �
i=1,2

�−
1

2
�xi

2 + V�xi,t�� + W��x1 − x2�� , �1�

with Ĥ= Ĥ�x1 ,x2 , t�. The external potential is V�x , t�=
−iA�t��x−2/	x2+�en, and the electron-electron interaction

potential is given by W�x�=1/	x2+�ee. The soft-core param-
eters �en and �ee are chosen to yield the correct ionization
potentials. Reproducing the ionization potential of He+, Ip

�2�

=2.0 in a corresponding model He+ ion fixes �en=0.5. The
choice �ee=0.329 yields the ionization potential of helium,
Ip

�1�=0.904. All results presented in this work are qualita-
tively insensitive to the precise values of the soft-core pa-
rameters.

As the two electrons constitute a spin-singlet state for all
times they are described by the same KS orbital. Therefore,
in a TDDFT treatment, we have only one time-dependent
Kohn-Sham equation �TDKSE� i�t��x , t�= ĤKS�x , t���x , t�
with the Hamiltonian

ĤKS�x,t� = −
1

2
�x

2 + V�x,t� + vHx�x,t� + vc�x,t� . �2�

The Hartree-exchange potential vHx=vH+vx follows as
vHx�x , t�= 1

2 
dx�n�x� , t� /	�x−x��2+�ee
KS. We have used the

exact exchange term for helium vx�x , t�=−vH�x , t� /2, which
is local as both electrons are described by the same orbital.

Setting vc=0 yields, in the special case of the helium
atom or He-like ions, an identical description as the time-
dependent Hartree-Fock �TDHF� treatment �due to the local-
ity of vx�. The correlation potential proposed by Lein and
Kümmel �LK, �7�� vc

LK takes into account the discontinuous
change in the correlation potential when the number of
bound electrons N�t�=
−a

+adx n�x , t� passes integer numbers,
vc

LK�x , t�= [B�t� / (1+exp�C�B�t�−2��)−1]vHx�x , t�, where C
is a sufficiently large constant �we set C=50� and B�t�
=N0 /N�t�. In order to encompass all bound states the param-
eter a is chosen as a=6 a.u. throughout this work, results
being insensitive to the precise value of a. We use �ee

KS

=0.343 in the Hartree-exchange potential vHx to acquire Ip
�1�

=0.904 for the model helium atom. The TDSE and TDKSE
are solved by a split-operator time propagator on a numerical
grid �see, e.g., �15� and references therein�.

Along the lines of Ref. �7� we construct from the TDSE
solution an exact KS orbital �EKSO�. The Schrödinger solu-
tion gives the exact density of our model helium atom
n�x , t�=2
dx2���x ,x2 , t��2=2
dx1���x1 ,x , t��2 and the exact
probability current j�x , t�. From the equality of the exact and
KS currents in the case of a one-dimensional system, the
phase of the EKSO is determined as ��x , t�
=
−	

x dx�j�x� , t� /n�x� , t�+
�t�. The unknown purely time-
dependent phase factor 
�t� does not affect the results pre-
sented in this work and is therefore set to zero. The EKSO
��x , t�=	n�x , t� /2ei��x,t� is thus identical to the orbital that
would be yielded by a TDDFT calculation with the exact
correlation potential vc via the TDKS scheme. The EKSO
allows us to separate the challenges facing TDDFT calcula-
tions �see Sec. I�: finding �i� a suitable approximation of vc
�where it serves as a reference for the resulting orbital� and
�ii� appropriate functionals for observables �where it is the
exact input�.

III. MOMENTUM DENSITIES

We partition the two-electron space and associate with
single ionization the area A�He+�= ��x1 ,x2��xi��a , �xj�i�
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�a∀ i , j� �1,2�� and with double ionization the area
A�He2+�= ��x1 ,x2��x1��a , �x2��a�. Integrating ���x1 ,x2 , t��2
over these areas then yields the respective ionization prob-
abilities, with the double-ionization probability given by
P2+�t�=

A�He2+�dx1dx2���x1 ,x2 , t��2. This scheme to deter-
mine ionization probabilities from the two-electron wave
function has been successfully used in numerous similar cal-
culations �11,12,14�.

The wave function ��x1 ,x2 , t� can be described equiva-
lently in momentum space by its Fourier transform
�2����k1 ,k2 , t�=
dx1
dx2��x1 ,x2 , t�e−i�k1x1+k2x2�. As the
wave function in momentum space is normalized to 1, the
pair density in momentum space is given by ��k1 ,k2 , t�
=2���k1 ,k2 , t��2.

At times 0 tT during the laser pulse the velocity of
the electrons is actually given by ẋi�t�=ki�t�+A�t�, i.e., the
sum of the canonical momentum ki and the value of the
vector potential at the corresponding time. In this work, we
investigate properties of the system at t=T after the laser
pulse. As A�T�=0, canonical momenta k and drift momenta
are identical.

We are interested mainly in the double-ionization process
and thus Fourier transform only the wave function in the area
A�He2+� associated with double ionization. The resulting
sharp step at the boundary of A�He2+� at �xi�=a , �xj�i��a,
with i , j� �1,2�, is a potential source of artifacts when Fou-
rier transformed. Hence, a smoothing function f�x1 ,x2�
=�i=1

2 1 /	1+e−c�xi−a� is introduced. The factor c has to be of
the order of 1; in this work we choose c=1.25. The smooth-
ing function is constructed so that 

dx1dx2f2�x1 ,x2�b
=

A�He2+�dx1dx2b for a constant b. This condition ensures
that the wave function ��2+��x1 ,x2 , t�= f�x1 ,x2���x1 ,x2 , t�
gives to a good approximation the same double-ionization
probability as the original wave function, i.e., that

dx1
dx2f2�x1 ,x2����x1 ,x2 , t��2� P2+. The correlated wave
function of the electrons freed in double ionization in mo-
mentum space is thus calculated as

�2����2+��k1,k2,t� =� dx1� dx2��2+��x1,x2,t�e−i�k1x1+k2x2�.

�3�

This approach is equivalent to projecting out the states cor-
responding to single and no ionization and is known to lead
to accurate momentum distributions �13�.

From the wave function we construct the momentum pair
density of the electrons freed in double ionization,

��2+��k1,k2,t� = 2���2+��k1,k2,t��2. �4�

The probability to find at time t an electron freed in double
ionization with momentum k1 in dk1 and an electron with k2
in dk2 is then ��2+��k1 ,k2 , t�dk1dk2.

In experiments, it is easier to measure the momentum of
the He2+ ion kion after double ionization instead of individual
electron momenta. As the total photon momentum involved
is negligibly small, this provides information about the sum
of the electron momenta via momentum conservation k1

+k2=−kion. The ion momentum density then follows from
the momentum pair density of the electrons freed in double
ionization �4� as

nion
�2+��kion,t� =

1

2
� dk ��2+��− kion − k,k,t�

=
1

2
� dk ��2+��k,− kion − k,t� , �5�

due to the symmetry of the electron momentum pair density.
The factor 1 /2 ensures the correct normalization since the
system consists of only one ion but two electrons. The ion
momentum density nion

�2+��kion , t�dkion gives the probability to
find at time t the He2+ ion with momentum kion in dkion.

IV. MOMENTUM DISTRIBUTIONS FROM THE
TDSE

From the numerical solution of the TDSE we obtain
��x1 ,x2 ,T� after the interaction with the laser pulse. In the
left-hand side of Fig. 1 the momentum pair density of the
electrons freed in double ionization, as calculated from Eq.
�4�, is shown.

For all but the highest intensity depicted, electrons have
the highest probability to move at different velocities �k1�
� �k2� �ẋi�T�=ki�T� since A�T�=0; cf. the discussion in Sec.
III� but in the same direction �sgn�k1�=sgn�k2��. Depending
on the laser intensity, the probability for the double-

FIG. 1. Contour plots of the momentum pair density
�2+�k1 ,k2 ,T� of the electrons freed in double ionization. Results
calculated from the uncorrelated functional �7� using the EKSO
�right-hand side� are compared to the TDSE �left-hand side� solu-
tion. Momentum pair densities for �=780 nm, �N=3�-cycle laser
pulses with different effective peak intensities are shown.
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ionization process is highest at different half cycles of the
laser pulse, i.e., different signs of the vector potential. There-
fore, the favored direction in which the electrons leave the
atom varies with intensity. NSDI can be understood by a
recollision mechanism where one electron returns to the He+

ion and frees the second electron �see, e.g., �4��. The results
of the TDSE then imply that both electrons leave the atom in
the same direction but due to Coulomb repulsion their ve-
locities differ, in accordance with earlier results for a longer
laser pulse �13�.

The “butterfly” shape of the momentum pair density of
the electrons freed in double ionization as shown in Fig. 1 is
evidence that it is highly correlated, as it cannot be repro-
duced by multiplying two orbitals for the respective elec-
trons.

For I=6.96�1015 W/cm2 both electrons have the highest
probability to leave the atom in the same direction with simi-
lar velocities k1�k2. This can only be the case when the
Coulomb repulsion between the electrons is weak, i.e., when
they are removed sequentially, resulting in a large spatial
separation. The final nonvanishing velocities are due to the
high intensity of the laser pulse, which ionizes the atom so
rapidly that A�t��0 when the first electron is freed. The
gridlike structure typical for a product wave function is seen,
the electron correlation being weak.

From the momentum pair density of the electrons freed in
double ionization ��2+��k1 ,k2 ,T� �4� we calculate the ion mo-
mentum density nion

�2+��k1 ,k2 ,T� �5�. For different effective
peak intensities the density of the ion momentum is depicted
in Fig. 2. It exhibits peaks at non-zero momenta. As ex-
plained in Sec. I, these are typical for recollision processes
when the first freed electron recollides close to the maximum

of the vector potential, i.e., when �A�t��� Â. Hence, the sum
of the momenta of both electrons is nonzero, and, by mo-
mentum conservation, this holds for the ion momentum as
well �16�.

For an infinitely long laser pulse of laser period T /N,

Ĥ�t+T /N�= Ĥ�t� holds, while this symmetry is broken in the
case of few-cycle laser pulses. Hence, with respect to the
dislodged electrons there is no spatial inversion symmetry,
leading to asymmetric ion momentum distributions �17–19�.
This effect is clearly seen in Fig. 2. For the three lowest
intensities, a process with kion�0 dominates while with in-
creasing intensities processes with kion�0 become more
likely. In addition, the central peak gets more and more pro-
nounced, showing that the relative probability of sequential
double ionization increases. The fact that the peak is not
centered around kion=0 for I=6.96�1015 W/cm2 is again
due to the high intensity and the short duration of the laser
pulse, as explained above.

V. MOMENTUM DISTRIBUTIONS FROM TDDFT

DFT can be formulated in momentum space �see, e.g.,
�20��, and this seems to be the obvious path to follow when
one is interested in the calculation of momentum spectra.
However, momentum-space DFT lacks the “universality”
feature of the Hohenberg-Kohn theorem �3�, meaning that

each system under study requires a different momentum-
space effective potential—an entirely unattractive feature.
We therefore prefer to make a detour via standard, universal,
position-space TDDFT. In the case of single ionization, a
straightforward calculation of the momentum or energy spec-
trum from the Fourier-transformed valence KS orbital may
be a good approximation �see, e.g., the approach followed in
Ref. �21��. Instead, it is less obvious how to determine cor-
related momentum spectra from position-space TDKS orbit-
als.

As explained in the Introduction, determining momentum
pair densities and ion momentum densities from a TDDFT
approach faces two challenges: The first is to find an ap-
proximate correlation potential vc in the TDKSE to repro-
duce the exact density n�x , t� with sufficient accuracy. The
second, more difficult one, amounts to assigning a suitable
functional of the density to the corresponding observable. As
both the ion momentum density and the momentum pair den-
sity �via their probability interpretations; see Sec. III�, are
observables, the Runge-Gross theorem assures that function-
als of the density alone exist �1�.

A. Uncorrelated functionals

Treating the KS orbital as if it were a one-electron wave
function yields a product wave function ��x1 , t���x2 , t�. This
is the same assumption frequently made to derive uncorre-

FIG. 2. Ion momentum density of the model He2+ ion after
interaction with �=780 nm, �N=3�-cycle laser pulses with different
effective peak intensities. The density calculated using the EKSO in
the uncorrelated functional �8� is compared to results from the
TDSE.
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lated ionization probability functionals �see Ref. �8� and ref-
erences therein�.

The Fourier-transformed KS orbital for �x��a, i.e., with
the bound states projected out �see Sec. III�, is

	2���+��k,t� =� dx f�x���x,t�e−ikx, �6�

with f�x�=1/	1+e−c�x−a� the one-dimensional smoothing
function equivalent to the smoothing function used in Sec.
III. Calculating the momentum pair density �4� and the ion
momentum density �5� from the product wave function gives
the uncorrelated functional for the momentum pair density of
the electrons freed in double ionization

��2+��k1,k2,t� = 2���+��k1,t���+��k2,t��2 �7�

and the uncorrelated functional for the ion momentum den-
sity of He2+

nion
�2+��kion,t� =� dk���+��− kion − k,t���+��k,t��2. �8�

Equations �7� and �8� are not functionals of the density alone,
but due to the Fourier transformation they are dependent on
the density and on the phase of the KS orbital.

The momentum pair density at t=T, as calculated from
the uncorrelated functional �7� using the EKSO, is depicted
in the right part of Fig. 1 for �=780 nm, �N=3�-cycle laser
pulses with different intensities. Comparison with the left-
hand side showing the momentum pair density calculated
from the correlated Schrödinger wave function ��x1 ,x2 ,T�
confirms that only for the highest intensity is a product wave
function approach reasonable. For lower intensities the un-
correlated functional for the momentum pair density does not
exhibit the typical butterfly-shaped correlation structures of
the Schrödinger solution. Instead, the gridlike structure typi-
cal for a product wave function is clearly visible.

For the same system we calculate from Eq. �8� the ion
momentum density using the EKSO. In Fig. 2 the He2+ ion
momentum density is compared to the results from the
TDSE, which are scaled to enable the comparison of quali-
tative features. The different values of the integrals over the
ion momentum densities are due to the different double ion-
ization probabilities, as can be seen from 
dkionnion

�2+��kion , t�
� P2+, which follows from Eq. �3� �see Ref. �8� and refer-
ences therein for a discussion of this particular problem�.
Apart from the highest intensity the density is centered
around a central peak at kion�0. This is evidence that corre-
lations, which are not included in the uncorrelated function-
als for the observables, are responsible for the distinct peaks
of the ion momentum density at nonzero momenta. This re-
sult is consistent with the analysis of the results of the TDSE
�Sec. IV�, which attributes the peaks at kion�0 to electron
rescattering, i.e., to an interaction between the electrons. For
the highest intensity shown in Fig. 2, sequential double ion-
ization becomes dominant �cf. Sec. IV�, so that the descrip-
tion using the EKSO in the uncorrelated functional repro-
duces the ion momentum density reasonably well.

B. The role of the correlation potential

To underline the importance of the functional for the ion
momentum density we use the correlation potentials vc=0
�TDHF� and vc

LK �LK� in the TDKSE for our model He atom
interacting with the �=780 nm, �N=3�-cycle laser pulses �cf.
Sec. II�.

In Fig. 3 the ion momentum densities obtained from using
the respective orbitals in the uncorrelated functional for the
ion momentum density �8� are compared to the results with
the EKSO, i.e., the orbital which the exact vc would yield.
For the TDHF approach, results are similar to the results
using the LK potential. Both approximations lead to uncor-
related ion momentum densities which are close in qualita-
tive terms to the EKSO results. Only at the highest intensity
I=6.96�1015 W/cm2 do they exhibit a single peak at kion
�0 and not, as the EKSO solution, at kion�0. In this inten-
sity regime, purely sequential double ionization dominates,
pointing to possible shortcomings in the description of this
process with both correlation potentials.

As the general deficiencies of the uncorrelated functional
described in the previous paragraph are entirely due to the
functional for the observable, these results demonstrate the
relative unimportance of the choice of the correlation poten-
tial in the TDKSE for the observables of interest in this
work.

C. Toward correlated functionals

In polar representation, the solution of the TDSE is writ-
ten as ��x1 ,x2 , t�=	��x1 ,x2 , t� /2ei��x1,x2,t� and the KS orbital

FIG. 3. Ion momentum density of the model He2+ ion after
interaction with �=780 nm, �N=3�-cycle laser pulses with different
effective peak intensities. The densities are calculated from the un-
correlated functional �8� using the EKSO and the orbitals obtained
with vc=0 �TDHF� and vc

LK �LK�.
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as ��x , t�=	n�x , t� /2ei��x,t�. We define a time-dependent
complex exchange-correlation function

��x1,x2,t� =
��x1,x2,t�

	2��x1,t���x2,t�
= 	gxce

i���x1,x2,t�−��x1,t�−��x2,t��

�9�

with the time-dependent exchange-correlation function gxc
=gxc�x1 ,x2 , t� given by

gxc�x1,x2,t� = ��x1,x2,t�/n�x1,t�n�x2,t� .

Approximations to gxc= ���2 have been used to construct cor-
related ionization probability functionals �8,22�. Note that
while gxc is an observable �and thus a functional of only the
density exists�, the complex-valued � is not an observable.
Using Eq. �9� to express the correlated wavefunction
��x1 ,x2 , t� in terms of the KS orbitals and the complex
exchange-correlation function, Eq. �4� gives the correlated
functional for the momentum pair density of the electrons
freed in double ionization

��2+��k1,k2,t� = �−2�� dx1� dx2��x1,x2,t���+��x1,t�

���+��x2,t�e−i�k1x1+k2x2��2

�10�

with ��+��x , t�= f�x���x , t�. The correlated ion momentum
density is calculated by using the correlated momentum pair
density in Eq. �5�. We thus have exact momentum distribu-
tion functionals, which depend only on the complex
exchange-correlation function � and the KS orbital �.

The complex exchange-correlation function � in turn de-
pends on the pair density and the phase of the Schrödinger
solution ��x1 ,x2 , t�. In order to derive momentum space
properties for more complex atoms than helium from the KS
orbitals directly through expressions like Eq. �10�, it is inevi-
table to approximate �. However, this is challenging since,
due to the Fourier integrals in Eq. �10�, the complex
exchange-correlation function has to be approximated in all
A�He2+� �and not just for the bound electrons, as in the cal-
culation of ionization probabilities �8,22��.

D. Product-phase approximation

The necessary approximation of the complex exchange-
correlation function � �9� consists of approximating
gxc�x1 ,x2 , t� and the phase difference ��x1 ,x2 , t�−��x1 , t�
−��x2 , t�.

Addressing the second part, the easiest approximation fol-
lows from the assumption that the difference of the sum of
the phases of the KS orbitals and the phase of the correlated
wave function can be neglected when calculating momentum
distributions, i.e., we set

��x1,x2,t� = ��x1,t� + ��x2,t� . �11�

Since ��x , t� is the phase of the KS orbital we denote this
approach as the product-phase �PP� approximation, which
yields

�PP�x1,x2,t� = 	gxc�x1,x2,t� . �12�

It is noteworthy that knowledge of the exact �PP thus suffices
to calculate the exact double-ionization probabilities from
the EKSO.

We calculate the ion momentum density using Eq. �12� in
Eq. �10� and in Eq. �5�. Employing the EKSO, the ion mo-
mentum densities shown in Fig. 4 for �=780 nm, �N
=3�-cycle laser pulses with different intensities are obtained.
The results from the TDSE are depicted as well. For com-
parison of the qualitative features, they are scaled, although
the integrals over the ion momentum densities are equal in
both cases �note that the PP approximation returns the exact
double-ionization probabilities�. A generally good qualitative
agreement with the Schrödinger solution is acquired. The
asymmetric structure and distinct peaks are reproduced. For
intensities where NSDI is strongest, the quantitative agree-
ment is least convincing. Although the PP approximation
does not reproduce the exact kion positions of the peaks, it
modifies the uncorrelated functionals in a way that allows us
to deduce information about the underlying double-
ionization processes at the different intensities. We can there-
fore conclude that the difference between the phase of the
correlated wave function and a product wave function is not
as important for reproducing the structure of the ion momen-
tum density as is the correlation given by gxc�x1 ,x2 , t�. This
conclusion was verified by setting gxc=1 in Eq. �9� and using

FIG. 4. Ion momentum density of the model He2+ ion calculated
from the correlated functionals in the PP approximation using the
EKSO. Results for �=780 nm, �N=3�-cycle laser pulses with dif-
ferent effective peak intensities are compared to the ion momentum
density obtained from the TDSE.
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the exact phases in Eq. �10�, which did not yield the peaks
present in the Schrödinger solution. Using LK orbitals in the
PP approximation also reproduces distinct peaks, while the
general agreement with the Schrödinger ion momentum den-
sity is not as good as for the EKSOs.

The contour plots of the momentum pair density of the
electrons freed in double ionization ��2+��k1 ,k2 , t� calculated
from the correlated functional in the PP approximation using
the EKSO show a correlated structure, while differences
from the TDSE momentum pair densities �Fig. 1� remain.

Using the PP approximation we obtain momentum distri-
butions which yield fundamental insight into the double-
ionization processes. However, this still requires knowledge
of the exact gxc�x1 ,x2 , t� at time t=T after the laser pulse, i.e.,
of the exact pair density in real space. Approximating
gxc�x1 ,x2 , t� is a formidable task itself. This can be seen from
the highly correlated structure in Fig. 5 where contour plots
of the exchange-correlation function gxc�x1 ,x2 ,T� are shown
for intensities where NSDI dominates. An adiabatic approxi-
mation using the ground-state pair density �8� is not feasible
as the exchange-correlation function in the entire A�He2+� is
required in Eq. �10�. An expansion for small interelectron
distances �22,23� will not include the correlations for large
�x1−x2�, which are clearly present in Fig. 5. By multiplying
the complex exchange-correlation function with a damping

function F��x1−x2�� with F→0 for large �x1−x2�, we verified
that short-range correlations alone in the final wave function
do not reveal the characteristic peaks in the ion momentum
density. It is therefore of central importance to devise new
strategies for approximating gxc�x1 ,x2 , t�.

VI. SUMMARY

A model helium atom in strong linearly polarized few-
cycle laser pulses was investigated. Solution of the time-
dependent Schrödinger equation yielded momentum pair dis-
tributions of the electrons freed in double ionization and
corresponding ion momentum densities. They were consis-
tent with a recollision process and, at higher laser intensities,
with sequential double ionization. These results served as a
reference for a time-dependent density-functional treatment
of the system. It was shown that the choice of the correlation
potential in the Kohn-Sham equations is of minor importance
compared to the form of the functionals for calculating the
momentum distributions. An uncorrelated approach was
found to produce ion momentum densities differing signifi-
cantly from the Schrödinger solution in qualitative terms. We
constructed an exact correlated functional via the two-
electron wave function. This functional depends on the ex-
change correlation function and the difference between the
phase of the exact two-electron wave function and the sum of
the phases of the Kohn-Sham orbitals. We devised the
product-phase approximation, in which the phase difference
is assumed to vanish. The product-phase approximation
yields ion momentum spectra that are in good agreement
with the exact results, and thus “reduces” the problem to the
development of sufficiently accurate approximations of the
exchange correlation function. New strategies are required in
this respect since small interelectron distance expansions of
the exchange correlation function are not applicable.
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