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We summarize the results of numerical calculations of HD+ in a 7.1 fs �intensity full width at half maxi-
mum� 790 nm laser pulse. The molecule is assumed to be aligned with the linearly polarized laser field and
includes two electronic and one nuclear degrees of freedom. We report total dissociation and ionization
probabilities from the lowest 10 vibrational states for a range of intensities from 1013 to 7�1014 W/cm2. The
conditions for the observability of carrier-envelope phase �CEP� effects for a mixed initial state and for
intensity averaging over the laser focal volume are discussed in detail.
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I. INTRODUCTION

Diatomic molecules and molecular ions in intense laser
fields continue to attract the attention of the atomic and mo-
lecular physics community despite several years of study.
The nonperturbative nature of the laser field coupled with the
interplay of the electronic and nuclear degrees of freedom
make for very rich physics. It is, of course, precisely these
properties that also make these systems such a challenge to
treat theoretically.

The hydrogen molecular ion is of special interest since it
is the simplest molecule, consisting of three particles only.
Even so, it exhibits many interesting intense laser-induced
phenomena including vibrational trapping and bond soften-
ing �1–5�, high harmonic generation �6�, above threshold dis-
sociation �1,2,7�, and enhanced ionization �8–11�. Other
studies �12� have shown that the relative phase between two
laser pulses with different central frequencies could be used
to control the dissociation of HD+. The main finding was that
the angular distributions of H and D depended differently on
the relative phase of the two laser pulses—where H had a
maximum, D had a minimum, and vice versa. Rather com-
plete reviews of the behavior of H2

+ and its isotopes in in-
tense lasers are also available �see, for example, Refs.
�13,14��.

The case of few-cycle laser pulses is especially interest-
ing. Recently, it has become possible to observe �15� and
control �16� the carrier-envelope phase �CEP� of a single
ultrashort laser pulse, i.e., the relative phase between the la-
ser pulse envelope and the carrier wave. To varying degrees,
each of these experiments took advantage of the CEP depen-
dence of the electron motion following ionization.�26�

In contrast, our recent predictions �17,18� of CEP effects
in HD+ do not involve ionization. Rather, we predicted
strong CEP effects in the dissociation of the ground vibra-
tional state of HD+ and H2

+. While certainly related to the
effect measured by Kling et al. �19�, the effects we described
in Refs. �17,18� and will elaborate on further here do not rely
on ionization, while the Kling et al. CEP measurements on

D2 do. On the other hand, experimental investigation of our
system is technically difficult since it would require HD+ �or
H2

+� in its ground vibrational state. In this paper we have
considered the more realistic case of incoherent Franck-
Condon distribution �20�. To this end, we have performed
detailed calculations of HD+ dissociation and ionization in
short �7.1 fs full width at half maximum �FWHM�� laser
pulses for different initial vibrational states. We have found
that even when the CEP effect on the total dissociation prob-
ability is quite small, the fragment kinetic energy release
�KER� is much more sensitive to the CEP. We also present
the total ionization and dissociation probability of HD+ in
short laser pulses and discuss the conditions most favorable
for a well pronounced CEP effect.

II. THEORY AND NUMERICS

Our calculations are based on the scaled coordinate
method that we have described in more detail in Ref. �18�.
Here we will give only a brief description of the method
together with details important for the current calculations.

A. Three-degree-of-freedom model

The results we present in this paper are based on solving
the time-dependent Schrödinger equation �TDSE� �atomic
units will be used throughout unless otherwise noted�

i
�

�t
� = �T + V0 + W�t��� . �1�

In this equation, T is the free Hamiltonian of the system, V0
stands for the Coulomb interactions, and W�t� describes the
interaction with the external laser field. A full solution to this
problem requires the propagation of a six-dimensional wave
function. Unfortunately, this task is beyond our current capa-
bility. We must, therefore, use physical reasoning and intu-
ition to reduce the dimensionality to something manageable
that also retains the essential physics of the problem. In fact,
our goal is to make minimal reductions necessary.

First, let us arrange the time scales describing the dynam-
ics of the system. The slowest process is molecular rotation.
The period corresponding to an elementary rotational excita-
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tion Trot�700 fs. The next faster time scale corresponds to
vibrations of the molecule, and its characteristic time is of
the order of 15 fs. The shorter time scales correspond to the
laser pulse duration �7.1 fs FWHM�, the carrier period of
�2.6 fs, and the even faster electronic motion. Due to the
huge difference between the time scales of the rotational mo-
tion and the other dynamics, we use the common assumption
that the molecule does not rotate appreciably during the laser
pulse, and that any rotations do not substantially influence
the dynamics. Further, since we are primarily interested in
dissociation, the most likely transition is 1s�→2p� for
which only the component of the laser field parallel to the
molecular axis is important. We thus assume that the nuclei
are aligned with the field and not rotating. Under these as-
sumptions, the six-dimensional configuration space is re-
duced to three-dimensional �26–34,38�: �R ,� ,z�, where R is
the internuclear distance and �� ,z� are the cylindrical coor-
dinates of the electron. For our model, then, the kinetic en-
ergy T in Eq. �1� reads

T = −
1

2�pd

�2

�R2 −
1

2�e
� �2

��2 +
1

�

�

��
+

�2

�z2� , �2�

and the Coulomb potential is

V0 = −
1

	�z + zp�R��2 + �2
−

1
	�z − zd�R��2 + �2

+
1

R
. �3�

Here zp�R�=
md

mp+md
R and zd�R�=

mp

mp+md
R are the positions of

the proton and deuteron, respectively, mp and md are their
masses, and �pd and �e are the reduced masses

1

�pd
=

1

mp
+

1

md
and

1

�e
= 1 +

1

mp + md
. �4�

The interaction with the laser field is written in the dipole
approximation �in the length gauge� as

W�t� = − E�t�
mp − md

mp + md
R +

mp + md + 2

mp + md + 1
z� . �5�

Here E�t� stands for the electric component of the laser field.
The time dependence of the electric field is represented as

E�t� = E0e−� t
��2

cos��t + 	� , �6�

where E0 is the peak field �39�, 	2 ln 2� is the intensity
FWHM pulse duration, � is the laser frequency, and 	 is the
carrier-envelope phase �CEP� of the pulse. We note that the
dc component of the pulse is practically zero �
10−8� for all
	 so long as the pulse duration exceeds roughly one laser
period. It is the sensitivity of the dissociation parameters to
the CEP 	 that will be the center of discussion in this paper.

We assume that the initial state of the HD+ ion is a result
of fast ionization of the HD molecule �20�. This creation
mechanism implies an initial state with a Franck-Condon
distribution of the vibrational levels. We also assume that the
time between the HD ionization and the resulting HD+ enter-
ing the laser focus is very long compared to the vibrational
period and that the distribution of these travel times is also
broad on the scale of vibrational periods. The different initial
vibrational states in the Franck-Condon distribution thus sum

incoherently. In order to model this situation, we perform
calculations for the lowest 10 vibrational states and sum
the corresponding final observables with Franck-Condon
weights.

B. Scaled coordinates

One common problem with time-dependent approaches is
that they are necessarily limited to a finite integration vol-
ume: when part of the physical system reaches the boundary,
artifacts due to reflections appear. This problem is often
solved via absorbing boundary conditions by introducing an
imaginary potential or a masking function. Such boundary
conditions, however, lead to lost information. Numerical so-
lutions are further complicated by a phase that accumulates
rapidly with time and distance, making the wave function
oscillate rapidly. These oscillations make numerical approxi-
mation of the wave function difficult, especially when long
propagation times are required.

A coordinate scaling technique that addresses both of
these problems was originally proposed in a different context
in Ref. �35�. A more general point of view on the numerical
benefits of this scaling transformation was discussed in Ref.
�36,37�. In our preceding paper �18� we discussed in detail
the application of the technique to dissociation of HD+. Here,
we give just a brief reminder of the method.

The method of scaled coordinates combines coordinate
and wave function transformations that localize continuum
wave packets in space and essentially eliminates growing
spatial oscillations. By analytically eliminating these purely
kinematic effects, the wave function can be more easily
propagated to larger times. The ability to propagate the wave
function longer is essential for calculating the final velocity
distributions of these three charged particles: the propagation
must be long enough that the final state fragments no longer
interact significantly with each other. Another useful feature
of the scaled coordinate method is that it affords a straight-
forward way to extract the velocity distribution from the final
state density function—the wave function itself is not re-
quired. Further, knowledge of the density function in the
whole configuration space is not necessary, as all coordinates
corresponding to the internal degrees of freedom of the final
state fragments can be integrated out. Taken together, these
features make the scaled coordinate approach extremely use-
ful for treating systems in several dimensions.

In this work we scale the internuclear distance R only,
using an absorbing optical potential for the electronic coor-
dinates. This choice minimizes the computational effort re-
quired to reproduce the atomic wave functions in the final
state. Explicitly, as we have described in Ref. �18�, we use
the following transformations,

R = S�t�� , �7�

for the internuclear distance, plus a wave function transfor-
mation

�S��,t� = 	Se−i�m/2�SṠ�2
��S�,t� . �8�

The scaling function is chosen as
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S�t� = �1, t 
 t0,

�1 + vR
4�t − t0�4�1/4, t � t0.

�9�

where vR and t0 are the scaling parameters that should be
chosen to keep the dissociating wave function with the � grid
during the whole propagation time. After these transforma-
tions the operator T reads

T = −
1

2�pdS2

�2

��2 +
1

2
�pdSS̈�2 −

1

2�e
� �2

��2 +
1

�

�

��
+

�2

�z2�
 T� + T� + Tz.

In this approach the potential V0 in Eq. �3� also becomes time
dependent, while additional time dependence is introduced in
Eq. �5�.

Besides the numerical advantages of the scaling transfor-
mation, it also allows one to obtain the kinetic energy distri-
butions of the dissociated fragments directly from the final-
state density function, without resorting to a Fourier
transform of the final-state wave function. For instance, if we
know the scaled final-state density function ��� , t�, the cor-
responding KER distribution reads

��E� = lim
t→

1

vR
	2�pdE

�� 1

vR

	 2E

�pd
,t� .

A more detailed discussion of the properties and application
of the scaling transformation to molecular dissociation cal-
culations can be found in our previous paper �18�.

C. Final-state channels

As mentioned above, we start from an oriented molecule
with the deuteron “down” and the proton “up.” Now we have
to classify the final states of the system.

First of all, we have to distinguish the states with one,
two, and three free particles in the final state. In the first case,
after the laser pulse we find the molecule in a bound state,
and we shall call this channel “survival.” The second case,
where the two fragments are a neutral atom and a charged
nucleus, we shall call “dissociation.” Finally, if the system
breaks up into three charged particles, we shall call this
channel “ionization.” In our calculation the ionized part of
the wave function is absorbed at the boundaries, so that only
the dissociation and survival channels are kept during the
whole period of calculation. We thus estimate the ionization
probability by the difference between the initial and final
probabilities PI=1−���final�2dRdzd�. Since we consider het-
eronuclear molecular ion, two different dissociation channels
can be distinguished: H+d and D+p. Dissociation into these
channels can be identified by the regions in configuration
space where the corresponding wave packets propagate, as
shown in Fig. 1. In the region �H+d the electron stays in the
vicinity of the proton forming hydrogen, whereas in �D+p it
stays close to the deuteron forming deuterium.

In order to separate the dissociation and survival chan-
nels, we use the simplest projection operators. For instance,
we define

�H+d�R,z,��  ��H+d
�R,z,����R,z,�� ,

where ��H+d
�R ,z ,�� is the characteristic function of the re-

gion �H+d defined such that ��H+d
�R ,z ,��=1 when the coor-

dinates �R ,z ,����H+d, and ��H+d
�R ,z ,��=0 otherwise. We

define the channel functions �D+p�R ,z ,�� and �HD+�R ,z ,��
similarly.

Throughout this paper we shall thus employ the following
analysis of the final state: total channel probabilities

PH+d =� ��H+d
S ��,z,���2d�dzd� ,

PD+p =� ��D+p
S ��,z,���2d�dzd� , �10�

PHD+ =� ��HD+
S ��,z,���2d�dzd� ,

and fragment kinetic energy release �KER� distributions

pH+d�E� =
1

vR
	2�pdE

dH+d� 1

vR

	 2E

�pd
� ,

�11�

pD+p�E� =
1

vR
	2�pdE

dD+p� 1

vR

	 2E

�pd
� ,

where

dH+d��� =� ��H+d
S ��,z,���2dzd� ,

dD+p��� =� ��D+p
S ��,z,���2dzd� .

D. Calculations

1. Time propagation

Solutions of the TDSE can be found using the short-time
propagator

FIG. 1. Configuration space regions associated with different
final state channels.
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��t + �� � e−i�T+V�t+�/2�����t� �12�

which we evaluate using operator splitting,

e−i�A+B�� = e−iA�/2e−iB�e−iA�/2 + O��3� .

The exponentials can be evaluated in a number of ways, but
we choose a Crank-Nicholson-like method �41�:

UA��� = �1 + iA
�

2
�−1�1 − iA

�

2
� = e−iA� + O��3� . �13�

With sufficiently small time steps �, the evolution operator
can be represented to a required precision.

To construct the full three-dimensional evolution operator,
we split the kinetic from the potential energy operators, tak-
ing into account the fact that the kinetic energy operators T�,
T�, and Tz commute. An approximate evolution operator is
thus

U�t + �,t� = UV��

2
;t�UT�

���UT�
���UTz

���UV��

2
;t� .

�14�

We evaluate the kinetic energies using a three-point finite
difference scheme capable of treating non-Cartesian coordi-
nates on a nonuniform grid �40�. The potential operator V
includes all the potential energy of the system plus the ab-
sorbing potential VA, so that

V = V0 + W�t +
�

2
� + VA.

Equation �14� can be used for calculations, but explicitly
exploiting the different physical time-scales of the system
speeds the calculations up considerably �17�. The key obser-
vation is that the evolution operator can be rearranged to use
different time steps for the nuclear and electronic degrees of
freedom. We can roughly estimate the ratio between the time
steps to be N=	�pd /�e, assuming that the energy pumped
into the nuclear motion by the field is the same as for the
electrons. The rearranged time evolution operator is

U�t + �,t� = UT�
��

2
��i=1

N 
UV� �

2N
;ti�UT�

� �

N
�

�UTz
� �

N
�UV� �

2N
;ti��UT�

��

2
� . �15�

The electronic coordinates thus become updated N times
more often than the nuclear coordinates. The rough estimate
above gives N�35. Testing, however, shows that N should
be closer to 10. With N=10, we estimate that Eq. �15� re-
quires 20%–25% fewer operations than Eq. �14�. In the limit
of large N, the same estimate gives an operations reduction
of close to 30%.

2. Bound states

For all of the calculations reported in our previous work,
the initial state for the propagation was the ground state of
the molecular ion, i.e., the ground 1s� vibrational state with
� electronic symmetry. This state was calculated as a solu-

tion of the time-independent Schrödinger equation with the
Hamiltonian T+V0 as given by Eqs. �2� and �3� by propaga-
tion in imaginary time using the same finite difference grid
and the evolution operator from Eq. �15�. In this work we
have also performed calculations for the first 9 excited vibra-
tional states.

Although propagation in imaginary time for calculating
excited state energies is commonly used, for instance, in
many-body Monte Carlo calculations �44�, excited state
wave function calculations within the imaginary time propa-
gation approach are not so common. One of the ways of
calculating the excited states is imaginary time propagation
complemented with subsequent orthogonalization with re-
spect to the states that are already calculated. In �45� it was
proposed to propagate and orthogonalize several states si-
multaneously. Here, we suggest a more general point of view
on the imaginary time propagator as a useful spectral trans-
formation and discuss the ways of using this transformation
for calculating the lowest eigenvalues and eigenvectors of a
discretized Hamiltonian. A more complete discussion is in
preparation.

Suppose H is a discretized Hamiltonian, En are its eigen-
values, and �n� are the corresponding eigenvectors. We shall
assume that E1
E2
 . . . 
En. Consider the imaginary time
propagator

U� = e−H�.

Obviously, �U� ,H�=0 and the eigenvectors of U� and H co-
incide. The eigenvalues of the operator U� are �k=e−Ek�. The
imaginary time propagator, therefore, maps the minimal ei-
genvalues of H onto the maximal eigenvalues of the operator
U�. In principle, any method of maximal eigenvalue calcula-
tion can be used. From this point of view, the traditional
propagation in imaginary time corresponds to the simplest
power method �43� with an error estimation for the ground
state wave function at the nth step of the algorithm
O(��2 /�1�n) or O�e−�E2−E1�n��, where � is the time step of the
algorithm and n is the number of propagation steps. If sev-
eral eigenvalues and eigenvectors are required, however, a
more appropriate approach can be based on the Arnoldi al-
gorithm �43�. Besides providing the ability to calculate sev-
eral eigenpairs, it also provides a better convergence rate.

For instance, if the two minimal eigenvalues of Ĥ are close
to each other, i.e., ��1−�2 � � ��2�, the error for the ground
state eigenvector can be estimated as O�e−2n	��1−�2�/�2�
�O�e−2n	�E2−E1�t�, which is substantially better than for the
propagation in imaginary time.

The estimates we have just discussed are based on the
assumption that the evolution operator can be calculated ex-
actly. In practical calculations, however, usually some ap-
proximate evolution operator must be used. In the present
work we, of course, use Eq. �15�.

We show the energies of the molecular bound states cal-
culated in this work in Table I. For reference purposes we
also provide results of precise multichannel calculations of
the HD+ bound state energies from �42�. The difference does
not exceed 0.2%, which can be considered a very good
agreement.
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III. RESULTS

We have studied ionization and dissociation of several
�v=0. . .9� vibrational states of the HD+ molecule in a short
laser pulse. The laser pulse carrier wavelength was chosen to
be �=790 nm, and the pulse envelope has a Gaussian
profile with 7.1 fs intensity FWHM width. The calculations
were performed for the peak intensities of I0
=0.5,0.8,1.0,2.0,4.0,7.0�1014 W/cm2. To keep the dis-
cussion simple, we consider an oriented initial state of the
molecule, with the d ion up and the p ion down. However, as
discussed in Ref. �17�, after an appropriate averaging the
results are also valid for unoriented, aligned molecules. First,
we shall report our total dissociation and ionization prob-
abilities for different initial vibrational states. The rest of the
discussion will be devoted to CEP effects in dissociation of

HD+. For instance, how do the CEP effects vary with the
laser pulse intensity and the initial vibrational state? Can we
identify the conditions favorable for observing CEP effects?
How can CEP effects in dissociation be observed for an in-
coherent sum of initial vibrational states?

A. Initial-state dependence

Both ionization and dissociation demonstrate strong de-
pendence on the laser intensity and the initial state of the
system. As shown in Fig. 2, it is clearly seen that when the
peak intensity of the pulse increases, more tightly bound vi-
brational states start dissociating as expected. For instance,
whereas for the moderately low peak intensity of
1013 W/cm2 the lowest state with appreciable dissociation is
v=7, at 5�1013 W/cm2 states down to v=4 dissociate, and
at 4�1014 W/cm2 there is a considerable dissociation from
all vibrational states. This trend can be easily explained from
the adiabatic Floquet potentials at each intensity in terms of
bond softening and above-threshold dissociation �3�.

For the present wavelength of 790 nm, the bond-softening
crossing in the adiabatic potentials occurs at an energy near
the v=9 energy level; the above threshold dissociation cross-
ing near v=3. As the intensity increases, the gap at each
crossing grows, pushing the corresponding barriers lower un-
covering deeper vibrational states. At intensities below
roughly 1014 W/cm2, bond softening dominates and the dis-
sociation probability decreases monotonically with decreas-
ing v. At higher intensities, though, this monotonic behavior
is lost as above-threshold dissociation—which, again, is
resonant close to v=3—grows. At 4�1014 W/cm2, in par-
ticular, the dissociation probability for v=3 is noticeably
larger than for neighboring states.

In Fig. 2, it is also clear that higher vibrational states
ionize more readily. Ionization is significant, though, only for

TABLE I. Bound state energies for the lowest ten HD+ bound
states used in this work compared to the results of Ref. �42�.

v
Ref.
�42� This work Relative difference

0 −0.59803 −0.59723 0.13%

1 −0.58932 −0.58864 0.11%

2 −0.58104 −0.58003 0.17%

3 −0.57319 −0.57252 0.12%

4 −0.56575 −0.56532 0.08%

5 −0.55871 −0.55823 0.09%

6 −0.55207 −0.55158 0.09%

7 −0.54582 −0.54534 0.09%

8 −0.53996 −0.53937 0.11%

9 −0.53447 −0.53396 0.10%
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FIG. 2. �Color online� Initial
vibrational state dependence of
ionization and dissociation for
several peak laser intensities.
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intensities of 1014 W/cm2 and higher, and all states ionize
with appreciable probability by 7�1014 W/cm2. Ionization
of v=9 has only reached a little over 80% at this intensity,
however, with the remaining probability split between disso-
ciation and survival. These latter probabilities presumably
decrease for longer laser pulses.

B. Intensity dependence of Franck-Condon-averaged
total ionization and dissociation

Dissociation from a single vibrational state, however, is
not a situation currently available experimentally, since such
molecular targets are very difficult to prepare. Instead, the
initial states of the molecular ions experimentally available
depend on the ion source. In this paper we assume that the
HD+ ions are produced with some fast process, such as im-
pact ionization of the neutral molecule. In this case the initial
distribution can be well approximated with a Franck-Condon
�FC� distribution. We also assume that the ion travel times
differ enough to dephase the vibrational states. In this case,
the experimentally observed results will be an incoherent
sum of the results produced by individual initial states. For
this reason we have averaged the dissociation and ionization
probabilities from individual vibrational states over the
Franck-Condon distribution. The FC-weighted total dissocia-
tion and ionization probabilities are shown in Fig. 3.
Dissociation dominates over ionization for all intensities
up to about 5�1014 W/cm2. For intensities below
1�1014 W/cm2, it is the only significant breakup channel.

Franck-Condon averaging, however, is not the only ex-
perimental complication. The distribution of the laser inten-
sity over the focal volume makes an intensity average nec-
essary when the target is larger than the focal spot. The exact
connection between the experimental observable N �counts,
counting rates, etc.� and the calculated probabilities P�I� de-
pend on the geometry of the experiment. For concreteness,
we will assume an experimental geometry appropriate for the
ion-beam experiments of Ben-Itzhak et al. �22�. That is, we
assume a cylindrically symmetric Gaussian intensity profile
for a laser beam that intersects a molecular ion beam at right

angles. The ion beam is large compared to the focal spot size,
but small compared to the Rayleigh length. We must thus
average over a two-dimensional intensity distribution,

N � �
0

I0 P�I�
I

dI .

The proportionality constant in this equation is not important
as the experiments are not absolute.

In Fig. 4 we show N for dissociation and ionization. Since
the maximal field strength is achieved only in a small frac-
tion of the focal volume, signals from the highest intensity
region do not contribute nearly so much as lower intensities
to N. Because of this, the dissociation channel strongly domi-
nates over the ionization channel over the whole range of
intensities after focal volume �or intensity� averaging. The
growth of N for ionization is much faster, however: when
increasing the peak intensity from 5�1013 W/cm2 to 5
�1014 W/cm2, we predict two orders of magnitude growth
in the ionization channel but only one order of magnitude for
dissociation.

C. Carrier-envelope phase effects in channel probabilities

All the aforementioned results were averaged over the
carrier-envelope phase and correspond to experiments where
the CEP is not stabilized and changes randomly from one
pulse to another. Now we will concentrate on discussing the
CEP effects.

To describe a CEP effect we have to specify an observable
that is affected by the CE phase. In atomic photoionization
�15,16�, for instance, CEP effects were observed in the an-
gular distribution of the photoelectron. It has also been sug-
gested that CEP effects can be observed in atomic excitation
probability �21�. Our previous and present predictions are
more like the former—we suggest measuring the angular dis-
tribution of the heavy fragments in photodissociation. Al-
though there has been a measurement along these lines �19�,
that experiment used neutral D2 as a target. This difference
has two main consequences: �1� the initial distribution of D2

+

vibrational state is coherent and �2� the rescattering of the
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averaged dissociation and ionization probabilities.

0.1 1

I
0

(10
14

W/cm
2

)

0.001

0.01

0.1

N
(a

rb
itr

ar
y

un
its

)

Dissociation
Ionization

FIG. 4. �Color online� Intensity dependence of focal volume and
Franck-Condon-averaged dissociation and ionization.

V. ROUDNEV AND B. D. ESRY PHYSICAL REVIEW A 76, 023403 �2007�

023403-6



ionized electron plays a critical role. Neither of these applies
to the present case, however. Moreover, given the strong de-
pendence of ionization on CEP �15,16� and the importance of
rescattering on the experiment of Kling et al. �19�, we can
expect that the physical mechanisms leading to CEP effects
are different in the two cases.

For our model with aligned and oriented nuclei that are
not allowed to rotate the angular distribution corresponds to
a charged particle leaving in the direction of positive or
negative z. In our model—with only nuclear vibration—we
also assume that the nuclei cannot switch places due to their
Coulomb repulsion, thus a charged particle leaving along z
�0 is associated with H+d fragmentation and along z
0 to
D+ p. We have thus focused on comparing the probabilities
H+d and D+ p �17�. With this picture in mind, we expect
that there will be a similar “up”-“down” asymmetry for H2

+

and D2
+ as well. In fact, we showed that H2

+ does indeed
behave similarly in �17�, although the magnitude of the effect
was smaller than for HD+. Our present calculations confirm
our earlier prediction that the probability of dissociation
from the ground state varies significantly with the CEP for
the intensities about 7�1014 W/cm2 �see Fig. 5�. For ex-
ample, the maximal and minimal values of the dissociation
probabilities in each of the channels can differ by as much as
a factor of 2 for v=0 and three for v=1. Dissociation from
other vibrational states up to v=5 also demonstrate a clear
CEP dependence. Each vibrational state, however, demon-
strates different CEP dependence. Since measurement of the
dissociation from a single vibrational state is difficult to re-
alize experimentally, a question naturally arises: can we ob-
serve a CEP effect in dissociation after Franck-Condon av-
eraging?

In Fig. 6 we show the Franck-Condon-averaged dissocia-
tion probability as a function of CEP for several intensities.
Even though there was strong CEP dependence in dissocia-
tion from individual vibrational states, FC averaging signifi-
cantly weakens the effect. In particular, for peak intensities
of 2�1014 W/cm2 and below, our calculations show no CEP
effect since the amplitude of the variation of the channel

probabilities is comparable to our numerical error. After fo-
cal volume averaging �Fig. 7�, the effect becomes compa-
rable to the numerical error of our calculations for all inten-
sities, thus, even if there remains a real effect beyond our
numerics, measuring put quite stringent requirements on the
counting statistics.

D. KER of the dissociated fragments

Another observable that can be directly measured in ex-
periment, besides the total channel probabilities, is the KER
distribution of the fragments in each channel. Figure 8 shows
the CEP-averaged KER distributions for a number of laser
peak intensities. We note that from this point on, all results
include Franck-Condon averaging. The KER distributions
are shown for the both H+d and D+ p channels. The ob-
served difference in the KER is comparable to the numerical
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error of our calculations showing that there is no appreciable
inherent asymmetry for this system. Any such asymmetry we
find can thus be ascribed to CEP effects. As the peak inten-
sity grows, the KER distribution spreads toward higher en-
ergies. This point is especially clear for intensities above 2
�1014 W/cm2, where the tail of the distribution extends up
to 5 eV at 7�1014 W/cm2. For lower intensities the tail
reaches out only to 1.5–2 eV. Moreover, these low-intensity
KER distributions peak at around 0.8 eV where we expect
bond-softening contributions to dominate at 790 nm. This
behavior is consistent with experiment �22�, as is the
broadening of the distributions, first to low KER, then
to high KER, with increasing intensity. In particular,
from the discussion of Fig. 8 we expect above-threshold
dissociation to start contributing significantly at around
4�1014 W/cm2—precisely where the KER starts broaden-
ing to higher values.

The KER, however, can be a much more sensitive tool for
investigating CEP effects than the total channel probabilities.
The channel probabilities include contributions from frag-
ments of very different kinetic energies. The KER is a dy-
namical quantity and can thus be expected to be more sensi-
tive to delicate features of the dynamics. This expectation
was confirmed by our earlier results �18�, and here we
present a more detailed study of the KER CEP sensitivity.
We showed in Ref. �18�, for instance, that the ratio between
the maximum and minimum of the KER density function can
be over 100 for the ground vibrational state, which would
definitely allow a clear observation of the effect. Since this
experiment is not likely to be done soon, though, we must
include Franck-Condon averaging and the focal volume av-
eraging, both of which tend to make the CEP contrast
smaller. Here, we address the question how these complica-
tions affect the contrast in the KER distributions.

First, we consider FC averaging. The fragment KER for
the D+ p channel is shown in Fig. 9. The KER for the H
+d channel looks very similar but with a translation in CEP
by �, although the accuracy of our calculations does not
make it possible for us to comment any possible effects of

small mass asymmetry of the two channels. We show the
KER distributions with a resolution of 0.1 eV, which is not
difficult to achieve experimentally �23�. One interesting
point about the KER CEP dependence is that unlike the
channel probabilities which showed significant CEP depen-
dence only for high intensities, we can observe some CE
phase dependence in the KER even at the moderate intensity
of I0=5�1013 W/cm2 �Fig. 9�.

E. Carrier-envelope phase sensitivity of the KER

In order to specify conditions of the CEP observability
more accurately, it is useful to introduce a measure of the
effect. We quantify the sensitivity of a quantity q�	� to the
CE phase 	 through qmax=max	q�	� and qmin=min	q�	�,
the maximum and minimum of q over the whole range of 	.
One measure of the strength of CEP effects is thus

Sq =
qmax − qmin

qmax
. �16�

This definition assumes q to have non-negative values and
could have just easily been normalized by the average value
instead of the maximum. Clearly, the larger the CEP effects
in q, the larger Sq will be.

In Fig. 10 we show the strength of the CEP effect �16� for
the KER of dissociated fragments with one slight modifica-
tion. Because our calculations have finite accuracy, we have
introduced a small correction to Sq for Fig. 10:

Sq =
qmax − qmin

qmax + �q
.

We take �q to be a measure of the smallest value of the
probability density that we are confident in. The goal of this
modification is to eliminate from the plot large values of Sq
that are most likely the result of numerical error.

We see from Fig. 10 that even at the relatively low inten-
sity I0=5�1013 W/cm2, we can expect substantial variation
of the number of fragments in the energy ranges 1.1±0.1 eV
and 1.4±0.1 eV. When the peak intensity grows even
slightly to I0=8�1013 W/cm2, the CEP effect becomes very
visible—over 60% variation—at fragment energies close to
1 eV and 1.5 eV. As the intensity increases, strong CEP ef-
fect extends to higher energies. At I0=2�1014 W/cm2, the
effect strength drops below 50%. At this intensity, ionization
starts playing an important role in the dynamics of the sys-
tem �see Fig. 5�, especially for the higher vibrational states
that contributed to dissociation at lower intensities. With fur-
ther peak intensity growth, we see a clear effect again as
lower vibrational states start contributing to dissociation.
Comparing with the CEP-averaged KER distributions in Fig.
8, we see that the strongest CEP effects come at higher
KERs, above the peak in the CEP-averaged distributions.

Now we are ready to address the question of volume av-
eraging. The gray lines in Fig. 10 show the focal averaged
CEP effect strengths. Their behavior is much the same as for
the single peak intensities discussed above. The complete
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volume-averaged KER distributions of the fragments in the
D+ p channel are shown in Fig. 11. We see that the strong
contribution of low intensities changes the picture dramati-
cally. Even though the KER distribution varies with the CEP
within 20 to 30 % �Fig. 10�, this variation is only about half
that expected for a single intensity.

If an experiment is sensitive enough to measure the tail of
the KER distribution accurately, however, a clear effect can
be seen again. Lower intensities contribute little to energies
above 2 eV, and this is exactly the range where Fig. 10 sug-
gests the strongest CEP effects lie. To make the CEP effects
in the tail of the KER distribution clear it is useful to renor-
malize the signal by its CEP-averaged value. The results are
shown in Fig. 12. We have hidden regions where our numeri-
cal error exceeds the predicted signal. After the renormaliza-
tion, the CEP effect is again visible, and the effect can be
clearly seen for all the sampled peak intensities. We note that
the diagonal stripes in Fig. 12 appear only after Franck-
Condon averaging. Individual vibrational states do have
structure, but not stripes. These stripes are thus not directly
the result of interference since Franck-Condon averaging is
incoherent.
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shown. Franck-Condon averaging is included.
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IV. SUMMARY AND DISCUSSION

Now we can answer the question: where should we look if
we want to observe CEP effects in HD+ dissociation and how
big is the effect? We shall also mention gross features of the
system that should accompany observable CEP effects.

If we want to see an effect in the angular distribution of
the outgoing fragments without measuring their KER, we
should use pulses with peak intensities above I0=2
�1014 W/cm2. A threefold variation of the signal can be
expected for dissociation from v=0 or v=1. Franck-Condon
averaging, though, reduces the variation to less than roughly
20%, and the effect does not survive focal volume averaging.
To have a chance of seeing an effect, then, focal volume
averaging must be reduced or eliminated experimentally us-
ing either an effective one-dimensional �1D� geometry �24�
or intensity-differential measurements �25�. If the intensity is
in the appropriate range, the total dissociation probability is
expected to be comparable with the probability of ionization,
and should not exceed it by more than 60%.

In any case, measuring the KER distribution makes ob-
serving CEP effects much more likely, since the KER distri-

bution is much more sensitive to the CEP than the angular
distributions alone. If the experimental conditions can also
guarantee contribution of only a small range of intensities to
the signal, the effect can be seen for much lower intensities.
For instance, we can expect a clear effect to be seen even
below I0=1014 W/cm2, when no substantial ionization is
predicted. For all intensities above I0=1014 W/cm2, we ex-
pect considerable ionization, which is expected to accom-
pany strong CEP effects in the KER distribution. These ef-
fects are especially clear on the high-energy tail of the KER
distribution, at energies above 1 eV. The regions of the best
contrast are intensity dependent, and the contrast itself is not
a monotonic function of intensity. For lower intensities from
5�1013 to 1014 W/cm2, the best contrast is expected for the
KER close to 1 eV and 1.5 eV. For higher intensities the
regions of the best contrast vary. For instance, we expect the
CEP effect to be well pronounced in the KER range from 2
to 2.5 eV.

If the experimental geometry and efficiency, however, do
not admit sharp and reliable intensity separation, the CEP
effect in the KER can still be seen in focus volume averaged
results. In this case the best contrast is expected at the very
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FIG. 11. �Color online� Focal volume aver-
aged KER-CEP dependence of the D+ p channel
for different peak laser intensities: �a� I0=5
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end of the KER distribution tail. As the KER distribution
extends toward higher fragment energies when the intensity
increases, it automatically guarantees that the higher KER
tail of the distribution is formed by a small range of intensi-
ties only. This helps to make the CEP effect well visible even
after volume averaging.
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