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Improved calculations of the lowest vibrational transitions in HeH*
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More accurate variational calculations of the lowest three pure vibrational states (v=0,1,2) of the ‘HeH*
molecular ion have been carried out without assuming the Born-Oppenheimer approximation. In the calcula-
tions we included the complete set of a? relativistic corrections, i.e., mass-velocity, Darwin, spin-spin, and

orbit-orbit.

This allowed us to improve the agreement between the theory and the experiment

for the vibrational frequencies of the 1 —0 and 2—1 transitions as compared to our previous calculations

[Stanke et al., Phys. Rev. Lett. 96, 233002 (2006)].
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The helium hydride molecular ion, being formed out of
two the most abundant elements in the universe, is an inter-
esting system to study not only due to its simplicity but also
because of its presence in interstellar molecular clouds. It has
only two electrons like the hydrogen molecule, but it lacks
inversion symmetry, making it easier to study by high-
resolution ir spectroscopy. Due to the nonzero permanent
dipole moment in HeH*, it is possible to acquire very precise
vibration-rotation and pure rotational transition frequencies
for this system in the gas phase. Like the H, molecule, HeH*
has long been a subject of experimental and theoretical stud-
ies (see, for example [1,2], and references therein). However,
the vast majority of the theoretical studies of HeH* have so
far been done within the Born-Oppenheimer framework and
have not accounted for relativistic and/or QED corrections.

In our recent work [2] we reported very accurate, fully
nonadiabatic, nonrelativistic calculations of the pure vibra-
tional spectrum of HeH*. The transition frequency reported
there systematically overestimated the transition energies de-
rived from the experiment. In an attempt to eliminate these
discrepancies at least partially, in the following work [3] we
carried out even more accurate calculations of the entire
rovibrational spectrum of HeH* where we included the two
largest relativistic corrections, i.e., the mass-velocity correc-
tion and the Darwin correction. Including these corrections
noticeably improved the agreement between the theory and
the experiment. In the present work we make an attempt to
further improve the theory-experiment agreement by includ-
ing in the calculated energies all remaining leading-order
relativistic corrections in the calculations of the three lowest
vibrational levels. The reason we focus only on the three
lowest energy levels is because the transition frequencies be-
tween these levels have been experimentally determined with
a very high precision. As the vibrational quantum number v
increases, the experimental results for the transition frequen-
cies become progressively less accurate, and this makes a
meaningful comparison with the results of very accurate the-
oretical calculations almost impossible. In addition, the cal-
culations of highly excited vibrational states also become
somewhat less accurate than the calculations of the lower-
lying states, because the nodal structure of their vibrational
wave functions becomes more complicated. In order to
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achieve the same accuracy in the calculations of the highly
excited states as for the ground state, one needs to use sig-
nificantly more basis functions.

It should be mentioned that, although in this work we use
some terms taken from the Born-Oppenheimer (BO) ap-
proximation (such as the vibrational quantum number v), we
do not assume the separability of the motions of the heavy
particles (nuclei) and the light particles (electrons). The use
of the BO terminology is done solely for the purpose of
better relating our results to the experiment and to avoid
confusion.

In the non-BO calculations HeH™ is a four-particle prob-
lem. In general, let us denote their masses as M; and their
charges as Q;. We will assume that particle 1 is a “He nucleus
(« particle), particle 2 is a 'He nucleus (proton), and par-
ticles 3 and 4 are electrons. If the positions of the particles in
the laboratory Cartesian coordinate system are denoted as R;,
the HeH* nonrelativistic Hamiltonian in atomic units is

4

1
Hlab —
nonrel % 2 M

EE—Z (1)

i=1 j>i Rl]

Since the relativistic corrections are small in HeH?, it is
possible to include them as perturbations. In this case, the
total Hamiltonian of the system is a sum of the nonrelativis-
tic Hamiltonian and a small relativistic correction:

Hldb HLonrel +a Hldb (2)

tot rel *

Here « is the fine structure constant. Hrel contains several
terms, i.e., the so-called mass-velocity, Darwin, spin-spin,
and orbit-orbit Hamiltonians. The spin-orbit interaction is not
considered in this work since we only study states with a
zero angular momentum, for which this interaction vanishes.
The explicit form of the relativistic Hamiltonians in the labo-
ratory coordinate frame is the following:

HyR = —2 (3)
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In the above expressions we do not include the Darwin cor-
rections for the nuclei since they are negligibly small. Also,
we assume that the two electrons are in a singlet spin state.

In order to develop the framework for the non-BO calcu-
lation of internal stationary bound states of HeH*, we first
separate out the motion of the center of mass (we denote the
center-of-mass coordinates in the laboratory coordinate sys-
tem as ry). There are a number of ways the internal coordi-
nates can be chosen. In our approach, as described in [4,5],
we use the following internal coordinates:

r|=—R1+R2,
r2=—R1+R3,
I‘3=—R1+R4. (7)

In the new coordinates, the nonrelativistic Hamiltonian
has the following form:

3
EE VV )+EM
=1 Ti

11]#1

3
1
Hg:)tnrel (E _V2
i=1 Mi

+ > 4 (8)

i<j Tij

where r,-_]: ils Mizmomi/(m0+mi), and qi:Qi+1’ respec-
tively. We also used the notation m;=M,, ;. The quantities u;
and ¢; play the role of the masses and charges of the
pseudoparticles moving in the field of the reference particle,
which in our case is particle 1.

The transformation of the relativistic Hamiltonians
(3)—(6) to the internal frame was described in [6,7]. The cor-
responding expressions are as follows:

3 4 3
.y 1
Hyy=-3 —3(Evri> +2—v4 : ©)
mo \ i=1

zlm

EE

lZ/#lm

I:Ii"t:— (2 510%5( ) 5(1‘ ), (10)
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It should be noted that, upon the transformation to the
internal frame, the mass-velocity Hamiltonian, apart from a
term only dependent on the center-of-mass coordinate r,
also includes a term that couples r( with r;, r,, and r;. But,
since we assume that the system as a whole is not moving,
this coupling term can be set to zero.

In the first stage of the calculations we solve the nonrel-
ativistic problem with Hamiltonian (8). In this, as in our
previous studies [2,3], we use the variational method and we
expand the wave function in terms of explicitly correlated
Gaussian basis functions that contain premultipliers in the
form of even powers of the internuclear distance:

¢ =ri*exp[-r'(A; ® L)r]. (13)

r in the case of HeH* is a nine-component column vector,
r=|r,|, (14)

Ay is a real, symmetric, positive definite 3 X 3 matrix of ex-
ponential parameters that are unique for each basis function,
and I3 is the 3 X3 identity matrix. The prime and ® signs
denote the matrix or vector transposition and the Kronecker
product, respectively.

From the computational point of view, it is convenient to
represent the matrix A; in the Cholesky-factored form, A;
=L,L,. With such a representation, there are no constraints
on the values of the elements of L, while the elements of the
original A, matrix must obey certain constraints to maintain
the positive definiteness of the matrix. The range of the al-
lowed powers p; in our calculations on HeH* was 0-250. As
our previous works have demonstrated, the basis functions
(13) are capable of representing wave functions of diatomic
systems with o electrons very accurately.

To account for the permutational symmetry of the par-
ticles in HeH*, one needs to apply certain projection opera-
tors to the basis functions (13). In the case when two elec-
trons are in a singlet state (the ground electronic state of

HeH* is X 'S*) this operator is 1+Ps,, where Py, is the
permutation of the spatial coordinates of particles 3 and 4.

The action of 1334 on the basis functions is equivalent to a
certain transformation of the matrix of the exponential pa-
rameters, A, and can be easily implemented in a computer
code.

The masses of the nuclei that we used in the
calculations were taken from the CODATA 2002 set of rec-
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TABLE 1. Total nonrelativistic energies, mass-velocity corrections (MV), Darwin corrections (D), and
spin-spin corrections (SS), computed with a combined basis of 18 000 functions (13). All values are in a.u.

v Enonrel a2<I:IMV> a2<I:ID> a2<I:ISS>

0 —2.9710784657 —7.128024 X 10+ 5.850925 X 104 3.36711 X 1073
1 —2.9578148926 —7.111301 X 10~ 5.833372% 10~ 3.34661 X 1073
2 —2.9459492590 —7.100812 % 10~* 5.821123x 1074 3.33563 %1075

ommended values. The masses are as
=7294.299 5363 au.  (‘He
=1836.152 672 61 a.u. (proton).
In the present calculations we have generated a variational
expansion consisting of 6000 basis functions (13) calculated
independently for each of the considered vibrational states of
HeH*. The procedure used to select and optimize the expo-
nential parameters of basis functions was similar to that used
in previous works [2,3]. As a starting point for the calcula-
tions we took the 5400-term basis sets generated in [3]. Then
we gradually increased the basis size for each state to
6000. It should be emphasized, however, that the gain
achieved in the accuracy of the calculations was mainly
due to more thorough optimization of the nonlinear
exponential parameters of all basis functions and less
due to the inclusion of additional functions in the basis set.
With 6000 basis functions (13) we obtained the energy
values of -2.97107846464, -2.95781488827, and
—2.945 949 256 20 a.u. for v=0, 1, and 2 vibrational states,
respectively. As was mentioned, each state was calculated
independently, meaning that the optimization of the exponen-
tial parameters was done with respect to that particular state.
In general, any optimization of the exponential parameters
is usually a very computationally costly procedure. In 6000
basis functions (13) for HeH* there are 6000 X 6=36 000
exponential parameters. A “single-point” energy calculation
requires a calculation of millions of matrix elements. In this
respect, the use of the analytic gradient [4,5] is very helpful
and allows a significant reduction in the computational cost
of the variational minimization. After the number of basis
functions reached 6000 for each state, we combined the three
basis sets we obtained for the v=0, 1, and 2 states and
formed a single basis set with 18 000 functions. With this
basis set we recalculated all three states. We estimate that the
combined basis set is equivalent to a fully optimized basis
with approximately 6500-7000 basis functions for each state.
The total nonrelativistic energies computed with the com-
bined basis of 18 000 functions are shown in Table I. These
energies are noticeably lower than those obtained in our pre-
vious work [3], especially for the v=2 state. The ground-
state nonrelativistic energy of —2.971 078 465 7 a.u. shown
in Table I can be compared with the result of the recent
highly accurate nonadiabatic calculation by Zhou et al. [8],
where Hylleraas-type basis functions were used for expand-
ing the wave function. The value reported in [8] of
—-2.971078 469 6 a.u. is only by 4X 107 a.u. lower than
ours.
Next, we used the nonrelativistic wave functions to com-
pute expectation values of the mass-velocity, Darwin, and
spin-spin interaction Hamiltonians given by expressions (9),

follows:  my,
isotope) and my

(10), and (12), respectively. The results are presented in
Table I along with the nonrelativistic energies. To give a
better idea how much these corrections contribute to the total
relativistic energies (which were used later to determine the
transition frequencies), we multiplied all of them by a?. This
also made it more convenient to compare the present results
with those reported before [3].

The derivation of the ﬁMV, FAID, and IEISS matrix elements
with the basis functions (13) was presented before [6]. The
evaluation of the matrix elements for the orbit-orbit interac-
tion Hamiltonian (11) with basis functions (13) is signifi-
cantly more involved than the evaluation of the other matrix
elements. At the same time, the orbit-orbit contribution is the
smallest of the four a? relativistic corrections. Thus, the re-
quired accuracy for determining this correction is not as high
as for the others. For the purpose of this work it was suffi-

cient to evaluate (I:IOO) with three or four converged signifi-
cant digits. For this reason we carried out the calculations of

(I:IOO) using wave functions obtained with a different basis
set, which consisted of the following explicitly correlated
complex Gaussian basis functions:

de=exp[-r1'(A; ® L)r - ir' (B, ® I;)r]
=exp[-1'(C, ® Lr], (15)

where C; is a complex symmetric matrix; A, and B, are the
real and the imaginary parts of C;, respectively. Such basis
functions were considered by two of the present authors in
[5]. The complex Gaussians are more flexible then the simple
Gaussians (i.e., the Gaussians without premultipliers) with
real exponential parameters and allow one not only to per-
form non-BO calculations on atomic systems, but also to
calculate some molecular systems. Combined in pairs (or in
larger groups), the complex Gaussians are capable of repre-
senting molecular non-BO wave functions whose “vibra-
tional” components have maxima shifted away from the ori-
gin of the coordinate system while almost vanishing at the
origin. However, in order to take full advantage of these
features of the complex Gaussians one needs to perform a
very costly optimization of their exponential parameters and,
even then, the energy is usually not as good as what one gets
with the same number of diatomic Gaussians (13). In fact, it
is often very difficult to achieve in a calculation with com-
plex Gaussians a relative accuracy that exceeds 107°—-107°,
Nonetheless, such an accuracy is satisfactory, if the only pur-
pose of the calculation is to generate a wave function for

computing the (I:IOO) correction. We use complex Gaussians

in calculating <I:IOO) in this work because the matrix ele-
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TABLE II. Total nonrelativistic energies and orbit-orbit corrections computed with basis functions (15).

All values are in a.u.

Basis size Eponei(©=0) Enonrei0=1) Eponai(v=2) aXHoo)v=0) aXHoo)v=1) a*Hoo)(v=2)
100 —2.970261 -2.955913 -2.942592 -7.6328 X107 —7.5383 X 107° —7.4187 X 107°
200 -2.970916 -2.957464 —2.945324 -7.6294X107° —7.5361 X 107° —7.4478 X 107°
400 -2.971037 -2.957748 -2.945831 -7.6198X107% —7.5190X 10™® —7.4449x 10~°
1000 -2.971058 -2.957793 -2.945924 -7.6193X107° —7.5163X10°° -7.4335%x107°
3000, combined -2.971071 -2.957804 -2.945931 -7.6185X107® —-7.5145X 107 -7.4342X107°

ments of the orbit-orbit Hamiltonian (11) with those func-
tions are much simpler to evaluate than with the diatomic
Gaussians (13) despite the fact that the exponential param-
eters are complex numbers in (15).

Using an increasingly larger number of complex Gauss-
ians, we generated several non-BO wave functions for HeH"
corresponding to the v=0, 1, and 2 states. The convergence
of the nonrelativistic energies and of the expectation values
of the orbit-orbit Hamiltonian obtained in the calculations is
shown in Table II. The calculations were done independently
for each vibrational state. The largest number of complex
Gaussians used for each state was 1000. In the end we again
combined the three basis sets to form a 3000-term set and

with that set we recalculated the energy and (Hoe) for each
state. This provided an additional improvement to the results.
The comparison of the nonrelativistic energies in Table II
with more accurate values obtained with the diatomic Gaus-
sians and presented in Table I shows the accuracy level of the
calculations with the complex Gaussians. The complex
Gaussian energies appear to be converged to five or six sig-
nificant figures. The convergence of the orbit-orbit correction
is somewhat worse, but we believe that four significant fig-
ures are accurate.

Now let us turn to the main point of this work, the calcu-
lation of the transition frequencies. In Table III we present a
comparison of the theoretical 1 —0 and 2— 1 transition fre-
quencies with the values derived from the experiment. In the
table we also included the nonrelativistic frequencies ob-
tained with the wave functions generated in this work, the
frequencies that include only the mass-velocity and Darwin

TABLE III. v’ —v vibrational frequencies computed without
inclusion of relativistic corrections, AE,,..;, computed with inclu-
sion of mass-velocity and Darwin corrections only, AE(MV,D),
computed with inclusion of all relativistic corrections,
AE(MV,D,SS,00), in comparison with the frequencies extracted
from experimental data by two different methods of extrapolation,

AE{, and Angpt. All values are in cm™.

1—0 2—1
AE, e, this work 2911.0178  2604.2056
AEMV,D) [3] 2911.0007 2604.1676
AEMV,D,SS,00), this work 2910.9774 2604.1604
AES, 3] 29109590  2604.1472
AEL, 3] 2910.9572(7)  2604.1482(12)

corrections (these frequencies were taken from our previous
work [3]), and the frequencies that include all four o rela-
tivistic corrections. For the experimental results we use the
values obtained from the analytical fits generated based on
the available microwave and infrared spectra with two dif-
ferent extrapolation methods [3]. As one can see, for both
transitions, the accounting for the o relativistic corrections
brings the calculated transition frequencies very close to the
experimental values, although some discrepancy of less than
0.02 cm™! still remains. This discrepancy should probably be
attributed to the radiative corrections (of the order of o and
higher) that were not computed in this work.

Upon analyzing the relativistic contributions one can see
that, for the first transition frequency (1 —0), the inclusion
of the spin-spin and orbit-orbit corrections has an even larger
effect on the final result than the inclusion of the mass-
velocity and Darwin corrections, even though in absolute
terms the latter are larger by more than one order of magni-
tude. This situation is actually not totally surprising. As one
can see from Tables I and II, the relativistic corrections have
different signs and partially cancel each other. In particular,
this cancellation occurs for the mass-velocity and Darwin
corrections. Moreover, the corrections (as well as the sums of
all the relativistic corrections) for neighboring vibrational
states do not differ significantly. This effectively causes an
additional cancellation. For the second transition, 2— 1, the
inclusion of the spin-spin and orbit-orbit corrections has a
somewhat less significant effect than for the first transition,
1 —0. Nonetheless, even for this transition it noticeably im-
proves the agreement between the theoretical and experimen-
tal results.

This work has been supported by the National Science
Foundation. We acknowledge the use of the SGI Altix 4700
supercomputer at the University of Arizona Center of Com-
puting and Information Technology.

APPENDIX

In this appendix we consider the matrix elements of the
orbit-orbit Hamiltonian (5) with explicitly correlated com-
plex Gaussians (15). Everywhere below we will be using
notations and conventions adopted from [5]. It is essential
that the reader familiarizes himself/herself with that work
prior to reading this appendix.
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We will assume that the number of particles is N and after
separating out the motion of the center of mass the number
of degrees of freedom is 3n, where n=N-1. If X is an
nXn matrix then the expression r’'Xr should be read as
r’'(X® I)r. The ket in matrix elements is usually affected by
a permutational symmetry transformation. Following [5], we
will denote this by the tilde symbol:

|€7’l> =exp(- 1"511') = exp[— r,(gl + iE,)r]. (A1)

Also, for convenience we will define:

V.=V,
Au=A+A, Ay=A+A;,
Bkl=_Bk+Bl’ Ekl=_Bk+El’

5kl = CZ + 61 :gk[ + igkl'

The asterisk in the last expression stands for complex
conjugation. Since the matrix Cy is symmetric, its complex
conjugate is equivalent to the Hermitian conjugate, CZ:C,:
To keep expressions in matrix form whenever possible, we
will be using the following 3n-component vectors:

r Vi
v

r=| 2] ve=| (A2)
r, v,

The expression for the overlap of two complex Gaussians
is given by [5]

n/2

en &)= (A3)

|5kl|3/2 ’

where the vertical bars denote the determinant of a matrix.
The Coulomb integral has the following forms [5]:

<¢k l $1> =<¢k|$z>ir ~—1 s (A4)
r; \rﬂ'tr(qlljll) 172
1|~ -~ 2 1
<¢k - ¢1> = <¢k|¢l>f_— ~ : (AS)
Tij VT tr(Cp ;)2

In the formulas above, ti[- -] stands for the trace and Cy;' is
the inverse matrix. The matrix J; is defined as follows:

ifi=j,

Eii
Jlj/: P . (A6)
Eii+E’./:l'_El'j_Eii if i 75‘],

where E;; is a matrix with 1 in the i,jth position and 0’s
elsewhere.
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Let us first find two auxiliary integrals that will be needed
further. If X is a symmetrix matrix, then
—(r'Xr)

(o[ o)
Tij
J 1 ~
= (?_<¢k — exp[— ar'Xr] ¢’1>
o T
P 9 7 3n=112

i
da |6kl + aX|3/2tr[(6k1 + Ct’X)_l.,ij]llz

1

a=0

a=0
(A7)

which after differentiation gives

_ (3 -,
o " b )=\ 3 o Etr(Ck,X)
ij

1
—(r'Xr)
1tr(C XC\J,)) )

1
ij r
2 u(Cyldy)

(A8)

Above we used the fact that the derivative of the determinant
is given by

(A9)

x| 09X
2 xlu x' 2 ).
da Ja

In the case when, instead of r;; in (A8), we have r;, J;; needs
be replaced by J;;.

In a similar manner one obtains another integral (matrix Y
is assumed to be symmetric, as well as X):

(2o

L(r’Xr)(r’Yr)
ij

11-~\|9 ~ _ s
B <¢k ri: ¢l> |:Ztr(Ckll Y)tr(CkllX) + Etr(ckll YCkllX)
i
3 N
_ m Ztr(Ck', )t (Cy XCpi J;))
ki Vij

3 - - 1 - - -
+ Ztr(c;,‘x)tr(c;} YCiJ;) + Etr(C;ll YCi XCQlJ)
1 - -
+ Etr(C;,lXC;,l YCy} J,,-))

3~ = -~ =
+ Wztr(ck,‘ YCkllJ,-j)tr(CkllXCkllJ,-j)] . (A10)
The fact that X and Y are said to be symmetric does not
narrow the generality. Each of these matrices represents
some quadratic form and can always be made symmetric
without changing the quadratic form itself. Thus, even if, for
example, X does not happen to be symmetric we will assume
that it is symmetrized by X=(X+X")/2 prior to evaluating
the integrals.
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In the matrix elements that we need to evaluate,

A j 1 ~
<¢k|Hoo|¢z>=— 22 T [< _V;Vj ¢z>
l 1 j=1 MoMm; j
+<¢k Erj,'(r;vi)vj <7’z>}
n 1 _
EE —L{< _V;Vj ¢1>
2501 i mim; ij

{lgrmafsl] o

we can rewrite the operators in the matrix form:

3 ”(r V)V,
Tij

—VV——VEV

r,J }"U

(A12)

r/Ejin)Vr’

1 ! ! !
Sr;(r/V)V;=-V;, U—(r E;V )V, + Vr i
Tj

j
(A13)

—rU(rUV )V;=-V.E; —[r (E;

r=jj
l]

Eii)Vr]Vr

+ _V’E [l"(Eﬁ—

r=Jjj
l]

Eii)vr]vr-

o)-(sa?

_4<¢k
o)-(sa2
fa]?

used the fact that V ¢ =-2C,r¢p and

Vr$z=—261r$1- By applying the following general formulas
(where X and Y are assumed to be arbitrary matrices) to the
right-hand sides of (A18) and (A19),

(A14)

E;(r'E

(o

—rU(rUV )V

lj

1 1 !
E"j(r.fvi)vj
J

-r CkE”(r
Tj

(ol

—r C,t
Tij

Here we

(r'XV,)§=-2(t'XCr) . (A20)

(r'Xv)Yr=YX'r, (A21)

_Ejj[r/( Eu)vr]

[I' (E Eu)vr]Clr
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With the following relation that holds true for an arbitrary
matrix X:

(ViXV,) b =-6t(XC)d+4(x'CX'Cr)dy, (A15)

we can obtain the first and the third matrix elements of the
- - 1
Vil é ) == 6t(E;C)\ é|—
,

right-hand side in (A11):
g
J
1
+ 4< ¢k -
Tj

1
n
P
‘(rlélEjiélr) <7’z>’
- ~ 1
¢z> =- 6tr(EijCl)< br -

J
(A16)
|3)
i
< 1
+4 ¢k
r

_(l‘,ézEﬁE‘ll’)
ij

1 ’

ij

(o

).

(A17)

The last terms in the two expressions above can be evaluated
using formula (AS).

The second and the fourth matrix elements of the right-
hand side in (A11) have the following forms:

1_, o ~
r¢l> <¢k I" VrEu Ejin) Vr¢l>
V)Cir > 2< V;Ej/(r,Ejin)alr <Zz>, (A18)
1 ~
r¢l> <¢k _VrEjj[r’(Eji - Eii)Vr] Vrqbl>
> 2< r jj[r ( Eii)Vr]élr $l>
(A19)
I
(r'YV)x'Xr)=r'Y(X+X')r, (A22)
and using the commutation relation
V. Xr=3ur(X) +r'X'V,, (A23)

and after collecting similar terms we get
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1 ! !
<¢k ;rj (l'jVi)Vj

J
(o

where matrices U and W are given by

~ ~ 1
¢l> =- 6tr(EjiClEjj)< o -

J

1 i !
r_grij(rijvi)vj

ij

—8<¢k

U: CklEj]

W= CyE;;C/E; - Ey) + (E;; - Ey)CE;;C+ CLEj{(Ej; — E;)Cy+ 3te(CE;)(Ej; — E;))C.

The two last terms in expression (A24), as well as in
expression (A25), can be evaluated using formulas (A8) and
(A10).

It should be mentioned that the presented expressions for

' <7)z> +4<¢k

<7~51> =— o6t (E; - Eii)élEjj]< i
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)

1 ~ 1 ~ ~ ~
r_(l"Ul') ¢1> - 8<¢k r_(r,CkIEijlr)(r/EjiCIr)
J J

(A24)
1] (PN
—| ) +4\ d| —(r'Wr)| &
rij r,»j
1 ~ ~ ~ ~
:(r,CkIEijlr)[r,(Eji_Eii)Clr] ¢z>, (A25)
ij
CiE;;+ E;;CE;;C/+ CE;;E;C,+ 3tr(CE;)E;iC,, (A26)
(A27)

the matrix elements of the orbit-orbit Hamiltonian can be
greatly simplified when implemented in a computer code,
because such matrices as Ej;, E;;, and J; are sparse and con-
tain only one nonzero element.
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