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We present a detailed experimental and theoretical study of the effect of nuclear spin on the performance of
optical lattice clocks. With a state-mixing theory including spin-orbit and hyperfine interactions, we describe
the origin of the 1S0-3P0 clock transition and the differential g factor between the two clock states for
alkaline-earth-metal�-like� atoms, using 87Sr as an example. Clock frequency shifts due to magnetic and optical
fields are discussed with an emphasis on those relating to nuclear structure. An experimental determination of
the differential g factor in 87Sr is performed and is in good agreement with theory. The magnitude of the tensor
light shift on the clock states is also explored experimentally. State specific measurements with controlled
nuclear spin polarization are discussed as a method to reduce the nuclear spin-related systematic effects to
below 10−17 in lattice clocks.
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Optical clocks �1� based on alkaline-earth-metal �atoms�
confined in an optical lattice �2� are being intensively ex-
plored as a route to improve state of the art clock accuracy
and precision. Pursuit of such clocks is motivated mainly by
the benefits of Lamb-Dicke confinement which allows high
spectral resolution �3,4� and high accuracy �5–8� with the
suppression of motional effects, while the impact of the lat-
tice potential can be eliminated using the Stark cancellation
technique �9–12�. Lattice clocks have the potential to reach
the impressive accuracy level of trapped ion systems, such as
the Hg+ optical clock �13�, while having an improved stabil-
ity due to the large number of atoms involved in the mea-
surement. Most of the work performed thus far for lattice
clocks has been focused on the nuclear-spin induced 1S0-3P0
transition in 87Sr. Recent experimental results are promising
for development of lattice clocks as high performance optical
frequency standards. These include the confirmation that hy-
perpolarizability effects will not limit the clock accuracy at
the 10−17 level �12�, observation of transition resonances as
narrow as 1.8 Hz �3�, and the excellent agreement between
high accuracy frequency measurements performed by three
independent laboratories �5–8� with clock systematics asso-
ciated with the lattice technique now controlled below 10−15

�6�. A main effort of the recent accuracy evaluations has been
to minimize the effect that nuclear spin �I=9/2 for 87Sr� has
on the performance of the clock. Specifically, a linear Zee-
man shift is present due to the same hyperfine interaction
which provides the clock transition, and magnetic sublevel-
dependent light shifts exist, which can complicate the stark
cancellation techniques. To reach accuracy levels below
10−17, these effects need to be characterized and controlled.

The long coherence time of the clock states in alkaline-
earth-metal�atoms� also makes the lattice clock an intriguing
system for quantum information processing. The closed elec-
tronic shell should allow independent control of electronic
and nuclear angular momenta, as well as protection of the
nuclear spin from environmental perturbation, providing a
robust system for coherent manipulation �14�. Recently, pro-
tocols have been presented for entangling nuclear spins in

these systems using cold collisions �15� and performing co-
herent nuclear spin operations while cooling the system via
the electronic transition �16�.

Precise characterization of the effects of electronic and
nuclear angular-momentum-interactions and the resultant
state mixing is essential to lattice clocks and potential quan-
tum information experiments, and therefore is the central fo-
cus of this work. The organization of this paper is as follows.
First, state mixing is discussed in terms of the origin of the
clock transition as well as a basis for evaluating external field
sensitivities on the clock transition. In the next two sections,
nuclear-spin related shifts of the clock states due to both
magnetic fields and the lattice trapping potential are dis-
cussed. The theoretical development is presented for a gen-
eral alkaline-earth-metal-type structure, using 87Sr only as an
example �Fig. 1�, so that the results can be applied to other
species with similar level structure, such as Mg, Ca, Yb, Hg,
Zn, Cd, Al+, and In+. Following the theoretical discussion is
a detailed experimental investigation of these nuclear spin
related effects in 87Sr, and a comparison to the theory sec-
tions. Finally, the results are discussed in the context of the
performance of optical lattice clocks, including a comparison
with recent proposals to induce the clock transition using
external fields in order to eliminate nuclear spin effects
�17–22�. The Appendix contains additional details on the
state mixing and magnetic sensitivity calculations.

I. STATE MIXING IN THE ns np CONFIGURATION

To describe the two-electron system in intermediate cou-
pling, we follow the method of Breit and Wills �23� and
Lurio �24� and write the four real states of the ns np configu-
ration as expansions of pure spin-orbit �LS� coupling states,

�3P0� = �3P0
0� ,

�3P1� = ��3P1
0� + ��1P1

0� ,

�3P2� = �3P2
0� ,
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�1P1� = − ��3P1
0� + ��1P1

0� . �1�

Here the intermediate coupling coefficients � and � �0.9996
and −0.0286, respectively, for Sr� represent the strength of
the spin-orbit induced state mixing between singlet and trip-
let levels, and can be determined from experimentally mea-
sured lifetimes of 1P1 and 3P1 �see Eq. �A1� in the Appen-
dix�. This mixing process results in a weakly allowed
1S0-3P1 transition �which would otherwise be spin forbid-
den�, and has been used for a variety of experiments span-
ning different fields of atomic physics. In recent years, these
intercombination transitions have provided a unique testing
ground for studies of narrowline cooling in Sr �25–29� and
Ca �30,31�, as well as the previously unexplored regime of
photoassociation using long-lived states �32–34�. These tran-
sitions have also received considerable attention as potential
optical frequency standards �35–37�, owing mainly to the
high line quality factors and insensitivity to external fields.
Fundamental symmetry measurements, relevant to searches
of physics beyond the standard model, have also made use of
this transition in Hg �38�. Furthermore, the lack of hyperfine
structure in the bosonic isotopes �I=0� can simplify compari-
son between experiment and theory.

The hyperfine interaction �HFI� in fermionic isotopes pro-
vides an additional state mixing mechanism between states
having the same total spin F, mixing the pure 3P0 state with
the 3P1, 3P2, and 1P1 states,

�3P0� = �3P0
0� + �0�3P1� + �0�1P1� + �0�3P2

0� . �2�

The HFI mixing coefficients �0, �0, and �0 �2�10−4, −4
�10−6, and −1�10−6, respectively, for 87Sr� are defined in
Eq. �A2� of the Appendix and can be related to the hyperfine
splitting in the P states, the fine-structure splitting in the 3P
states, and the coupling coefficients � and � �23,24�. The 3P0

state can also be written as a combination of pure states
using Eq. �1�,

�3P0� = �3P0
0� + ��0� − �0���3P1

0� + ��0� + �0���1P1
0�

+ �0�3P2
0� . �3�

The HFI mixing enables a nonzero electric-dipole transition
via the pure 1P1

0 state, with a lifetime which can be calcu-
lated given the spin-orbit and HFI mixing coefficients, the
3P1 lifetime, and the wavelengths ��� of the 3P0 and 3P1
transitions from the ground state �39�,

�
3P0 = ��

3P0−1S0

�
3P1−1S0

�3
�2

��0� + �0��2�
3P1. �4�

In the case of Sr, the result is a natural lifetime on the order
of 100 seconds �9,40,41�, compared to that of a bosonic iso-
tope where the lifetime approaches 1000 years �41�. Al-
though the 100 second coherence time of the excited state
exceeds other practical limitations in current experiments,
such as laser stability or lattice lifetime, coherence times
approaching one second have been achieved �3�. The high
spectral resolution has allowed a study of nuclear-spin re-
lated effects in the lattice clock system discussed below.

The level structure and state mixing discussed here are
summarized in a simplified energy diagram, shown in Fig. 1,
which gives the relevant atomic structure and optical transi-
tions for the 5s5p configuration in 87Sr.

II. THE EFFECT OF EXTERNAL MAGNETIC FIELDS

With the obvious advantages in spectroscopic precision of
the 1S0-3P0 transition in an optical lattice, the sensitivity of
the clock transition to external field shifts is a central issue in
developing the lattice clock as an atomic frequency standard.
To evaluate the magnetic sensitivity of the clock states, we
follow the treatment of Ref. �24� for the intermediate cou-
pling regime described by Eqs. �1�–�3� in the presence of a
weak magnetic field. A more general treatment for the case
of intermediate fields is provided in the Appendix. The
Hamiltonian for the Zeeman interaction in the presence of a
weak magnetic field B along the z axis is given as

HZ = �gsSz + glLz − gIIz��0B . �5�

Here gs	2 and gl=1 are the spin and orbital angular mo-
mentum g factors, and Sz, Lz, and Iz are the z components of
the electron spin, orbital, and nuclear spin angular momen-
tum, respectively. The nuclear g factor, gI, is given by gI

=
�I�1−	d�

�0�I� , where �I is the nuclear magnetic moment, 	d is

the diamagnetic correction, and �0=
�B

h . Here, �B is the Bohr
magneton, and h is Planck’s constant. For 87Sr, the nuclear
magnetic moment and diamagnetic correction are �I
=−1.0924�7��N �42� and 	d=0.00345 �43�, respectively,
where �N is the nuclear magneton. In the absence of state
mixing, the 3P0 g factor would be identical to the 1S0 g factor
�assuming the diamagnetic effect differs by a negligible
amount for different electronic states�, both equal to gI. How-
ever since the HFI modifies the 3P0 wave function, a differ-
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FIG. 1. �Color online� Simplified 87Sr energy level diagram �not
to scale�. Relevant optical transitions discussed in the text are
shown as solid arrows, with corresponding wavelengths given in
nanometers. Hyperfine structure sublevels are labeled by total an-
gular momentum F, and the magnetic dipole �A� and electric quad-
rupole �Q, equivalent to the hyperfine B coefficient� coupling con-
stants are listed in the inset. State mixing of the 1P1 and 3P1 states
due to the spin-orbit interaction is shown as a dashed arrow. Dotted
arrows represent the hyperfine induced state mixing of the 3P0 state
with the other F=9/2 states in the 5s5p manifold.
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ential g factor, 
g, exists between the two states. This can be
interpreted as a paramagnetic shift arising due to the distor-
tion of the electronic orbitals in the triplet state, and hence
the magnetic moment �44�. 
g is given by


g = −

3P0�HZ�3P0� − 
3P0

0�HZ�3P0
0�

mF�0B

= − 2��0� − �0��

3P0

0,mF�HZ�3P1
0,F = I,mF�

mF�0B

+ O��0
2,�0

2,�0
2, . . . � . �6�

Using the matrix element given in the Appendix for 87Sr �I
=9/2�, we find 
3P0

0 ,mF �HZ � 3P1
0 ,F= 9

2 ,mF
�= 2

3
� 2

33mF�0B,
corresponding to a modification of the 3P0 g factor by
�60%. Note that the sign in Eq. �6� differs from that re-
ported in �44,39� due to our choice of sign for the nuclear
term in the Zeeman Hamiltonian �opposite of that found
in Ref. �24��. The resulting linear Zeeman shift �B

�1�

=−
gmF�0B of the 1S0-3P0 transition is on the order of
�110�mF Hz/G �1 G=10−4 Tesla�. This is an important
effect for the development of lattice clocks, as stray magnetic
fields can broaden the clock transition �deteriorate the stabil-
ity� if multiple sublevels are used. Furthermore, imbalanced
population among the sublevels or mixed probe polarizations
can cause frequency errors due to line shape asymmetries or
shifts. It has been demonstrated that if a narrow resonance is
achieved �10 Hz in the case of Ref. �6��, these systematics
can be controlled at 5�10−16 for stray fields of less than
5 mG. To reduce this effect, one could employ narrower
resonances or magnetic shielding.

An alternative measurement scheme is to measure the av-
erage transition frequency between mF and −mF states to
cancel the frequency shifts. This requires application of a
bias field to resolve the sublevels, and therefore the second
order Zeeman shift �B

�2� must be considered. The two clock
states are both J=0 so the shift �B

�2� arises from levels sepa-
rated in energy by the fine-structure splitting, as opposed to
the more traditional case of alkali-metal �-like� atoms where
the second order shift arises from nearby hyperfine levels.
The shift of the clock transition is dominated by the interac-
tion of the 3P0 and 3P1 states since the ground state is sepa-
rated from all other energy levels by optical frequencies.
Therefore, the total Zeeman shift of the clock transition �B is
given by

�B = �B
�1� + �B

�2� = �B
�1� − 


F�

�
3P0,F,mF�HZ�3P1,F�,mF��2

�3P1,F� − �3P0

.

�7�

Here �3P0
��3P1,F�� represents the energy of 3P0 �3P1 ,F��

state in frequency. The frequency difference in the denomi-
nator is mainly due to the fine-structure splitting and is
nearly independent of F�, and can therefore be pulled out of
the summation. In terms of the pure states, and ignoring
terms of order �0, �0, �2, and smaller, we have

�B
�2� 	 − �2



F�

�
3P0
0,F,mF�HZ�3P1

0,F�,mF��2

�3P1
− �3P0

= −
2�2�gl − gs�2�0

2

3��3P1
− �3P0

�
B2, �8�

where we have used the matrix elements given in the Appen-
dix for the case F=9/2. From Eq. �8� the second order Zee-
man shift �given in Hz for a magnetic field given in Gauss�
for 87Sr is �B

�2�
−0.233B2. This is consistent with the results
obtained in Refs. �20,45� for the bosonic isotope. Inclusion
of the hyperfine splitting into the frequency difference in the
denominator of Eq. �7� yields an additional term in the sec-
ond order shift proportional to mF

2 which is more that 10−6

times smaller than the main effect, and therefore negligible.
Notably, the fractional frequency shift due to the second or-
der Zeeman effect of 5�10−16 G−2 is nearly 108 times
smaller than that of the Cs �46,47� clock transition, and more
than an order of magnitude smaller than that present in Hg+

�13�, Sr+ �48,49�, and Yb+ �50,51� ion optical clocks.
A Breit-Rabi-like diagram is shown in Fig. 2, giving the

shift of the 1S0-3P0 transition frequency for different mF sub-
levels �assuming �m=0 for � transitions�, as a function of
magnetic field. The calculation is performed using an ana-
lytical Breit-Rabi formula �Eq. �A8�� provided in the Appen-
dix. The result is indistinguishable from the perturbative
derivation in this section, even for fields as large as 104 G.

III. THE EFFECT OF THE OPTICAL
LATTICE POTENTIAL

In this section we consider the effect of the confining
potential on the energy shifts of the nuclear sublevels. In the
presence of a lattice potential of depth UT, formed by a laser
linearly polarized along the axis of quantization defined by
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FIG. 2. �Color online� A Breit-Rabi diagram for the 1S0-3P0
clock transition using Eq. �A8� with 
g�0=−109 Hz/G. Inset
shows the linear nature of the clock shifts at the fields relevant for
the measurement described in the text.
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an external magnetic field B, the level shift of a clock state
�h�g/e� from its bare energy is given by

�e = − mF�gI + 
g��0B − �e
SUT

ER
− �e

V�mF
UT

ER

− �e
T�3mF

2 − F�F + 1��
UT

ER
,

�g = − mFgI�0B − �g
SUT

ER
− �g

V�mF
UT

ER

− �g
T�3mF

2 − F�F + 1��
UT

ER
. �9�

Here, �S, �V, and �T are shift coefficients proportional to the
scalar, vector �or axial�, and tensor polarizabilities, and sub-
scripts e and g refer to the excited �3P0� and ground �1S0�
states, respectively. ER is the energy of a lattice photon recoil
and UT /ER characterizes the lattice intensity. The vector
��mF� and tensor ��mF

2� light shift terms arise solely from
the nuclear structure and depend on the orientation of the
light polarization and the bias magnetic field. The tensor shift
coefficient includes a geometric scaling factor which varies
with the relative angle � of the laser polarization axis and the
axis of quantization, as 3 cos2 �−1. The vector shift, which
can be described as a pseudomagnetic field along the propa-
gation axis of the trapping laser, depends on the trapping
geometry in two ways. First, the size of the effect is scaled
by the degree of elliptical polarization �, where �=0 ��
= ±1� represents perfect linear �circular� polarization. Sec-
ond, for the situation described here, the effect of the vector
light shift is expected to be orders of magnitude smaller than
the Zeeman effect, justifying the use of the bias magnetic
field direction as the quantization axis for all of the mF terms
in Eq. �9�. Hence the shift coefficient depends on the relative
angle between the pseudomagnetic and the bias magnetic
fields, vanishing in the case of orthogonal orientation �52�. A
more general description of the tensor and vector effects in
alkaline-earth-metal systems for the case of arbitrary ellipti-
cal polarization can be found in Ref. �10�. Calculations of the
scalar, vector, and tensor shift coefficients have been per-
formed elsewhere for Sr, Yb, and Hg �9–11,52� and will not
be discussed here. Hyperpolarizability effects ��UT

2� �9–12�
are ignored in Eq. �9� as they are negligible in 87Sr at the
level of 10−17 for the range of lattice intensities used in cur-
rent experiments �12�. The second order Zeeman term has
been omitted as the effect is also at the 10−17 level for fields
used in this work.

Using Eq. �9� we can write the frequency of a � transition
��mF=0� from a ground state mF as

��mF
= �c − ���S − ��TF�F + 1��

UT

ER

− ���VmF� + ��T3mF
2�

UT

ER
− 
gmF�0B , �10�

where the shift coefficients due to the differential polarizabil-
ities are represented as ��, and �c is the bare clock fre-

quency. The basic principle of the lattice clock technique is
to tune the lattice wavelength �and hence the polarizabilities�
such that the intensity-dependent frequency shift terms are
reduced to zero. Due to the mF dependence of the third term
of Eq. �10�, the Stark shifts cannot be completely compen-
sated for all of the sublevels simultaneously. Or equivalently,
the magic wavelength will be different depending on the sub-
level used. The significance of this effect depends on the
magnitude of the tensor and vector terms. Fortunately, in the
case of the 1S0-3P0 transition the clock states are electroni-
cally scalar, and hence these effects are expected to be quite
small. While theoretical estimates for the polarizabilities
have been made, experimental measurements are so far un-
available for the vector and tensor terms. The frequencies of
	± ��mF= ±1� transitions from a ground mF state are similar
to the � transitions, given by

�	mF

± = �c − ���S − ��TF�F + 1��
UT

ER
− ���e

V�mF ± 1�

− �g
VmF���

UT

ER
− ��e

T3�mF ± 1�2 − �g
T3mF

2�
UT

ER

− �±gI + 
g�mF ± 1���0B . �11�

IV. EXPERIMENTAL DETERMINATION
OF FIELD SENSITIVITIES

To explore the magnitude of the various mF-dependent
shifts in Eq. �10�, a differential measurement scheme has
been used to eliminate the large shifts common to all levels.
Using resolved sublevels one can extract mF sensitivities by
measuring the splitting of neighboring states. This is the ap-
proach taken here. A diagram of our spectroscopic setup is
shown in Fig. 3�a�. 87Sr atoms are captured from a thermal
beam into a magneto-optical trap �MOT�, based on the 1S0-
1P1 cycling transition. The atoms are then transferred to a
second stage MOT for narrow line cooling using a dual fre-
quency technique �26�. Full details of the cooling and trap-
ping system used in this work are discussed elsewhere
�5,28�. During the cooling process, a vertical one-
dimensional lattice is overlapped with the atom cloud. We
typically load �104 atoms into the lattice at a temperature of
�1.5 �K. The lattice is operated at the Stark cancellation
wavelength �6,12� of 813.4280�5� nm with a trap depth of
U0=35ER. A Helmholtz coil pair provides a field along the
lattice polarization axis for resolved sublevel spectroscopy.
Two other coil pairs are used along the other axes to zero the
orthogonal fields. The spectroscopy sequence for the 1S0-3P0
clock transition begins with an 80 ms Rabi pulse from a
highly stabilized diode laser �53� that is copropagated with
the lattice laser. The polarization of the probe laser is linear
at an angle � relative to that of the lattice. A shelved detec-
tion scheme is used, where the ground state population is
measured using the 1S0-1P1 transition. The 3P0 population is
then measured by pumping the atoms through intermediate
states using 3P0-3S1 , 3P2-3S1, and the natural decay of 3P1,
before applying a second 1S0-1P1 pulse. The 461 nm pulse is
destructive, so for each frequency step of the probe laser the
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�800 ms loading and cooling cycle is repeated.
When � polarization is used for spectroscopy ��=0�, the

large nuclear spin provides ten possible transitions, as shown
schematically in Fig. 3�b�. Figure 3�c� shows a spectroscopic
measurement of these states in the absence of a bias mag-
netic field. The suppression of motional effects provided by
the lattice confinement allows observation of extremely nar-
row lines �3,4,19�, in this case having Fourier-limited full
width at half maximum �FWHM� of �10 Hz �quality factor
of 4�1013�. In our current apparatus the linewidth limitation
is 5 Hz with degenerate sublevels and 1.8 Hz when the de-
generacy is removed �3�. The high spectral resolution allows
for the study of nuclear spin effects at small bias fields, as
the ten sublevels can easily be resolved with a few hundred
mG. An example of this is shown in Fig. 4, where the ten
transitions are observed in the presence of a 0.58 G bias
field. This is important for achieving a high accuracy mea-
surement of 
g as the contribution from magnetic-field-
induced state mixing is negligible. To extract the desired
shift coefficients we note that for the � transitions we have a
frequency gap between neighboring lines of

f�,mF
= ��mF

− ��mF−1

= − 
g�0B − ��V�
UT

ER
− ��T3�2mF − 1�

UT

ER
. �12�

From Eq. �12�, we see that by measuring the differences in
frequency of two spectroscopic features, the three terms of
interest �
g, ��V, and ��T� can be determined indepen-
dently. The differential g factor can be determined by vary-
ing the magnetic field. The contribution of the last two terms
can be extracted by varying the intensity of the standing
wave trap, and can be independently determined since only
the tensor shift depends on mF.

While the � transitions allow a simple determination of

g, the measurement requires a careful calibration of the
magnetic field and a precise control of the probe laser fre-
quency over the �500 seconds required to produce a scan
such as in Fig. 4. Any linear laser drift will appear in the
form of a smaller or larger 
g, depending on the laser scan
direction. Furthermore, the measurement cannot be used to
determine the sign of 
g as an opposite sign would yield an
identical spectral pattern. In an alternative measurement
scheme, we instead polarize the probe laser perpendicular to
the lattice polarization ��= �

2
� to excite both 	+ and 	− tran-

sitions. In this configuration, 18 spectral features are ob-
served and easily identified �Fig. 5�. Ignoring small shifts
due to the lattice potential, 
g is given by extracting the
frequency splitting between adjacent transitions of a given
polarization �all 	+ or all 	− transitions� as f	±,mF

=�	mF

±

−�	mF−1
± =−
g�0B. If we also measure the frequency differ-
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FIG. 3. �Color online� �a� Schematic of the experimental appa-
ratus used here. Atoms are confined in a nearly vertical optical
lattice formed by a retroreflected 813 nm laser. A 698 nm probe
laser is coaligned with the lattice. The probe polarization EP can be
varied by an angle � relative to that of the linear lattice polarization
EL. A pair of Helmholtz coils �blue� is used to apply a magnetic
field along the lattice polarization axis. �b� Nuclear structure of the
1S0 and 3P0 clock states. The large nuclear spin �I=9/2� results in
28 total transitions, and the labels �, 	+, and 	− represent transi-
tions where mF changes by 0, +1, and −1, respectively. �c� Obser-
vation of the clock transition without a bias magnetic field. The 3P0
population �in arbitrary units� is plotted �blue dots� versus the probe
laser frequency for �=0, and a fit to a sinc-squared lineshape yields
a Fourier-limited linewidth of 10.7�3� Hz. Linewidths of 5 Hz have
been observed under similar conditions and when the probe time is
extended beyond 200 ms.
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levels are strongly influenced by the Clebsch-Gordan coefficients.
Here, transition linewidths of 10 Hz are used. Spectra as narrow as
1.8 Hz have been achieved under similar conditions if the probe
time is extended to 500 ms.
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ence between 	+ and 	− transitions from the same sublevel,
fd,mF

=�	mF

+ −�	mF

− =−2�gI+
g��0B, we find that the differen-

tial g factor can be determined from the ratio of these fre-
quencies as


g =
gI

fd,mF

2f	±,mF

− 1

. �13�

In this case, prior knowledge of the magnetic field is not
required for the evaluation, nor is a series of measurement at
different fields, as 
g is instead directly determined from the
line splitting and the known 1S0 g factor, gI. The field cali-
bration and the 
g measurement are in fact done simulta-
neously, making the method immune to some systematics
which could mimic a false field, such as linear laser drift
during a spectroscopic scan or slow magnetic field varia-
tions. Using the 	 transitions also eliminates the sign ambi-
guity which persists when using the � transitions for mea-
suring 
g. While we cannot extract the absolute sign, the
recovered spectrum is sensitive to the relative sign between
gI and 
g. This is shown explicitly in Fig. 6 where the posi-
tions of the transitions have been calculated in the presence
of a �1 G magnetic field. Figure 6�a� shows the spectrum
when the signs of gI and 
g are the same while in Fig. 6�b�
the signs are opposite. The two plots show a qualitative dif-
ference between the two possible cases. Comparing Fig. 5
and Fig. 6 it is obvious that the hyperfine interaction in-
creases the magnitude of the 3P0 g factor �
g has the same
sign as gI�. We state this point explicitly because of recent
inconsistencies in theoretical estimates of the relative sign of

g and gI in the 87Sr literature �7,8�.

To extract the magnitude of 
g, data such as in Fig. 5 are
fit with eighteen Lorentzian lines, and the relevant splitting
frequencies fd,mF

and f	± are extracted. Due to the large num-
ber of spectral features, each experimental spectrum yields
16 measurements of 
g. A total of 31 full spectra was taken,
resulting in an average value of 
g�0=−108.4�4� Hz/G
where the uncertainty is the standard deviation of the mea-
sured value. To check for sources of systematic error, the
magnetic field was varied to confirm the field independence
of the measurement. We also varied the clock laser intensity
by an order of magnitude to check for Stark and line pulling
effects. It is also necessary to consider potential measure-
ment errors due to the optical lattice since in general the
splitting frequencies fd,mF

and f	± will depend on the vector
and tensor light shifts. For fixed fields, the vector shift is
indistinguishable from the linear Zeeman shift �see Eqs.
�10�–�12�� and can lead to errors in calibrating the field for a

g measurement. In this work, a high quality linear polarizer
�10−4� is used which would in principle eliminate the vector
shift. The nearly orthogonal orientation should further reduce
the shift. However, any birefringence of the vacuum win-
dows or misalignment between the lattice polarization axis
and the magnetic field axis can lead to a nonzero value of the
vector shift. To measure this effect in our system, we varied
the trapping depth over a range of ��0.6–1.7�U0 and ex-
trapolated 
g to zero intensity, as shown in Fig. 7. Note that
this measurement also checks for possible errors due to sca-
lar and tensor polarizabilities as their effects also scale lin-
early with the trap intensity. We found that the 
g measure-
ment was affected by the lattice potential by less than 0.1%,
well below the uncertainty quoted above.

Unlike the vector shift, the tensor contribution to the sub-
level splitting is distinguishable from the magnetic contribu-
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FIG. 5. �Color online� Observation of the 18 	 transitions when
the probe laser polarization is orthogonal to that of the lattice ��
= �

2
�. Here, a field of 0.69 G is used. The spectroscopic data is

shown in gray and a fit to the data is shown as a blue curve. Peak
labels give the ground state sublevel of the transition, as well as the
excitation polarization.
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FIG. 6. �Color online� Calculation of the 18 	 transition fre-
quencies in the presence of a 1 G bias field, including the influence
of Clebsch-Gordan coefficients. The green �red� curves show the 	+

�	−� transitions. �a� Spectral pattern for g factors gI�0

=−185 Hz/G and 
g�0=−109 Hz/G. �b� Same pattern as in �a� but
with 
g�0= +109 Hz/G. The qualitative difference in the relative
positions of the transitions allows determination of the sign of 
g
compared to that of gI.
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tion even for fixed fields. Adjacent 	 transitions can be used
to measure ��T and �e

T due to the mF
2 dependence of the

tensor shift. An appropriate choice of transition comparisons
results in a measurement of the tensor shift without any con-
tributions from magnetic or vector terms. To enhance the
sensitivity of our measurement we focus mainly on the tran-
sitions originating from states with large mF; for example,
we find that

��T = −
f	+,mF=7/2 − f	+,mF=−7/2

42
UT

ER

,

�e
T = −

fd,mF=7/2 − fd,mF=−7/2

84
UT

ER

, �14�

while similar combinations can be used to isolate the differ-
ential tensor shift from the 	− data as well as the tensor shift
coefficient of the 1S0 state. From the 	 splitting data we find
��T=0.03�8� Hz/U0 and ��e

T � =0.02�4� Hz/U0. The data for
these measurements is shown in Fig. 8. Similarly, we ex-
tracted the tensor shift coefficient from � spectra, exploiting
the mF-dependent term in Eq. �12�, yielding ��T

=0.02�7� Hz/U0. The measurements here are consistent with
zero and were not found to depend on the trapping depth
used for a range of 0.85–1.7 U0, and hence are interpreted as
conservative upper limits to the shift coefficients. The error
bars represent the standard deviation of many measurements,
with the scatter in the data due mainly to laser frequency
noise and slight under sampling of the peaks. It is worth
noting that the tensor shift of the clock transition is expected
to be dominated by the 3P0 shift, and therefore, the limit on
�e

T can be used as an additional estimate for the upper limit

on ��T. Improvements on these limits can be made by going
to larger trap intensities to enhance sensitivity, as well as by
directly stabilizing the clock laser to components of interest
for improved averaging. Based on our polarizability calcula-
tions, which include the effect of both the nuclear-spin in-
duced state mixing in the clock states and the hyperfine en-
ergy splitting in the intermediate states, we estimate that the
tensor shift coefficients are more than two orders of magni-
tude smaller than the experimental upper limits reported
here.

Table I summarizes the measured sensitivities to magnetic
fields and the lattice potential. The Stark shift coefficients for
linear polarization at 813.4280�5� nm are given in units of
Hz/ �UT /ER�. For completeness, a recent measurement of the
second order Zeeman shift using 88Sr has been included �45�,
as well as the measured shift coefficient �� for the hyperpo-
larizability �12� and the upper limit for the overall linear
lattice shift coefficient � from our recent clock measurement
�6�. While we were able to confirm that the vector shift effect
is small and consistent with zero in our system, we do not
report a limit for the vector shift coefficient ��V as our sys-
tem was designed with the lattice polarization and orienta-
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FIG. 7. �Color online� Summary of 
g measurements for differ-

ent lattice intensities. Each data point �and uncertainty� represents
the 
g value extracted from a full 	± spectrum such as in Fig. 5.
Linear extrapolation �red line� to zero lattice intensity yields a value
−108.4�1� Hz/G.
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FIG. 8. �Color online� Measurement of the tensor shift coeffi-
cients ��T �blue triangles�, and �e

T �green circles�, using 	 spectra
and Eq. �14�. The measured coefficients show no statistically sig-
nificant trap depth dependence while varying the depth from
0.85–1.7 U0.

TABLE I. Measured field sensitivities for 87Sr.

Sensitivity Value Units Ref.

�B
�1� /mFB −108.4�4� Hz/G This work

�B
�2� /B2 −0.233�5� Hz/G2 �45�a

��T 6�20��10−4 Hz/ �UT /ER� This workb

��T 9�23��10−4 Hz/ �UT /ER� This workc

�e
T 5�10��10−4 Hz/ �UT /ER� This workc

� −3�7��10−3 Hz/ �UT /ER� �6�d

�� 7�6��10−6 Hz/ �UT /ER�2 �12�d

aMeasured for 88Sr.
bMeasured with � spectra.
cMeasured with 	± spectra.
dMeasured with degenerate sublevels.
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tion relative to the quantization axis set to minimize our
sensitivity. In future measurements, use of circular trap po-
larization can enhance the measurement precision of ��V by
at least two orders of magnitude.

Although only upper limits are reported here, the results
can be used to estimate accuracy and linewidth limitations
for lattice clocks. For example, in the absence of magnetic
fields, the tensor shift can cause line broadening of the tran-
sition for unpolarized samples. Given the transition ampli-
tudes in Fig. 4, the upper limit for line broadening, derived
from the tensor shift coefficients discussed above, is 5 Hz at
U0. The tensor shift also results in a different magic wave-
length for different mF sublevels, which is constrained here
to the few picometer level.

V. COMPARISON OF THE �g MEASUREMENT WITH
THEORY AND 3P0 LIFETIME ESTIMATE

The precise measurement of 
g provides an opportunity
to compare various atomic hyperfine interaction theories to
the experiment. To calculate the mixing parameters �0 and
�0 �defined in Eq. �A2� of the Appendix �, we first try the
simplest approach using the standard Breit-Wills �BW�
theory �23,24� to relate the mixing parameters to the mea-
sured triplet hyperfine splitting �HFS�. The parameters �
�0.9996� and � �−0.0286�3�� are calculated from recent de-
terminations of the 3P1 �32� and 1P1 �54� lifetimes. The rel-
evant singlet and triplet single-electron hyperfine coefficients
are taken from Ref. �55�. From this calculation we find �0
=2.37�1��10−4, �0=−4.12�1��10−6, and �0=−1.38�1�
�10−6, resulting in 
g�0=−109.1�1� Hz/G. Using the mix-
ing values in conjunction with Eq. �4� we find that the 3P0
lifetime is 152�2� s. The agreement with the measured g fac-
tor is excellent, however the BW theory is known to have
problems predicting the 1P1 characteristics based on those of
the triplet states. In this case, the BW-theory framework pre-
dicts a magnetic dipole A coefficient for the 1P1 state of
−32.7�2� MHz, whereas the experimental value is
−3.4�4� MHz �55�. Since 
g is determined mainly by the
properties of the 3P1 state, it is not surprising that the theo-
retical and experimental values are in good agreement. Con-
versely, the lifetime of the 3P0 state depends nearly equally
on the 1P1 and 3P1 characteristics, so the lifetime prediction
deserves further investigation.

A modified BW �MBW� theory �44,55,56� was attempted
to incorporate the singlet data and eliminate such discrepan-
cies. In this case 1P1, 3P1, and 3P2 HFS are all used in the
calculation, and two scaling factors are introduced to account
for differences between singlet and triplet radial wave func-
tions when determining the HFI mixing coefficients �note
that �0 is not affected by this modification�. This method has
been shown to be successful in the case of heavier elements
such as neutral Hg �44�. We find �0=2.56�1��10−4 and �0

=−5.5�1��10−6, resulting in 
g�0=−117.9�5� Hz/G and

�
3P0 =110�1� s. Here, the agreement with experiment is fair,

but the uncertainties in experimental parameters used for the
theory are too small to explain the discrepancy.

Alternatively, we note that in Eq. �6�, 
g depends strongly
on �0� and only weakly ��1% � on �0�, such that our mea-

surement can be used to tightly constrain �0=2.35�1�
�10−4, and then use only the triplet HFS data to calculate
�0 in the MBW theory framework. In this way we find �0

=−3.2�1��10−6, yielding �
3P0 =182�5� s. The resulting 1P1

HFS A coefficient is −15.9�5� MHz, which is an improve-
ment compared to the standard BW calculation. The inability
of the BW and MBW theory to simultaneously predict the
singlet and triplet properties seems to suggest that the theory
is inadequate for 87Sr. A second possibility is a measurement
error of some of the HFS coefficients, or the ground state g
factor. The triplet HFS is well resolved and has been con-
firmed with high accuracy in a number of measurements. An
error in the ground state g-factor measurement at the 10%
level is unlikely, but it can be tested in future measurements
by calibrating the field in an independent way so that both gI
and 
g can be measured. On the other hand, the 1P1 HFS
measurement has only been performed once using level
crossing techniques, and is complicated by the fact that the
structure is not resolved, and that the 88Sr transition domi-
nates the spectrum for naturally abundant samples. Present
87Sr cooling experiments could be used to provide an im-
proved measurement of the 1P1 data to check whether this is
the origin of the discrepancy.

Although one can presumably predict the lifetime with a
few percent accuracy �based on uncertainties in the experi-
mental data�, the large model-dependent spread in values in-
troduces significant additional uncertainty. Based on the cal-
culations above �and many other similar ones� and our
experimental data, the predicted lifetime is 145�40� s. A di-
rect measurement of the natural lifetime would be ideal, as
has been done in similar studies with trapped ion systems
such as In+ �39� and Al+ �57� or neutral atoms where the
lifetime is shorter, but for Sr this type of experiment is dif-
ficult due to trap lifetime limitations, and the measurement
accuracy would be limited by blackbody quenching of the
3P0 state �58�.

Table II summarizes the calculations of 
g and �
3P0 dis-

cussed here including the HFI mixing parameters �0 and �0.
Other recent calculations based on the BW theory �8,9�, ab
initio relativistic many body calculations �40�, and an effec-
tive core calculation �41� are given for comparison, with er-
ror bars shown when available.

VI. IMPLICATIONS FOR THE 87Sr LATTICE CLOCK

In the previous sections, the magnitude of relevant mag-
netic and Stark shifts has been discussed. Briefly, we will
discuss straightforward methods to reduce or eliminate the
effects of the field sensitivities. To eliminate linear Zeeman
and vector light shifts the obvious path is to use resolved
sublevels and average out the effects by alternating between
measurements of levels with the same �mF�. Figure 9 shows
an example of a spin-polarized measurement using the mF
= ±9/2 states for cancellation of the Zeeman and vector
shifts. To polarize the sample, we optically pump the atoms
using a weak beam resonant with the 1S0-3P1 �F=7/2� tran-
sition. The beam is coaligned with the lattice and clock laser
and linearly polarized along the lattice polarization axis ��
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=0�, resulting in optical pumping to the stretched �mF

=9/2� states. Spectroscopy with �blue� and without �red� the
polarizing step shows the efficiency of the optical pumping
as the population in the stretched states is dramatically in-
creased while excitations from other sublevels are not vis-
ible. Alternate schemes have been demonstrated elsewhere
�8,26� where the population is pumped into a single mF
= ±9/2 state using the 1S0-3P1 �F=9/2� transition. In our
system, we have found the method shown here to be more
efficient in terms of atom number in the final state and state
purity. The highly efficient optical pumping and high spectral
resolution should allow clock operation with a bias field of
less than 300 mG for a 10 Hz feature while keeping line
pulling effects due to the presence of the other sublevels

below 10−17. The corresponding second order Zeeman shift
for such a field is only �21 mHz, and hence knowledge of
the magnetic field at the 1% level is sufficient to control the
effect below 10−18. With the high accuracy 
g measurement
reported here, real time magnetic field calibration at the level
of a few percent is trivial. For spin-polarized samples, a
magic wavelength can be determined for the mF pair, and the
effect of the tensor shift will only be to modify the cancel-
lation wavelength by at most a few picometers if a different
set of sublevels are employed. With spin-polarized samples,
the sensitivity to both magnetic and optical fields �including
hyperpolarizability effects� should not prevent the clock ac-
curacy from reaching below 10−17.

Initial concerns that nuclear spin effects would limit the
obtainable accuracy of a lattice clock have prompted a num-
ber of recent proposals to use bosonic isotopes in combina-
tion with external field induced state mixing �17,18,20–22�
to replace the mixing provided naturally by the nuclear spin.
In these schemes, however, the simplicity of a hyperfine-free
system comes at the cost of additional accuracy concerns as
the mixing fields also shift the clock states. The magnitudes
of the shifts depend on the species, mixing mechanism, and
achievable spectral resolution in a given system. As an ex-
ample, we discuss the magnetic field induced mixing scheme
�20� which was the first to be experimentally demonstrated
for Yb �19� and Sr �45�. For a 10 Hz 88Sr resonance �i.e., the
linewidth used in this work�, the required magnetic and op-
tical fields �set to minimize the total frequency shift� result in
a second order Zeeman shift of −19 Hz and an ac Stark shift
from the probe laser of −19 Hz. For the same transition
width, using spin-polarized 87Sr, the second order Zeeman
shift is less than −20 mHz for the situation in Fig. 9, and the
ac Stark shift is less than 1 mHz. Although the nuclear-spin-
induced case requires a short spin-polarizing stage and aver-
aging between two sublevels, this is preferable to the bosonic
isotope, where the mixing fields must be calibrated and
monitored at the 10−5 level to reach below 10−17. Other prac-
tical concerns may make the external mixing schemes favor-
able, if for example isotopes with nuclear spin are not readily
available for the species of interest. In a lattice clock with
atom-shot noise limited performance, the stability could be

TABLE II. Theoretical estimates of 
g and �
3P0 for 87Sr.

Values used in calculation

�=0.9996, �=−0.0286�3�

Calc.
�0

�units of 10−4�
�0

�units of 10−6�
�

3P0

�s�

g�0

mF�Hz/G�
A1P1

�MHz�

BW 2.37�1� −4.12�1� 152�2� −109.1�1� −32.7�2�
MBW I 2.56�1� −5.5�1� 110�1� −117.9�5� −3.4�4�a

MBW II 2.35�1� −3.2�1� 182�5� −108.4�4�b −15.9�5�
Ref. �40� — — 132 — —

Refs. �41,59� 2.9�3� −4.7�7� 110�30� −130�15�c —

Refs. �8,9� — — 159 106d —

aExperimental value �55�.
bExperimental value from this work.
cCalculated using Eq. �6�.
dSign inferred from Fig. 1 in Ref. �8�.
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FIG. 9. �Color online� The effect of optical pumping via the 3P1

�F=7/2� state is shown via direct spectroscopy with �=0. The red
data shows the spectrum without the polarizing light for a field of
0.27 G. With the polarizing step added to the spectroscopy se-
quence the blue spectrum is observed. Even with the loss of �15%
of the total atom number due to the polarizing laser, the signal size
of the mF= ±9/2 states is increased by more than a factor of 4.
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improved, with a possible cost of accuracy, by switching to a
bosonic isotope with larger natural abundance.

In conclusion we have presented a detailed experimental
and theoretical study of the nuclear spin effects in optical
lattice clocks. A perturbative approach for describing the
state mixing and magnetic sensitivity of the clock states was
given for a general alkaline-earth-metal �-like� system, with
87Sr used as an example. Relevant Stark shifts from the op-
tical lattice were also discussed. We described in detail our
sign-sensitive measurement of the differential g factor of
the 1S0-3P0 clock transition in 87Sr, yielding �0
g
=−108.4�4�mF Hz/G, as well as upper limit for the differen-
tial and exited state tensor shift coefficients ��T

=0.02 Hz/ �UT /ER� and �e
T=0.01 Hz/ �UT /ER�. We have

demonstrated a polarizing scheme which should allow con-
trol of the nuclear spin related effects in the 87Sr lattice clock
to well below 10−17.
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APPENDIX

The Appendix is organized as follows, in the first section
we briefly describe calculation of the mixing coefficients
needed to estimate the effects discussed in the main text. We
also include relevant Zeeman matrix elements. In the second
section we describe a perturbative treatment of the magnetic
field on the hyperfine-mixed 3P0 state, resulting in a Breit-
Rabi-like formula for the clock transition. In the final section
we solve the more general case and treat the magnetic field
and hyperfine interaction simultaneously, which is necessary
to calculate the sensitivity of the 1P1, 3P1 and 3P2 states.

1. State mixing coefficients and Zeeman elements

The intermediate coupling coefficients � and � are typi-
cally calculated from measured lifetimes and transition fre-
quencies of the 1P1 and 3P1 states and a normalization con-
straint, resulting in

�2

�2 =
�

3P1

�
1P1
��3P1

�1P1

�3

, �2 + �2 = 1. �A1�

The HFI mixing coefficients �0, �0, and �0 are due to the
interaction between the pure 3P0 state and the spin-orbit
mixed states in Eq. �1� having the same total angular mo-
mentum F. They are defined as

�0 =

3P1,F = I�HA�3P0

0,F = I�
�3P0

− �3P1

,

�0 =

1P1,F = I�HA�3P0

0,F = I�
�3P0

− �1P1

,

�0 =

3P2,F = I�HQ�3P0

0,F = I�
�3P0

− �3P2

, �A2�

where HA and HQ are the magnetic dipole and electric quad-
rupole contributions of the hyperfine Hamiltonian. A stan-
dard technique for calculating the matrix elements is to relate
unknown radial contributions of the wave functions to the
measured hyperfine magnetic dipole �A� and electric quadru-
pole �Q� coefficients. Calculation of the matrix elements us-
ing BW theory �23,24,39,44,55� can be performed using the
measured hyperfine splitting of the triplet state along with
matrix elements provided in �24�. Inclusion of the 1P1 data
�and an accurate prediction of �0� requires a modified BW
theory �44,55,56� where the relation between the measured
hyperfine splitting and the radial components is more com-
plex but manageable if the splitting data for all of the states
in the ns np manifold are available. A thorough discussion of
the two theories is provided in Refs. �44,55�.

Zeeman matrix elements for singlet and triplet states in
the ns np configuration have been calculated in Ref. �24�.
Table III summarizes those elements relevant to the work
here, where the results have been simplified by using the
electronic quantum numbers for the alkaline-earth-metal
case, but leaving the nuclear spin quantum number general
for simple application to different species. Note that the re-
sults include the application of our sign convention in Eq. �5�
which differs from that in Ref. �24�.

TABLE III. Zeeman matrix elements for pure �2S+1LJ
0� states.

Relevant elements for the 3P0 state:


3P0
0 ,F= I �HZ � 3P0

0 ,F= I�=−gImF�0B


3P0
0 ,F= I �HZ � 3P1

0 ,F�= I�= �gs−gl�mF�0B� 2
3I�I+1�


3P0
0 ,F= I �HZ � 3P1

0 ,F�= I+1�= �gs−gl��0B���I+1�2−mF
2��4I+6�

3�I+1��4�I2+1�−1�


3P0
0 ,F= I �HZ � 3P1

0 ,F�= I−1�= �gs−gl��0B��I2−mF
2��4I−2�

3I�4I2−1�
Relevant diagonal elements within 3P1 manifold:


3P1
0 ,F= I �HZ � 3P1

0 ,F= I�= � gl+gs−gI�2I�I+1�−2�

2I�I+1� �mF�0B


3P1
0 ,F= I+1 �HZ � 3P1

0 ,F= I+1�=� gl+gs−2gII

2�I+1� �mF�0B


3P1
0 ,F= I−1 �HZ � 3P1

0 ,F= I−1�= �− gl+gs+2gI�I+1�

2I
�mF�0B

Relevant diagonal elements within 1P1 manifold:


1P1
0 ,F= I �HZ � 1P1

0 ,F= I�= � gl−gI�I�I+1�−1�

I�I+1� �mF�0B


1P1
0 ,F= I+1 �HZ � 1P1

0 ,F= I+1�=� gl−gII

�I+1� �mF�0B


1P1
0 ,F= I−1 �HZ � 1P1

0 ,F= I−1�= �− gl+gI�I+1�

I
�mF�0B

BOYD et al. PHYSICAL REVIEW A 76, 022510 �2007�

022510-10



2. Magnetic field as a perturbation

To determine the magnetic sensitivity of the 3P0 state due
to the hyperfine interaction with the 3P1 and 1P1 states, we
first use a perturbative approach to add the Zeeman interac-
tion as a correction to the �3P0� state in Eq. �3�. The resulting
matrix elements depend on spin-orbit and hyperfine mixing
coefficients �, �, �0, �0, and �0. For the 3P0 state, diagonal
elements to first order in �0 and �0 are relevant, while for
1P1 and 3P1, the contribution of the hyperfine mixing to the
diagonal elements can be ignored. All off-diagonal terms of
order �2, �0�, �0�, �0

2, and smaller can be neglected. Due to
the selection rules for pure �LS� states, the only contributions
of the 3P2 hyperfine mixing are of order �0�0, �0

2, and �0�0.
Thus the state can be ignored and the Zeeman interaction
matrix Mz between atomic P states can be described in the
��1P1 ,F ,mF� , �3P0 ,F ,mF� , �3P1 ,F ,mF�� basis as

Mz =�
�1P1

M1P1

3P0 0

M3P0

1P1 �3P0
M3P0

3P1

0 M3P1

3P0 �3P1

� , �A3�

where we define diagonal elements as

�3P0
= �3P0

0 + 
3P0
0�HZ�3P0

0�

+ 2���0 − ��0�
3P1
0,F = I�HZ�3P0

0� ,

�3P1
= �3P1

0 + 

F�

��2
3P1
0,F��HZ�3P1

0,F��

+ �2
1P1
0,F��HZ�1P1

0,F��� ,

�1P1
= �1P1

0 + 

F�

��2
1P1
0,F��HZ�1P1

0,F��

+ �2
3P1
0,F��HZ�3P1

0,F��� . �A4�

Off diagonal elements are given by

M3P0

3P1 = M3P1

3P0 = ��

F�

�
3P1
0,F��HZ�3P0

0,F��2,

M3P0

1P1 = M1P1

3P0 = ��

F�

�
3P0
0,F�HZ�3P1

0,F���2. �A5�

The eigenvalues of Eq. �A3� can be written analytically as
three distinct cubic roots
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FIG. 10. �Color online� Magnetic sensitivity of the 1P1 state

calculated with the expression in Eq. �A10� using A=−3.4 MHz and
Q=39 MHz �55�. Note the inverted level structure.
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FIG. 11. �Color online� Magnetic sensitivity of the 3P1 state
calculated with the expression in Eq. �A10� using A=−260 MHz
and Q=−35 MHz �61�.
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FIG. 12. �Color online� Magnetic sensitivity of the 3P1 state

calculated numerically with Eq. �A9� using A=−212 MHz and Q
=67 MHz �62�.
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�mF

± =
�0

3
� ��0

2 + 3�1
2

� cos�1

3
arccos��

2�0
3 + 9�0�1

2 + 27�2
3

2��0
2 + 3�1

2�3/2 � ±
2�

3
� ,

�mF
� �3P0,mF

=
�0

3
+ ��0

2 + 3�1
2

� cos�1

3
arccos�2�0

3 + 9�0�1
2 + 27�2

3

2��0
2 + 3�1

2�3/2 � +
2�

3
� ,

�A6�

where we have

�0 = �3P0
+ �3P1

+ �1P1
,

�1 = �− �3P0
�3P1

− �3P1
�1P1

− �3P0
�1P1

+ �M3P0

3P1�2 + �M3P0

1P1�2�1/2,

�2 = ��3P0
�3P1

�1P1
− �3P1

�M3P0

1P1�2 − �1P1
�M3P0

3P1�2�1/3.

�A7�

Since the main goal is a description of the 3P0 state sensitiv-
ity, the solution can be simplified when one considers the
relative energy spacing of the three states, and that elements
having terms �, ��, and smaller are negligible compared to

those proportional to only �. Therefore we can ignore M3P0

1P1

terms and find simplified eigenvalues arising only from the
interaction between 3P1 and 3P0 that can be expressed as a
Breit-Rabi-like expression for the 3P0 state given by

�3P0,mF
=

1

2
��3P0

+ �3P1
� +

1

2
��3P0

− �3P1
�

��1 + 4



F�

�2�
3P0
0,F�HZ�3P1

0,F���2

��3P0
− �3P1

�2 .

�A8�

For magnetic fields where the Zeeman effect is small com-
pared to the fine-structure splitting, the result is identical to
that from Eq. �8� of the main text. The magnetic sensitivity

of the clock transition �plotted in Fig. 2� is determined by
simply subtracting the 
3P0

0 �HZ � 3P0
0� term which is common

to both states.

3. Full treatment of the HFI and magnetic field

For a more complete treatment of the Zeeman effect we
can relax the constraint of small fields and treat the hyperfine
and Zeeman interactions simultaneously using the spin-orbit
mixed states in Eq. �1� as a basis. The total Hamiltonian is
written Htotal=HZ+HA+HQ including hyperfine HA and
quadrupole HQ effects in addition to the Zeeman interaction
HZ defined in Eq. �5� of the main text. The Hamiltonian Htotal

can be written as

Htotal = HZ + AI� · J� + Q

3

2
I� · J��2I� · J� + 1� − IJ�I + 1��J + 1�

2IJ�2I − 1��2J − 1�
.

�A9�

Diagonalization of the full space using Eq. �A9� does not
change the 3P0 result discussed above, even for fields as
large as 104 G. This is not surprising since the 3P0 state has
only one F level, and is therefore only affected by the hy-
perfine interaction through state mixing which was already
accounted for in the previous calculation. Alternatively, for
an accurate description of the 1P1, 3P1, and 3P2 states, Eq.
�A9� must be used. For an alkaline-earth-metal 2S+1L1 state in
the �I ,J ,F ,mF� basis we find an analytical expression for the
field dependence of the F= I , I±1 states and sublevels. The
solution is identical to Eq. �A6� except we replace the fre-
quencies in Eq. �A7� with those in Eq. �A10�. We define the
relative strengths of magnetic, hyperfine, and quadrupole in-
teractions with respect to an effective hyperfine-quadrupole
coupling constant WAQ=A+ 3Q

4I�1−2I� as XBR=
�0B

WAQ
, XA= A

WAQ
,

and XQ= Q
I�1−2I�WAQ

, respectively. The solution is a generaliza-

tion of the Breit-Rabi formula �60� for the 2S+1L1 state in the
two electron system with nuclear spin I. The frequencies are
expanded in powers of XBR as

�0 = − 2WAQ�1 +
3gI

2
mFXBR� ,

�1 = WAQ
�Xeff

�1�1 +
2�geff − gI�XA + 3geffXQ

Xeff
�1

mFXBR +

�geff + gI�2�1 −
3mF

2gI
2

�geff + gI�2�
Xeff

�1
XBR

2 �
1/2

,
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�2 = WAQ
�3 I�I + 1�Xeff

�2�1 +

XA
2� geff

I�I + 1�
+ gI� + XQ

2 3�1 − 2I��3 + 2I�
16

� geff

I�I + 1�
− gI� − XAXQ�geff�2 −

3

2I�I + 1�� + gI�
Xeff

�2
mFXBR

+

mF
2XA

2gIgeff

I�I + 1�
+ XQ

�geff + gI�2

2
�1 −

3mF
2geff

2

I�I + 1��geff + gI�2�
Xeff

�2
XBR

2 +

gI��geff + gI�2 − �gImF�2�
I�I + 1�

Xeff
�2

mFXBR
3 �

1/3

, �A10�

with abbreviations

Xeff
�1 = I�I + 1��XA +

XQ

4
− I�I + 1�XQ�XA − 1�� − 1,

Xeff
�2 = Xeff�XQXeff + �XA

2 − XQ
2 3�3 + 2I��1 − 2I�

16
�� ,

Xeff = XA + XQ
�3 + 2I��1 − 2I�

4
,

geff =
�gl + gs�

2
+

�gl − gs�
4

�L�L + 1� − S�S + 1�� .

�A11�

The resulting Zeeman splitting of the 5s5p1P1 and
5s5p3P1 hyperfine states in 87Sr is shown in Fig. 10 and Fig.
11. For the more complex structure of 3P2, we have solved
Eq. �A9� numerically, with the results shown in Fig. 12. The
solution for the 1P1 state depends strongly on the quadrupole
�Q� term in the Hamiltonian, while for the 3P1 and 3P2 states
the magnetic dipole �A� term is dominant.
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