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6S,/,-6P,, transition of Cs atoms in cubic and hexagonal solid ‘He
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We present a systematic experimental study of the absorption and fluorescence spectra of the 65,-6P1),
transition in Cs atoms isolated in solid “He matrices. The bubble model developed earlier for alkali-metal
atoms in liquid He is revised and applied to the present system. The analysis of the dependencies of absorption
and fluorescence wavelengths on He pressure in liquid and solid He (cubic and hexagonal) environments leads
us to modify the bubble model by taking the elastic deformation of solid He by the atomic bubble into account.
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I. INTRODUCTION

Alkali-metal atoms implanted in condensed He reside in
nanosize spherical cavities—so-called atomic bubbles. These
bubbles are formed around each impurity atom due to the
Pauli principle that forbids any overlap between the closed S
shells of He atoms and the valence electron of the impurity.
In the ground state of alkali-metal atoms the valence electron
is loosely bound in a spherically symmetric nS;,, orbital and
the bubble is similar, albeit smaller, than that of a free elec-
tron in condensed helium. The spectroscopy of electrons in
liquid [1,2] and solid [3] He has been developed in the early
1990s and the experimental results confirmed the predictions
of the bubble model. Already in those studies it was found
that the model originally developed for liquid He produces
reliable results also for solid He—a consequence of the
quantum nature of He crystals, where the He atoms are
strongly delocalized. A similar tendency was observed in
studies of absorption and emission spectra of alkali-metal
atoms (Cs and Rb) in liquid [4,5] and solid [6] He, as well as
for Ba atoms [7,8]. However, a more detailed analysis [9] of
the spectral shift of the 6S,,,-6P,,, (D) transition of Cs at-
oms in He matrices as a function of He pressure reveals
relatively large abrupt changes at the phase boundaries,
which cannot be predicted by the bubble model.

A theoretical investigation of bubbles formed by Cs and
Rb atoms in pressurized liquid He has been performed in
[4,5] and its results demonstrated a good agreement with
experimental results. In the present paper we report on the
results of systematic experimental investigations of the D,
transition of Cs in solid He in a broad range of pressures,
covering the body-centered cubic (bec) and the hexagonal
close-packed (hcp) crystalline phases. We also revise the
bubble model and apply it to Cs atoms in solid He. We have
included several effects not considered in the previous theo-
retical treatment of [4] (i) the modification of the fine-
structure splitting of Cs by the interaction with He; (ii) the
interaction of the atomic dipole with its own radiation re-
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flected at the bubble interface. We have further identified a
contribution to the bubble energy due to elastic crystal de-
formations, which is not present in the case of liquid He, but
which should be taken into account in solid He. The ex-
tended bubble model has allowed us to calculate absorption
and emission spectra, which are in good agreement with the
experimental results obtained in liquid and solid He. We
have applied our model calculations to the fine structure, the
lifetime of the excited 6P, state, and the hyperfine splitting
in the ground state of Cs in solid He and compare the results
with experimental findings.

II. THEORETICAL MODEL
A. Spherical bubble model

Our approach follows closely the one described in [4].
The essential feature of the standard bubble model (SBM) is
the representation of the He matrix as a continuous medium,
characterized by its density p and surface tension parameter
o. This treatment is justified not only for liquid, but also for
solid He, which is a quantum crystal with a very large delo-
calization of the He atoms, and hence a strong overlap of
their wave functions. The solid He matrix is so soft that the
impurity atom imposes its own symmetry on the local trap-
ping site. In particular, the spherically symmetric 6S,,, and
6P, electronic states of Cs in the cubic phase of solid He
form bubbles of spherical shape.

Following the ideas of [10,11] the many-body problem of
the interaction of an alkali-metal atom with a He atom can be
reduced to a three-body problem by assuming that the per-
turbations of the alkali-metal core and the He atom are small
compared to the perturbations of the alkali-metal valence
electron. We further use the fact that the alkali-metal core
and the He atom have closed shell structures. Details of these
structures are not considered, but we assume that both can be
polarized by the alkali-metal valence electron. The properties
of the atomic defect structure can then be described in terms
of the mutual interactions of the valence electron, the “fro-
zen” alkali-metal core and the He atom(s). Using the Born-
Oppenheimer approximation, the nucleus of the Cs and the
He atom(s) can be treated as fixed in space and the problem
is reduced to calculating the wave function of the valence
electron in the combined potentials that it experiences. The
geometry of the problem is sketched in Fig. 1.
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FIG. 1. Schematic model of a Cs atom inside a spherical He
bubble. The interaction is treated as a three-body interaction be-
tween the Cs* core in the center of the bubble (origin of coordinate
system), the valence electron of the Cs atom at position 7, and the
He atom at position R. The diameter of the bubble is approximately
1 nm for a ground state Cs atom.

The total potential felt by the alkali-metal valence elec-
tron can be written as

Vtot(r’R) = VCs(r) + VHe(r, R) + Vcross(r’ R) + VCC(R)’
(1)

where V((r) and Vi (r,R) describe the interaction of the
electron with the Cs core and the He atom, respectively. The
cross term V. (r,R) describes the three-body interaction,
i.e., the polarization of the He atom by the Cs valence elec-
tron and the Cs* ion. Finally, the last term in Eq. (1), V..(R),
is the core-core interaction of the Cs* ion with the ground
state He atom.

B. Energy of the free Cs atom
The first term of Eq. (1) has the following contributions:

VCs(r) = VTF(r,)\) + Vpol(rv rc) + Vso(r)’ (2)

where Vip(r,\) is a scaled statistical Thomas-Fermi model
potential. The core polarization due to the valence electron is
represented by Vi, (r,7.) and V,(r) is the spin-orbit poten-
tial. For systems with many electrons an explicit calculation
of the potential is not possible and one has to rely on ap-
proximative methods, of which the relativistic Hartree-Fock
method has proven to be very successful. Hartree-Fock cal-
culations are beyond our capabilities and we have opted for a
simpler approach by using a scaled Thomas-Fermi model
potential [12,13] following the work of Norcross [14] to de-
scribe the interaction of the Cs valence electron with the Cs
core. We have taken the Fermi-Amaldi correction for exclud-
ing the electrostatic self-energy of the electron and the ex-
change energy correction introduced by Dirac into account as
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described in [12]. This yields a corrected Thomas-Fermi po-
tential Vpp(r,\) with a scaling parameter N, which can be
determined by fitting calculated level energies to the experi-
mental level energies.

The core polarization potential with non-negligible dipole
and quadrupole contributions can be written as [14]

(&7 6
Vialryrd) == G[1 =] (3)
a,—3B, ()10
- 2r6 [1—6‘ (rfre) ] (4)

The values for the dipole @, and quadrupole a, core polar-
izabilities as well as for the dynamic correction B, were
taken from [14]. r, represents a cutoff radius that depends on
the angular momentum / of the valence electron and that is
chosen together with the scaling parameter A in order to
match the experimental energies for the lowest lying states,
i.e., the 68,5, 6P, 6P3), 5D, and the 5Ds), state.

The spin-orbit potential V,(r) is written with a relativistic
correction as

> 1dV'(r) 1
4 r dr

Vso(r) = JZZ§ (5)

1
{1 + Zan’(r)

The potential in Eq. (5) is V'(r)=Vig(r,N)+ Vo (r,r,) and a
is the fine structure constant. The total potential V~(r) seen
by the free Cs atom’s valence electron can then be used in
the radial Schrodinger equation

1 d? 1(1+1
-3 ;gr) + [VCS(r) + u]u(r) =Eu(r) (6)

+
2r°
to obtain the wave functions and eigenenergies of the free Cs
atom. The total wave function of the valence electron is writ-
ten as a product of radial and angular parts W(r)

=Y,,,(9,@)u(r)/r. The boundary condition near the core is
(see, for example, [15])

1

u(r) o« 1 for r— 0. (7)

For r— o we use the condition that the wave function has an
exponential decay. All numerical calculations were per-
formed with MATHEMATICA 5.0. Figure 2 shows the calcu-
lated wave function for the ground and the first excited state
of the free Cs atom. After having adjusted the parameters A
and r.. to yield the best agreement with experimental energies
of the five lowest fine structure levels, the calculated energies
of the states up to n=12 were found to agree within 0.5%
with their experimental values [16]. For higher lying states
the values were compared to the values obtained using the
hydrogen formula [17] with an effective principle quantum
number 7 [16] and an agreement within 1% was obtained.

C. Cs-He interaction

The interaction of the Cs valence electron with the He
atom Vi (r,R), is treated in a similar way as its interaction
with the Cs core in terms of a potential
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FIG. 2. (Color online) Calculated wave functions u(r) for the
6S,/, and the 6P, states of Cs for the free Cs atom (black solid
curve) and for the Cs in the bubble (red dashed curve). The bubble
parameters are e=2‘45aa1 and Ry=10.2a, which correspond to the
equilibrium bubble of the Cs ground state in bce solid He. The inset
in the upper graph shows the main difference between the two wave
functions at a distance 13a, from the nucleus.

VHe(I‘,R) = Ve_He(I‘,R) + VpOl He(l‘,R). (8)

V, 1(r,R) [18] is a pseudopotential that models the re-
pulsion of the Cs valence electron when it enters the elec-
tronic cloud of the He atom due to the Pauli principle—the
main reason for the bubble formation—and the incomplete
screening of the nuclear charge of the He atom. This pseudo-
potential can be written as

o ]

Ve—He(r’R) = 2 E V?r(rl-le)|Ylm(;He)><Yll11(fHe)

=0 m=-1

.C)

in terms of a basis set of Gaussian potentials V;"(ry,)
=C, exp(—Dﬂ’ﬁe), centered on the He atom. The projection
operators | Y, (Fue) )Y im(Pue)| in Eq. (9) (I and m are the or-
bital momentum of the valence electron and its projection
with respect to the He atom) are used to express the poten-
tials with respect to coordinates centered on the Cs* core.
The parameters C; and D, are taken from [18] and ry.=r
-R.

The second term of Eq. (8) can be written in analogy to
the polarization potential of the free Cs atom in Eq. (3) as

[18]
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2
1 XyHe — 6Bqu + 2a’dHercHe

2 2
(rHe + rcHe)3 ’

l PdHe
2 2 \2
2(rge+rome)” 2

Vpol He(rvR) ==

(10)

with the dipole polarizability ey, the quadrupole polariz-
ability «a,y. and a dynamic correction parameter [y
Vooiie(r,R) shows the asymptotic r~* and the r® depen-
dences of the dipole and quadrupole polarizabilities and is
screened at small distances by the parameter 7.

A further contribution comes from the core-core interac-
tion

1 XgHe
Vee(R) = VEP(R) - Em

l @yHe — 6Bqu + 2a/clHer?He (1 1)
2 (R*+ r?He)3 '
which describes the polarization of the He atom by the Cs*
ion, and where VP(R)=ae™F is a repulsive potential, acting
at small distances, where the electronic clouds of the two
atoms start to overlap.
Finally, we include a cross term V.(r,R), which repre-
sents the simultaneous polarization of the He atom by the Cs
valence electron and the Cs* core

e €OS Ve

\% r,R) = r,R)| -
cross( ) fculoff( )|: (R2 + ’”31-13)(”12{@ + ere)

1 (3 cos™ Dy~ 1) ] 1)
2 (R + 2 (e + 1) |

with the definitions @/, =, 6B,me+2upel tp1e» Vpie being
the angle between r and R. This term is needed to yield the
correct behavior at large internuclear distances. The cutoff
function f,s(r,R) is taken as

1= e—(R/r— 1)? r<R

cutof r,R) = ’ 13
Jeutote(R) 0, R (13)

It assures that the cross term vanishes for small internuclear
distances, where the electronic clouds overlap.

The parameter values used in the present calculations are
taken from [18] and are listed in Table I, together with our
values for the parameters for the free Cs atom, which differ
slightly from the ones used in [14].

D. Integration over the bubble and the bubble energy

We have now a complete expression that determines the
interaction of the Cs valence electron with a single He atom.
In order to calculate the interaction with all the helium atoms
surrounding the Cs atom we treat the latter as an empty
bubble in an incompressible fluid with a spherically symmet-
ric density distribution p(R),
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TABLE I. Numerical values of parameters used for the numeri-
cal evaluation.

Value (unit) Used in

ay 19.03 (a3) Voul(r.7,)

a, 118.26 (ap) Vool(r, 1)

B, 19.18 (ag) Vool 7e)

r. (1=0) 3.2272 (ay) Vool(r.70)

r. (I=1) 3.3.918 (ap) Vol(7>7)

A 1.07623 Vop(r,\)

Aie 1.3834 (a3) Vool 1e(r.R) and V. (R)

Qe 2.3265 (ap) Vool e(r,R) and V.(R)

Byie 0.706 (ag) Vool 1e(r,R) and V.(R)

rere(1=0) 1 (ao) Vol He(T,R),
V..(R) and
Veross(T> R)

a 49.1559 VEP(R)

b 1.8747 (ay") VIP(R)

¢, (1=0) 2.03 Vi (rige)

D, (1=0) 0.463 (ay?) Vi (rie)

G, (1=0) -1 V3(re)

D, (1=0) 1 (ap?) Vi (rie)

0, R<R,
PRRR = 1 {1+ (R = RO} 0], R= Ry,

(14)

where R, is the bubble radius. € describes the steepness of
the density distribution at the bubble interface and p, is the
bulk density p(R>R,), which depends on the He tempera-
ture and pressure.

The energy needed to form a bubble is written in the
commonly used way [8] as

_i 3 2
Ebub_ 37TRbp+47TRbO'+ Ekin’ (15)

where p is the He pressure. The first term is the pressure
volume work and the second term represents the energy of
the surface tension. The third term is the volume kinetic
energy due to the localization of the He atoms at the bubble
interface. It is expressed as
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Eyin , (16)

. J spVPRRo,0)?

- 167y, p(R,Ry, €)

where my, is the mass of the He atom. The radius R, used in
Eq. (15) is the center of mass of the bubble interface defined
by the equation

Rb 0
f p(R.Ry,€)R*dR = j [po— p(R.Ry,€)IR*dR. (17)
0 Ry

In order to obtain electronic wave functions of the Cs
atom confined in the bubble, we first integrate the potential
over the He bulk

V?(;llb(r’RO’ 6) = VCs(r) + f d3Rp(R’R0’ 6)[VHe(r7R)

+ Veross(T.R) + Vee(R)], (18)

and then solve the radial Schrodinger equation [Eq. (6)] by
replacing V¢, with V'f;b. The interaction of the Cs atom with
an isolated He atom has no central symmetry. However, the
integration over the bubble simplifies the problem since it
leads to a central potential, so that the radial and angular
variables can be separated.

The solutions depend on two parameters: R, and e. In this
way we do not only get the eigenenergy E;, depending on
the bubble size but also the wave function of the valence
electron W(r)=u(r)/r. In Fig. 2 we compare the calculated
radial wave functions for the 65,, and the 6P, states of the
free Cs atom with those of a Cs atom in a spherical bubble.
The wave functions of the atom in the bubble are slightly
compressed by the bubble, the effect being more pronounced
for the more extended 6P;,, wave function.

The knowledge of the wave functions is important for the
calculation of atomic properties such as transition dipole mo-
ments, excited state lifetimes, or hyperfine structure. The
equilibrium size of the bubble is determined via a numerical
minimization of the total energy E]t’g;b of the system by vary-
ing Ry and e. The total energy is the sum of the bubble
energy [Eq. (15)] and the interaction energy Ej,

Ep = E + Epg. (19)

tot

The bubble parameters for both 6S;,, and 6P, states of Cs
in bee solid He close to liquid-solid phase boundary (p
=26.9 bars, T=1.5 K) are compared with those calculated in
[4] in Table II. For the surface tension coefficient o we use

TABLE II. Comparison of our equilibrium bubble parameters with values from [4]. AE,,. and AE,,, are
the shifts of the excitation and emission lines, respectively, compared to the free atom. The values of this
work are for a bec crystal at 7=1.5 K and p=26.9 bars. Values from [4] are for bcc at T=1.6 K and p

=27.06 bar.

Ry (ag)  €(llag) Ry (ap) AEg AEp AEq . (em™)  AE, (em™)
65, this work 10.22 2.45 11.06 186.8 780.6
6P, this work 12.95 1.99 13.99 501.7 651.2 593.8 149.5
65, from [4] 10.75 1.28 12.42 290.3 781.4
6P, from [4] 13.08 1.12 14.97 418.3 539.4 491 121
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its measured value (0=0.332 dyne/cm) at T=1.5 K at satu-
rated vapor pressure [19]. No experimental data on its pres-
sure dependence are available, and we assume that it is in-
dependent of pressure as discussed in the literature on
electron bubbles [20], where different models for the pres-
sure dependence of o are suggested. In the range of param-
eters studied in our work the surface energy produces a con-
tribution of about ~10% to E2°, so that our results are rather

tot *
insensitive to variations of o.

E. Hyperfine structure of Cs in solid He

As a first test of our model we have used the calculated
65/, wave function to derive the bubble-induced change of
the hyperfine coupling constant in the Cs ground state. The
frequency of the corresponding hyperfine transition in becc
solid He has been measured earlier by our group [21]. It was
found to be blueshifted by approximately 196 MHz with re-
spect to the free transition in free atoms (9192 MHz), with a
slight pressure dependence.

The matrix elements of the hyperfine (Fermi contact)
Hamiltonian Hy; in the cesium ground state are

Hye=ApdS,ms,,my|1- S

S, is 19 m[> 0
with

240 M5818s

App=—
o 3 K2

(n,L,m;|8(r)|n,L,m,), (20)
The matrix element in Eq. (20) depends on the value of
the wave function at the nucleus.

2ar
Apr=——a’gigs| ¥ (0)]%, (21)

3

and the hyperfine splitting of the ground state is dv=4A,;.

We first calculate the hyperfine splitting for the free Cs
atom using the correction factors from [22] to account for
relativistic effects and electrostatic and magnetic volume cor-
rections. The obtained value v=9770 MHz is approximately
6% larger than the experimental one. Our calculation of Sv
for a Cs atom in a He bubble in the bcc phase shifts this
value by 182 MHz to larger frequencies, which agrees within
6% with the experimentally measured shift of 196 MHz [21].
This increase of the hyperfine transition frequency is due to
the compression of the electronic wave function by the sur-
rounding pressurized He, which increases |¥(0)|%.

F. Fine structure of Cs in solid He

The 6P, and 6P3), fine structure doublet in the free Cs
atom is split by 554 cm™'. In condensed helium this splitting
cannot be studied in emission since the 6P;, state is
quenched by the formation of exciplexes and a strong mixing
with the 6P, state [7,9]. However, the transitions to both
excited states can be studied via their absorption spectra.

The theoretical treatment of [4] neglects the effect of the
He matrix on the fine structure splitting, although their ex-
perimental results show that the splitting increases with He
pressure, reaching A=670 cm™! at 20 bars. Our experimental
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results show a further increase up to A=700 cm™' in hcp
solid He at 30 bars [9]. The theoretical model presented
above allows us to calculate this splitting as the difference
between the eigenenergies of the perturbed 6P, and 6P,
states in a spherical bubble formed around the ground state
Cs atom. For liquid He at 25 bars we obtain A=642 cm™!
and for bee solid A=649 cm™!. In both cases the splitting is
underestimated, however, the sign of the shift and its order of
magnitude are predicted correctly. The theoretical model
used in this work is refined with respect to the one of [4] as
it takes the bubble effect on the fine-structure splitting into
account.

G. Lifetime of the 6P, state

With the theoretical model presented above we also cal-
culate the lifetime 7 of the excited 6P, state of Cs in con-
densed He. Experimental data on the dependence of 7 on He
pressure are available for superfluid He [23] up to the solidi-
fication point. Recently we have measured lifetimes in bcc
and hcp solid He up to p=36 bars [24]. The results of
[23,24] show that in liquid and bce solid He, 7has a pressure
independent value of 32.5 ns, 2.3 ns shorter than the lifetime
in a free Cs atom. At the phase transition to the hcp phase the
lifetime shortens by 3.2 ns and further decreases with in-
creasing He pressure.

The radiative lifetime 7 of an excited state is related to the
transition dipole moment [(6P,||er||6S;,,)| and frequency ,
via

1 wpe® 1
o= 37760—(ﬁc35|<6pl/2||r||651/2>|2- (22)
We have calculated the transition dipole moment using
the wave functions of the 6P;,, and 65, states of Cs per-
turbed by the bubble, as discussed in detail in [24]. The
results show that the dipole moment decreases with increas-
ing pressure. However, this change is largely compensated
by a simultaneous increase of the transition frequency (the
blueshift discussed in the following subsection) and the re-
sulting lifetime is almost constant in agreement with the ex-
perimental data in liquid and bcc solid He. We have also
shown [24] that the reduction of 7 with respect to its free
atomic value is due to the interaction of the atomic dipole
with its own radiation field reflected at the bubble interface
(cavity effect). In the case of hep matrices the observed pres-
sure dependence of 7 is attributed to the onset of a pressure-
dependent radiationless formation of exciplex [24].

H. Cavity effect

The above treatment has not yet taken into account that
the excited Cs atom interacts with its own electromagnetic
radiation reflected at the bubble interface. It is well known
that a static (or oscillating) electric dipole close to a dielec-
tric interface induces a static (or oscillating) polarization in
the dielectric. The interaction between the dipole and its mir-
ror image in the dielectric results in a redshift of the emitted
light, and affects the lifetime of the atomic oscillator [24].
The problem of an excited atom interacting with a spherical
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FIG. 3. (Color online) Calculated potential energy (solid black
line) of the Cs 65/, ground state in the spherical bubble including
the bubble energy as a function of the bubble radius R, with the
probability distribution ¢(R,)> shown as a red curve.

microcavity in a dielectric has been treated in [25]. The shift
of the transition frequency is given by

62

o= 2womodzRe[d E], (23)
where m, is the electron mass, w, is the transition frequency,
d is the transition dipole moment, and E is the field produced
by the polarized dielectric at the position of the atom. We
have evaluated this expression and calculated the corre-
sponding correction to the transition frequency. For a given
bubble configuration we made a numerical evaluation of the
induced polarization in the surrounding solid He and calcu-
lated the field produced by that polarization at the center of
the bubble. Retardation effects can be neglected because of
the small bubble size. For bee solid He at 1.6 K we obtain a
redshift of 44 cm™! for the emission line and of 83 cm™' for
the absorption line. This cavity effect is taken into account in
the calculated lineshifts presented in Fig. 5. The same ap-
proach was used in [26] to calculate wavelength corrections
of the absorption line of alkali atoms (Li, Na, K) bound in a
dimple at the surface of He nano droplets. In that case the
correction was much smaller, about 9 cm™!, due to the
loosely bound structure of the trapping site.

I. Line shape of absorption and emission lines

A standard way [27] for calculating the line shape of the
6S,/,-6 P, absorption line consists in considering the smear-
ing out of the ground state wave function due to bubble
oscillations. Here we consider only radial (breathing mode)
oscillations around the equilibrium bubble radius Ry(6S5),
whose wave function can be obtained in the following way.
Figure 3 shows the total bubble energy Eq-’ as a function of
the bubble radius. We use this energy (and not just its har-
monic approximation near the minimum) as the potential in a
one-dimensional Schrodinger equation. The solutions then
yield the eigenenergies and wavefunctions of the oscillations.
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+  Excitation Emission

D, free atom

intensity (arb. units)

830 840 850 860 870 880 890 900
wavelength (nm)

FIG. 4. (Color online) Experimental (black dots) and theoretical
(solid red line) excitation and emission spectrum of the 65,
—6P,, transition in the bcc phase of solid He. Experimental con-
ditions: 7=1.6 K, p=27.8 bars. Note the good agreement of the
line positions within the experimental linewidths. The line positions
as a function of He pressure are shown in Fig. 5.

We consider the mass of the oscillator to be the hydrody-
namic mass of the bubble M ;=4mR,>ponye.

The splitting between the vibrational ground state and the
first excited vibrational level is equivalent to 7.5 K at
26.6 bar, so that at the temperature 7=1.6 K of the experi-
ment, only the lowest vibrational state is populated. The
probability distribution for finding a bubble with radius Ry is
then given by |¢(R)|?, where ¢y(R,) is the wave function
associated with the corresponding zero-point energy, whose
R, dependence is shown in Fig. 3. To each bubble radius R,
corresponds a given transition energy with a relative weight
given by |¢y(Ry)|>. An equivalent procedure can be applied
for calculating the emission spectra. In that case one starts
from breathing mode oscillations of the bubble around
Ry(6P).

The shape and the size of the bubble do not change during
the electronic transition since the transition occurs on a time
scale shorter than the bubble oscillation period (Frank-
Condon principle). Once the Cs atom is excited the bubble
relaxes to a larger radius that reflects the larger extension of
the excited state wave function. One can estimate that this
relaxation occurs on a picosecond time scale. The fluores-
cence transition occurs in the larger bubble in which the
excited state lives for a few ten ns, close to the free atomic
lifetime.

In Fig. 4 we compare the theoretical excitation and emis-
sion line shapes for the D, (6S;,-6P;/,) line in a bcc He
crystal to the experimentally measured spectra. Both absorp-
tion and emission lines are blueshifted and broadened with
respect to the free atomic line. The repulsive interaction be-
tween the valence electron and the bubble interface shifts
both atomic states towards higher energies. Since the elec-
tronic wave function of the excited state has a larger radial
extension the shift of that state is larger. As a result the net
transition energy increases and the lines become blueshifted.
The shift and broadening are more pronounced in absorption
since it occurs in a bubble of smaller size than the bubble in
which the emission occurs. The calculated transition wave-
lengths, defined as the numerically evaluated centers of grav-
ity of the lines are shown as a function of He pressure in Fig.
5 together with experimental results for pressures ranging
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FIG. 5. Experimental (dots) excitation (a) and emission (b)
wavelengths of the 6S,,,— 6P}/, (D,) transition. Experimental data
in liquid He are taken from [4]. The solid lines are calculated using
the extended SBM presented in this work (the extension of the
model is discussed in Sec. IV A) including the cavity shift. The
dashed lines show the predicted jumps at the liquid-solid phase
transition without using the extended model (only SBM). Vertical
dashed lines mark the phase transitions of condensed He.

from liquid He (He II), via the crystalline bee phase to the
hcp phase. As a general trend the transition frequencies in-
crease with increasing He pressure due to the increased per-
turbation of the Cs atom by the He matrix.

III. EXPERIMENT

The experiments were performed in a Cs doped solid He
matrix. Details of the technique for doping a He crystal were
presented in previous publications [28,29]. A He crystal is
produced by pressurizing liquid He in a copper cell im-
mersed in a liquid He bath cooled to 1.6 K by pumping on its
surface. The cell has five windows in three orthogonal direc-
tions for optical access. The crystal is doped with Cs atoms
by laser ablation using a frequency doubled pulsed Nd:YAG
laser (532 nm, repetition rate ~3 Hz, pulse energy 10 mJ).
The laser beam is focused by a height adjustable lens
mounted above the cell onto a solid Cs target located at the
bottom of the cell. A cw diode laser at 850 nm, or the idler
output of a tunable optical parametric oscillator (OPO)
pumped by the third harmonic of a Nd:YAG laser were used
for the optical excitation of the implanted atoms. The idler
beams of the OPO can be tuned over the range
770—1100 nm. The atomic fluorescence light is collected by
a lens inside the cryostat and collimated into a direction per-
pendicular to the ablation and excitation laser beams, where
it is focused into a grating spectrograph (MS257, Oriel)
equipped with a CCD camera. All measurements were done
at 1.5 or 1.6 K, in the pressure range of 26—38 bars, either in
the bee or hep phase of solid He.

Excitation spectra. The excitation spectrum of the D,
transition recorded in the bcc phase at 27 bars is shown in
Fig. 4. This spectrum was obtained by tuning the OPO over
the range of 820—870 nm in 1 nm steps, while recording the
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emitted fluorescence near 880 nm. The measurements were
repeated for different helium pressures. At each pressure the
center of gravity of the excitation band was determined nu-
merically. The dependence of the line centers A, as a func-
tion of He pressure are shown in Fig. 5(a), where they are
compared to the theoretical predictions.

The experimental pressure dependence of the absorption
(and emission) lines presented in Fig. 5 can be compared to
corresponding measurements in pressurized superfluid He
[4] shown in the same plot. In He II the absorption line
shows an almost linear shift towards shorter wavelengths
with increasing He pressure, and the data in solid He have a
pressure shift with a practically identical slope. This com-
mon slope is very well predicted by the SBM calculations
made in this work (solid lines in Fig. 5).

A prominent feature in Fig. 5 is the large jump &, of the
excitation wavelength at the boundary between the liquid
and solid phases. At the liquid-bcc phase transition the He
density p, increases by about 8%. In the bubble model this
change of density yields a blueshift of the excitation line by
approximately 2 nm (28 cm™'), much smaller than the ex-
perimentally observed jump of 10 nm (140 cm—1). The ex-
citation line shows another jump—of opposite sign—at the
bce-hep phase transition. At this point the helium density
increases by 0.4%, for which the SBM predicts a blueshift of
0.2 nm (3 cm™!), not visible on the scale of Fig. 5, whereas
the measured A, shifts by 1.5 nm (20 cm™") to the red. We
interpret the sign and magnitude of this jump as being due to
the static quadrupolar deformation of the atomic bubble in
the uniaxial hep crystal [29]. Clearly, the bubble model as-
suming spherical bubble shapes is not capable of treating this
phenomenon and the development of an extended bubble
model that takes bubble deformations into account is in
progress.

Emission spectra. We have also measured the pressure
dependence of the D, emission line center A, excited at a
fixed wavelength (850 nm). The excitation wavelength was
not adjusted when changing the pressure since the absorption
line is rather broad (Fig. 4). The results are shown in Fig.
5(b), where the positions of the emission lines are taken as
their centers of gravity.

The pressure shift of the emission line A, [Fig. 5(b)] also
shows a linear dependence on He pressure. However, the
slope is now different in the liquid and solid phases. The
spherical bubble model gives a very good agreement with the
slope and the absolute values in liquid He and slightly un-
derestimates the one in solid He. As in the case of the ab-
sorption line, the blue jump &,,=2 nm (30 cm™!) observed
at the He II-bcc transition cannot be explained by the spheri-
cal bubble model as being due to the 8% increase of density.
Another remarkable fact is that the jump of the emission line
at the bcc-hep phase transition is towards shorter wave-
lengths. The SBM predicts the same sign of the jump, but
strongly underestimates its magnitude.

IV. DISCUSSION

A. Extension of the bubble model

The calculations using the spherical bubble model pre-
sented here as well as those reported in [4] cannot reproduce
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the large jump of the excitation and emission lines at the
liquid-solid phase transition observed in the experiments. In
this subsection we suggest an extension of the SBM which
explains this experimental observation.

In Fig. 6 N\ and A, (the same data as in Fig. 5) are
plotted as functions of the He density p rather than of the He
pressure. Both density dependencies are linear since in liquid
and solid He the density is nearly proportional to the pres-
sure (except for the discontinuity at the phase boundary). The
striking feature of Fig. 6 is that the data points measured in
the bce phase and those in liquid He lie exactly on the same
straight line, without any jump at the phase boundary. This
observation suggests that it is the density rather than the
pressure, which is responsible for the “pressure” shift. At the
same time, the shift at the bcc-hcp phase boundary has a
different nature and is most likely related to the change in the
bubble shape due to the anisotropy of the crystal.

In liquid He the equilibrium bubble radius R is estab-
lished as a balance between the repulsive Cs-He interaction
(discussed in Sec. I C) and the bubble energy E};, which is
minimized for Ry— 0 [Eq. (15)]. The former is proportional
to the He density p [see Eq. (18)], while the latter is domi-
nated by the pV term and is thus proportional to the He
pressure. An increase of the He pressure is accompanied by a
corresponding increase of the He density and both Ey,, and
E, increase. Therefore the total energy increases with a very
small change (decrease) of the bubble radius. At the phase
boundary the density increases by 8% without any change in
the pressure. According to the SBM a new equilibrium
bubble with a larger value of R is established with a rela-
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tively small corresponding increase in energy. The undis-
turbed linear dependence of Fig. 6 suggests that the bubble
stays frozen or even shrinks at the phase transition due to an
additional force, which compensates the increased Cs-He re-
pulsive force.

We identify this new force as an elastic restoring force,
which appears in the solid compressed by the expansion of
the bubble at constant volume of the sample. It is not present
in liquid He, where the formation of the bubble proceeds by
a displacement of helium at constant pressure. In order to
calculate this restoring force we use the fact that in equilib-
rium it compensates the force acting on the bubble interface
from inside.

aEinl

: (24)
IRy | Ry=r

eq

Felastic == FCS—He ==

where R, is the equilibrium bubble radius for a given elec-
tronic state (here 65/, or 6P;,,). The energy of the deforma-
tion is then given by FepqicAR, where AR=R"~R§1™ is
the difference between the equilibrium bubble size in solid
and in liquid He. Equation (15) defining the bubble energy
becomes

JE int

OR _pliquid
0 RO—ROIq a

4
Epup = gngp +47R} 0 + Eyy — AR.

(25)

The additional term leads to an equilibrium bubble size in
bce He, which is slightly smaller than the bubble size in
liquid. We have recalculated the spectra using the extended
expression (25) for Ey,. The resulting pressure dependencies
of the excitation and emission wavelengths are shown in Fig.
5 by solid lines. In both cases we obtain a much better agree-
ment with the experimental results in He II and in bce solid
He than with the standard spherical bubble model (shown by
dashed lines in Fig. 5).

The jump of excitation and emission lines at the bcc-hep
phase transition remains when plotted against density and
cannot be explained, even in the frame of the present exten-
sion of the standard bubble model. The fundamental differ-
ence between the bcc and the hep phases is the crystalline
symmetry: the uniaxial hexagonal phase has strongly aniso-
tropic elastic constants, which affect the shape of the atomic
bubble. In consequence the potential seen by the valence
electron is no longer a central potential. Some aspects of
static anisotropic bubble deformations are discussed in [29].
A more detailed calculation of this effect on atomic spectra is
currently underway and will be presented in a forthcoming
publication.

B. Summary

We have presented a detailed discussion of the spherical
bubble model for Cs atoms in liquid and solid “He with an
important extension of the model that allows us to explain
the sudden jumps of absorption and emission wavelengths of
the Cs 6S;,,-6P ), transition at the liquid-solid phase transi-
tion. The extension of the model includes an additional
bubble energy term for the solid phase that accounts for the
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elastic properties of the crystal and we included an additional
shift due to the interaction of the excited Cs atom with its
own radiation field (cavity effect). The extended bubble
model gives an excellent agreement within the experimental
linewidths of the absorption and emission wavelengths of Cs
atoms in liquid and solid bcc He. We have shown that it is
the density of the He matrix rather than its pressure that is
responsible for the line shifts. The model calculations were
also applied to measurements of the lifetime of the Cs 6Py,
state [24], the fine structure and the hyperfine splitting in the
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Cs ground state and gave good agreement with experimental
results. A model for the deformations of the atomic bubbles
in the uniaxial hcp phase of solid He is in progress and will
be the subject of a future publication.
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