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The formation of multipartite quantum entanglement by repeated operation of one- and two-qubit gates is
examined. The resulting entanglement is evaluated using two measures: the average bipartite entanglement and
the Groverian measure. A comparison is made between two geometries of the quantum register: a one-
dimensional chain in which two-qubit gates apply only locally between nearest neighbors and a nonlocal
geometry in which such gates may apply between any pair of qubits. More specifically, we use a combination
of random single-qubit rotations and a fixed two-qubit gate such as the controlled-phase gate. It is found that
in the nonlocal geometry the entanglement is generated at a higher rate. In both geometries, the Groverian
measure converges to its asymptotic value more slowly than the average bipartite entanglement. These results
are expected to have implications on different proposed geometries of future quantum computers with local and
nonlocal interactions between the qubits.
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I. INTRODUCTION

Quantum algorithms such as Shor’s factoring algorithm
�1� and Grover’s search algorithm �2,3� exemplify the poten-
tial speedup offered by quantum computers. Although the
origin of this speedup is not fully understood, there are indi-
cations that quantum entanglement plays a crucial role �4–6�.
Therefore, it is of interest to quantify the entanglement of the
quantum states of multiple qubits that appear in quantum
algorithms, using suitable measures. The special case of bi-
partite entanglement has been studied extensively in recent
years and was established as a resource for quantum telepor-
tation. The entanglement of pure bipartite states is com-
pletely determined by their Schmidt coefficients. Thus, any
measure of bipartite entanglement must be a function of
these coefficients. For example, the von Neumann entropy is
expressed in terms of the eigenvalues of the reduced density
matrix, which are the squares of the Schmidt coefficients.
For mixed bipartite states, several measures were proposed,
namely, the entanglement of formation and the entanglement
of distillation �7,8�. In particular, for states of two qubits an
exact formula for the entanglement of formation was ob-
tained �9,10�. The more general case of multipartite entangle-
ment, in a register of n�2 qubits, is not as well understood,
partly because no analog of the Schmidt decomposition was
found for multipartite systems. Axiomatic considerations
have provided a set of properties that entanglement measures
should satisfy �11–14�. These properties include the require-
ment that any entanglement measure should vanish for prod-
uct �or separable� states; it should be invariant under local
unitary operations and should not increase as a result of any
sequence of local operations complemented by only classical
communication between the parties. Quantities that satisfy
these properties are called entanglement monotones. These
properties provide useful guidelines in the search for en-
tanglement measures for multipartite quantum states. En-
tanglement measures based on metric properties of the Hil-
bert space �11,12,15� and on polynomial invariants �16,17�
were proposed and shown to satisfy these requirements. Al-
though some measures have been studied extensively, the

connection between such measures and the efficiency of
quantum algorithms remains unclear.

The common framework of quantum computation is
based on a universal set of one and two qubit gates �18,19�.
Repeated operations of these gates enable to obtain any de-
sired quantum state of the register. To generate multipartite
entanglement encompassing all the qubits in a register, one
applies a series of two qubit gates between pairs of qubits, in
addition to single qubit gates. One can visualize this process
as a network in which the qubits are represented by nodes
and two qubit operations are represented by edges that con-
nect the corresponding nodes. Quantum entanglement is
transitive in the sense that if we apply a gate that entangles
qubits i and j and then a gate that entangles qubits j and k,
this typically also gives rise to entanglement between qubits
i and k. By entanglement between qubits i and k we mean
that any two parties, each including one of these qubits, can-
not be in a product state with each other. Thus, in order for
the entanglement to encompass all the qubits in the register,
the nodes associated with any pair of qubits must be con-
nected, either directly or indirectly.

In recent years, several possible implementations of quan-
tum computers have been proposed. In some of these
schemes the interactions between qubits are nonlocal in the
sense that two-qubit gates may apply between any pair of
qubits. Other schemes are based on a rigid geometry in
which only nearest-neighbor qubits may interact. In particu-
lar, they may be arranged in a one-dimensional chain, similar
to solid state quantum computers using quantum dots �20�. In
a one-dimensional geometry, two-qubit gates may apply on
only n−1 or n pairs of qubits �depending on the boundary
conditions�, out of the n�n−1� /2 possible pairs. It is interest-
ing to examine to what extent the geometrical restriction
reduces the efficiency of the quantum computer. This limita-
tion was addressed in the context of certain quantum algo-
rithms �21–26�.

In this paper we consider the rate of formation of multi-
partite entanglement in a register of n qubits by repeated
operations of one and two-qubit gates. Starting from a prod-
uct state, we repeatedly apply a combination of random
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single qubit rotations and a fixed two-qubit gate on pairs of
qubits. Two geometries are considered: a nonlocal geometry
in which any pair of qubits may interact with each other and
a one-dimensional chain, in which two-qubit gates may ap-
ply only between nearest-neighbor qubits. The resulting en-
tanglement is evaluated using two measures: the average bi-
partite entanglement �27–29� and the Groverian measure
�30�. It is found that the nonlocal scheme is more effective,
namely, it requires fewer steps to produce a certain level of
multipartite entanglement compared to the local scheme.

The paper is organized as follows. The entanglement mea-
sures used in this paper are briefly presented in Sec. II. The
entanglement generating schemes, with local and nonlocal
geometries are shown in Sec. III. The simulations and results
are presented in Sec. IV, followed by a discussion in Sec. V
and a summary in Sec. VI.

II. ENTANGLEMENT MEASURES OF MULTIPLE QUBITS

A. The average bipartite entanglement measure

Consider a quantum register of n qubits in a pure state
���. The bipartite entanglement between a given qubit and all
the other qubits is given by a single parameter �31�, namely,
all the entanglement monotones for such a partition are the
same up to a monotonic function. One of these monotones is
the largest eigenvalue P of the reduced density matrix � of
the single qubit. This eigenvalue is also the square of the
largest Schmidt coefficient. Another monotone is Tr��2�
= P2+ �1− P�2, which is a monotonically increasing function
of P in the relevant interval 1 /2� P�1. To evaluate the
entanglement in a register of n qubits we average this mea-
sure over all n choices of the single qubit, where �i, i
=1,2 , . . . ,n is the reduced density matrix of the ith qubit,
obtained by taking a partial trace over all the other qubits.
After a suitable normalization and shift, one obtains the en-
tanglement measure �27,28�

Q��� = 2 −
2

n
�
i=1

n

Tr��i
2� . �1�

This measure was used in order to evaluate the entanglement
generated by repeated operations of random gates �29,32�.
Q��� is an entanglement monotone only for the most refined
partition, where each qubit is considered as a separate party.
It is thus commonly considered as a measure of multipartite
entanglement.

In fact, the measure Q��� essentially quantifies bipartite
entanglement, which is averaged over n different partitions.
In each partition, one party consists of a single qubit while
the other party consists of n−1 qubits. One may define other
partitions of the register into two parties, where one party
includes k qubits and the other party includes n−k qubits.
For a given value of k, the entanglement measure is obtained
by averaging Tr��2� over all possible partitions of this type.
In a more general framework, the register can be partitioned
into any number of parties between 2 and n �16,33�.

B. The Groverian measure

Grover’s algorithm performs a search for a marked ele-
ment m in a search space D containing N elements �2,3�. We
assume, for convenience, that N=2n, where n is an integer.
This way, the elements of D can be represented by an n-qubit
register �x�= �x1 ,x2 , . . . ,xn� with the computational basis
states �i�, i=0, . . . ,N−1. The meaning of marking the ele-
ment m is that there is a function f :D→ �0,1	, such that
f =1 for the marked element, and f =0 for the rest. To solve
this search problem on a classical computer one needs to
evaluate f for each element, one by one, until the marked
state is found. In the worst case, this requires N evaluations
of f . On a quantum computer, where f can be evaluated
coherently, Grover’s algorithm, represented by the unitary
operator UG, can locate a marked element using only O�
N�
coherent queries of f �2,3�. The algorithm is based on a quan-
tum oracle, with the ability to recognize the marked states
�2,3�. Starting with the equal superposition state

��� = �
i=0

N−1

�i� �2�

and applying the operator UG, one obtains the state UG���
= �m�+O�1/N�, which is then measured. The success prob-
ability of the algorithm is almost unity. The adjoint equation
takes the form ���= �m�UG+O�1/N�. If an arbitrary pure
state ��� is used as the initial state instead of the state ���, the
success probability is reduced to Ps= ��m�UG����2+O�1/N� or
Ps= ��� ����2+O�1/N�. The success probability is thus deter-
mined by the fidelity between ��� and ��� �30,34�.

Consider Grover’s search algorithm, in which an arbitrary
pure state ��� is used as the initial state. Before applying the
operator UG, there is a preprocessing stage in which arbitrary
local unitary operators U1 ,U2 , . . . ,Un are applied on the n
qubits in the register. These operators are chosen such that
the success probability of the algorithm will be maximized.
The maximal success probability is thus given by

Pmax��� = max
U1,U2,. . .,Un

��m�UG�U1 � ¯ � Un�����2, �3�

which can be rewritten as

Pmax��� = max
����T

�������2, �4�

where T is the space of all tensor product states of the form
���= ��1� � ¯ � ��n�. The Groverian measure is given by
G���=
1− Pmax��� �30�. In the case of pure states, for which
G��� is defined, it is closely related to the entanglement mea-
sure introduced in Refs. �11,12,15� for both pure and mixed
states and was shown to be an entanglement monotone.
Based on these results, it was shown �30� that G����0, with
equality when ��� is a product state; G��� is invariant under
local unitary operations and cannot be increased using local
operations and classical communication. Therefore, G��� is
an entanglement monotone for pure states. A related result
was obtained in Ref. �35�, where it was shown that the evo-
lution of the quantum state during the iteration of Grover’s
algorithm corresponds to the shortest path in the Hilbert
space using a suitable metric.
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The Groverian measure was used in order to evaluate the
entanglement generated by quantum algorithms such as
Grover’s algorithm �36� and Shor’s algorithm �37�. It was
also generalized to the case of mixed states �38� and to arbi-
trary partitions of the register �33�. Here we use a different
version of the Groverian measure, referred to as the logarith-
mic Groverian measure, given by

G��� = − ln�Pmax���� . �5�

This is an entanglement monotone because the logarithmic
function is monotonically increasing and it vanishes for
product states for which Pmax=1. Unlike the measure intro-
duced in Ref. �30�, which is restricted to the range of �0, 1�,
the logarithmic Groverian measure may take values in the
range 0�G���	
. This enables one to better distinguish
and compare between highly entangled states which involve
a large number of qubits.

Furthermore, the logarithmic Groverian measure exhibits
the additivity property described below. Consider the state
���= ��A���B� where ��A� and ��B� are pure states of two
different registers of nA and nB qubits, respectively, and
nA+nB=n. One can express the product state ��� of n
qubits in the form ���= ��A���B�, where ��A� and ��B� are
product states of nA and nB qubits, respectively. Since ���
is a tensor product of ��A� and ��B�, we obtain that �� ���
= ��A ��A���B ��B�. Thus, using Eq. �4� we find that
Pmax���= Pmax��A�Pmax��B�. As a result, the logarithmic
Groverian measure satisfies

G��� = G��A� + G��B� . �6�

The additivity enables one to compare between the entangle-
ment in registers which include different numbers of qubits.

III. THE ENTANGLEMENT GENERATING SCHEME

To examine the rate of multipartite entanglement forma-
tion in quantum circuits we consider a scheme for the pro-
duction of pseudorandom states of n qubits �29�. The number
of random amplitudes in a random state of n qubits is expo-
nential in n. While the randomization of the state of each
qubit alone requires only linear resources, the formation of
entanglement between them is more costly. Nevertheless, it
can be achieved by a combination of random single-qubit
gates and a fixed two-qubit gate, which apply repeatedly on
pairs of qubits. It was shown that this rotate-entangle-rotate
scheme provides pseudorandom states with only polynomial
resources �29,39�. The random single qubit rotation is ob-
tained using

U1 = �e2�i�1
1 − x e2�i�2
x

− e−2�i�2
x e−2�i�1
1 − x

 , �7�

where at each step x, �1, and �2 are drawn from a uniform
distribution over the unit interval �0, 1�. This parametrization
provides operators drawn uniformly from the Haar measure
�40�. For the two-qubit gate, we use the controlled-phase
gate �29�

U2 = ei�/4
z�
z �8�

expressed in the canonical decomposition form given in Ref.
�31�. This is a sensible choice because this operator can pro-
duce maximally entangled states.

The initial state of the entanglement generating scheme is
a random product state ��0� of n qubits, where the state of
each qubit is drawn from a uniform distribution on the Bloch
sphere. Each iteration of this scheme consists of the follow-
ing operations.

�1� Choose a random pair of qubits i and j from the n
qubits in the register. In the nonlocal scheme, any pair of
qubits may be chosen with equal probabilities. In the local
scheme the qubits are arranged in a one-dimensional chain
with periodic boundaries and only nearest-neighbor pairs are
chosen with equal probabilities.

�2� Apply the controlled phase operator on qubits i and j.
�3� Apply random single-qubit rotations, drawn uniformly

from the Haar measure �40�, on qubits i and j.
The state obtained after t iterations, or time steps, is de-

noted by ��t�. To examine the rate of entanglement formation
and to compare between the two schemes, we evaluate the
following three functions of ��t�: �a� the fidelity F��0 ,�t�
= ���0 ��t��, �b� the average bipartite entanglement Q��t�, and
�c� the logarithmic Groverian measure G��t�. Unlike Q��t�
and G��t� which are entanglement measures, F��0 ,�t� is not
an entanglement monotone. To put it on a common footing
with the Groverian measure, we define

K��0,�t� = − ln F��0,�t� , �9�

which is a monotonically decreasing function of the fidelity
and takes values between zero and infinity.

IV. SIMULATIONS AND RESULTS

Each simulation of the entanglement-generating scheme
creates a series of quantum states ��t�, t=1,2 , . . .. We exam-
ine the variation of K��0 ,�t�, Q��t�, and G��t� vs t. Due to
the random nature of the operations, these three functions
strongly fluctuate when evaluated for a single run of the en-
tanglement generating scheme. To reduce the noise and elu-
cidate the systematic trends, we perform a large number of
runs using different initial states ��0� and calculate the aver-
ages �K��0 ,�t��, �Q��t��, and �G��t�� vs t.

In Fig. 1 we present �K��0 ,�t�� vs t averaged over 2000
realizations for the local scheme �Fig. 1�a�� and for the non-
local scheme �Fig. 1�b��. The sharp increase of �K��0 ,�t�� is
explained by the fact that the fidelity is highly sensitive not
only to two-qubit operations but also to single-qubit opera-
tions. Hence, the first few steps of the scheme can decrease
the fidelity substantially. To explain the overshot, notice that
product states have smaller fidelity with each other than en-
tangled states, since the fidelity of two product states is sim-
ply the multiplication of the fidelities of the tensor compo-
nents �all smaller then 1�. In the beginning of the scheme, the
register is still nearly separable so its fidelity with the �also
separable� initial state is smaller than when it is completely
entangled. After a sufficient number of steps, the state of the
register is uncorrelated with the input state and �K��0 ,�t��
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saturates. As the number of qubits in the register increases, it
takes more steps to bring �K��0 ,�t�� to saturation. However,
there is no significant difference between the two geometries.

The average bipartite entanglement �Q��t�� is shown in
Fig. 2�a� for the local scheme and in Fig. 2�b� for the non-
local scheme. It increases more slowly than �K��0 ,�t��. The
asymptotic value of �Q��t�� is the same for both geometries,
but it is reached much faster in the nonlocal geometry than in
the local one-dimensional geometry. The results for the one-
dimensional geometry are consistent with those presented in
Ref. �29�. The Groverian measure G��t� vs t is shown in
Figs. 3�a� and 3�b� for the local and nonlocal geometries,
respectively. Clearly, �G��t�� converges to its asymptotic
value more slowly than �Q����. The asymptotic value of
�G���� is the same for both geometries but it is reached
much faster in the nonlocal geometry.

The number of steps required for �K��0 ,�t��, �Q��t��, and
�G��t��, to reach 90% of their saturation values, vs n, is
shown in Figs. 4�a�, 4�b�, and 4�c�, respectively. The results
for �K��0 ,�t�� are almost identical in the local and nonlocal
schemes. The time it takes �Q��t��, to reach 90% of its satu-
ration values appears to be linear in n, for both geometries.
However, the slope is lower for the nonlocal geometry,
which means that the average bipartite entanglement builds
up more quickly when nonlocal interactions are allowed.
Similarly, in the nonlocal geometry the saturation time of

�G���� is linear in n. In the local geometry, the saturation
time is longer, and deviates from linear dependence on n, and
is well fitted by a quadratic function of n.

In the analysis above we focused on the averages of func-
tions K, Q, and G. Each data point was obtained by averag-
ing over at least 2000 runs of the entanglement forming pro-
cedure described above. These averages were taken from the
distributions f�K�, f�Q�, and f�G� for the quantum states ��t�
obtained after t iterations of the procedure. As t increases,
these distributions are found to approach the distribution ob-
tained for random states of the register �29�. In Fig. 5 we
present the probability densities f�G� of the Groverian mea-
sure G��t� for t=10 �dashed-dotted line�, 20 �dashed line�,
and 100 �solid line� steps, for a register with n=8 qubits. As
the number of steps increases, these distributions approach
the distribution f�G� obtained for pseudorandom states of the
eight-qubit register �dotted line�.

These results indicate that building up bipartite as well as
multipartite entanglement using two-qubit gates is more ef-
ficient when nonlocal interactions are allowed. Furthermore,
in both geometries it seems that multipartite entanglement,
evaluated by G��� builds up more slowly than the bipartite-
like entanglement quantified by Q���.

V. DISCUSSION

Quantum algorithms are typically designed under the as-
sumption that two-qubit operations are possible between any
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FIG. 1. �Color online� The average of K��0 ,�t�=−ln F��0 ,�t�
vs time in the local scheme �a� and in the nonlocal scheme �b�. The
number of qubits in the register is n=2,3 , . . . ,11 qubits �from bot-
tom to top�.
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FIG. 2. �Color online� The average of the entanglement measure
Q��t� vs t in the local scheme �a� and in the nonlocal scheme �b�,
for a register with 2 ,3 , . . . ,11 qubits, from bottom to top. Clearly,
the entanglement builds up faster in the nonlocal scheme.
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pair of qubits. However, some of the physical realizations of
quantum computation allow only local interactions between
neighboring qubits �20�. In these realizations, nonlocal op-
erations are achieved using swap gates �21� which may in-
volve a significant overhead �41�. To put the results of this
paper in the context of known physical realizations, we
briefly review below several such realizations and specify
whether they are based on local or nonlocal interactions.

Ion-trap quantum computing devices �42,43� consist of
laser-cooled ions, which are electromagnetically confined in
ultrahigh vacuum. The spin states of the ions are used as
qubits. Single-qubit gates are preformed by selectively ap-
plying electromagnetic fields on the different ions. Two-qubit
gates are realized through a global phonon state, which
makes use of the collective vibrational degree of freedom of
the ions. The ground state and the first excited state of the
phonon comprise a two-level system, which is used as an
additional qubit. Using carefully tuned laser-induced transi-
tions, two-qubit gates can be applied between each ion and
the global phonon. Specifically, a swap gate can be applied
between them, enabling one to apply two-qubit gates be-
tween any pair of qubits. Ion traps thus provide a nonlocal
implementation of quantum computation. Linear optics pro-
vides another nonlocal realization of quantum computation
�44,45�.

Quantum computation can also be performed using solid-
state devices �46,47�. Several proposals are comprised of qu-

0 50 100 150 200 250
0

1

2

3

4

5

0 50 100 150 200 250
0

1

2

3

4

5

t

t

(a)

(b)

�G
(ψ

t)
�

�G
(ψ

t)
�

(a)

(b)

FIG. 3. �Color online� The average of the Groverian measure
G��t� vs t in the local scheme �a� and in the nonlocal scheme �b�,
for a register with 2 ,3 , . . . ,11 qubits. The Groverian measure in-
creases faster in the nonlocal scheme.
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bits based on superconducting Josephson junctions �48�. One
such proposal uses the two states of a superconducting
single-charge box as a charge qubit. The possibility of con-
necting all the qubits in parallel to an inductor-capacitor cir-
cuit �commonly referred to as an LC-oscillator� mode was
suggested as a way to apply two-qubit gates �49�. This par-
allel connection, together with the ability to simultaneously
control the Josephson coupling for each qubit, allows two-
qubit interaction between any pair of qubits, giving rise to a
nonlocal scheme. A different superconducting scheme is
based on Josephson flux qubits, which interact through mag-
netic induction. Unlike the charge-qubit scheme, the flux-
qubit scheme is a local one. Another implementation is based
on electron spins as qubits, confined to quantum dots �50�.
Two-qubit gates are applied using a time-dependent Heisen-
berg exchange coupling between adjacent dots, providing a
local scheme for quantum computation. Solid-state realiza-
tions may be most suitable for scalable implementation of
quantum computations. Some of these realizations are based
on local interactions. Local interactions appear form
multiple-qubit entanglement at a lower rate than nonlocal
interactions. However, the connection between the entangle-

ment as quantified by the Groverian and related measures
and the speedup offered by quantum algorithms is not yet
clear.

VI. SUMMARY

We have studied the formation of multipartite quantum
entanglement by repeated operation of one- and two-qubit
gates. The resulting entanglement was evaluated using the
average bipartite and the Groverian measures. A comparison
was made between two geometries of the quantum register: a
nonlocal geometry in which any pair of qubits may interact
and a local geometry in which the qubits are arranged in a
one-dimensional chain, where only nearest-neighbor interac-
tions are allowed. More specifically, we used a combination
of random single qubit rotations and a fixed two-qubit opera-
tion, namely, the controlled phase gate. We found that in this
scheme, entanglement is generated more quickly in the non-
local geometry than in the one-dimensional chain. Thus, non-
local implementations of quantum computation are expected
to be more efficient in generating highly entangled states.
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